1. The limit

$$
\lim _{x \rightarrow 0} \frac{\cos x-\sec x}{x^{2}(x+1)}
$$

is equal to
(A) 0 .
(B) -1 .
(C) $\frac{1}{2}$.
(D) 1 .
2. The locus of a point having equal distances from

$$
3 x-2 y=5 \text { and } 3 x+2 y=5, \text { is }
$$

(A) one circle.
(B) only one straight line.
(C) two possible straight lines.
(D) none of the above.
3. The bounded area formed by $|x|+|y|=2018$ is
(A) 4×2018^{2}.
(B) 3×2018^{2}.
(C) 2×2018^{2}.
(D) 2018^{2}.
4. The point on the curve $4 y+2 x^{2}=0$ nearest to $\left(0,-\frac{1}{2}\right)$ is
(A) $(0,0)$.
(B) $\left(\frac{1}{2},-\frac{1}{8}\right)$.
(C) $\left(1,-\frac{1}{2}\right)$.
(D) none of these.
5. If $Z_{n}=\cos \frac{\pi}{2^{n}}+i \sin \frac{\pi}{2^{n}}$, then the product $Z_{1} Z_{2} Z_{3} \cdots$ to ∞ is equal to
(A) -1 .
(B) 0 .
(C) 1 .
(D) e.
6. The values of x which satisfy the inequality

$$
\left|x^{2}-9 x+14\right|>x^{2}-9 x+14
$$

are
(A) $x>2$.
(B) $2<x<7$.
(C) $x<7$.
(D) none of these.
7. The sum ${ }^{n} C_{0}+2 \times{ }^{n} C_{1}+3 \times{ }^{n} C_{2}+\cdots+(n+1) \times{ }^{n} C_{n}$ is
(A) 2^{n}.
(B) $2^{n+1}-1$.
(C) 2×2^{n}.
(D) none of these.
8. If $3 p^{2}=5 p+2$ and $3 q^{2}=5 q+2$, for $p \neq q$, then the quadratic equation whose roots are p^{2} and q^{2} is
(A) $9 x^{2}+13 x+4=0$.
(B) $9 x^{2}-13 x+4=0$.
(C) $9 x^{2}-37 x+4=0$.
(D) $9 x^{2}+37 x+4=0$.
9. If z is a complex number such that

$$
i z^{3}+z^{2}-z+i=0, \quad \text { where } i=\sqrt{-1},
$$

then the value of $|z|$ is
(A) $\frac{1}{2}$.
(B) $\sqrt{2}$.
(C) 2 .
(D) 1 .
10. The function $f(x)=x^{3}-6 x^{2}+24 x, x \in R$, attains
(A) neither a maximum nor a minimum value.
(B) both a maximum and a minimum value.
(C) only a maximum value.
(D) only a minimum value.
11. The area of the bounded region enclosed by the curve $y=6+x-x^{2}$ and the line $y=4$ is
(A) $\frac{31}{6}$.
(B) $\frac{3}{2}$.
(C) $\frac{9}{2}$.
(D) $\frac{33}{2}$.
12. The value of the integral

$$
\int_{0}^{2} \sqrt{y^{2}+1-2 y} d y
$$

is
(A) 0 .
(B) $\frac{1}{2}$.
(C) 1 .
(D) -1 .
13. The sum of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$ up to the $n^{\text {th }}$ term is
(A) $n+1+2^{-n}$.
(B) $n-1+2^{-n}$.
(C) $n+1-2^{-n}$.
(D) $n-1-2^{-n}$.
14. The area (in square unit) of the region in the first quadrant bounded by the curves $y^{2}=x$ and $y=|x|$ is
(A) $\frac{1}{6}$.
(B) $\frac{1}{3}$.
(C) $\frac{2}{3}$.
(D) 1 .
15. Let $1,4,7, \ldots$ and $9,14,19, \ldots$ be two arithmetic progressions. Then the number of distinct integers in the collection of first 500 terms from each of the progressions is
(A) 903 .
(B) 902 .
(C) 901 .
(D) 900 .
16. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by

$$
f(n)= \begin{cases}\frac{n}{2}, & \text { if } n \text { is even } \\ \frac{n-1}{2}, & \text { if } n \text { is odd }\end{cases}
$$

Then
(A) f is bijective.
(B) f is surjective, but not injective.
(C) f is injective, but not surjective.
(D) none of the above.
17. Let $S=\{(x, y): x, y \in N\}$. Consider all points $P \in S$ having the property that sum of distances from the point P to the points $(8,0)$ and $(0,12)$ is the minimum among the sums of distances from all other elements of S. The number of such points P in the set S is
(A) 8 .
(B) 5 .
(C) 3 .
(D) 1 .
18. The value of $1-\cos 20^{\circ}$ is approximately equal to
(A) $\frac{\pi^{2}}{2 \times 9^{2}}$.
(B) $\frac{\pi^{3}}{6 \times 9^{3}}$.
(C) $\frac{20^{2}}{2!}-\frac{20^{4}}{4!}$.
(D) $\frac{\pi}{9}-\frac{\pi^{3}}{6 \times 9^{3}}$.
19. Let

$$
f(x)= \begin{cases}x \sin \frac{\pi}{x}, & \text { if } x>0 \\ 0, & \text { if } x=0\end{cases}
$$

Then $f^{\prime}(x)$ vanishes
(A) at no point in $(0,1)$.
(B) exactly at one point in $(0,1)$.
(C) at finitely many points in $(0,1)$.
(D) at infinitely many points in $(0,1)$.
20. The system of equations

$$
\begin{aligned}
2 x+4 k y-z & =1 \\
x-8 y-3 z & =-2 \\
2 x & -z
\end{aligned}
$$

has a unique solution for all values of k lying in
(A) $(-1,1)$.
(B) $(-1,0]$.
(C) $(1, \infty)$.
(D) $[0,1)$.
21. The value of the determinant

$$
\left|\begin{array}{rrrr}
a-3 b & a+b & a+5 b & e \\
a-2 b & a+2 b & a+6 b & f \\
a-b & a+3 b & a+7 b & g \\
a & a+4 b & a+8 b & h
\end{array}\right|
$$

is
(A) $a b c$.
(B) efgh.
(C) 1 .
(D) 0 .
22. Let A and B be two non-empty sets and $f: A \longrightarrow B$ be a function. Further, let U and V be two non-empty subsets of B. Then, which of the following statements is true?
(A) $f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)$.
(B) $f^{-1}(U \cup V)$ is a proper subset of $f^{-1}(U) \cup f^{-1}(V)$.
(C) $f^{-1}(U \cap V)$ is a proper subset of $f^{-1}(U) \cap f^{-1}(V)$.
(D) None of the above.
23. The greatest value of the term independent of x in the expansion of $\left(x \sin \theta+\frac{\cos \theta}{x}\right)^{12}$ is
(A) ${ }^{12} C_{6}$.
(B) $\frac{{ }^{12} C_{6}}{2}$.
(C) $\frac{{ }^{12} C_{6}}{32}$.
(D) $\frac{{ }^{12} C_{6}}{64}$.
24. Let h and r be the height and radius, respectively, of a closed cylinder of fixed volume. Then its surface area will be minimum if $h: r$ is equal to
(A) $1: 1$.
(B) $2: 1$.
(C) $3: 1$.
(D) $8: 1$.
25. Consider a chess board of 8×8 squares. Then the number of ways 8 pawns can be arranged so that no two pawns are in the same line (row as well as column) is
(A) 1 .
(B) 8 .
(C) $8 \times 8!$.
(D) none of these.
26. Let X and Y be two symmetric matrices of the same order. Then, the matrix $X Y$ is also symmetric
(A) if the inverses of both X and Y exist.
(B) if and only if X and Y are similar to each other.
(C) if X and Y are orthogonal.
(D) if and only if X and Y commute.
27. There are 25 books of which there are two pairs of books. They are placed at random on a shelf satisfying the following conditions: books from each pair remain together, but no two books from different pairs are together. The number of such arrangements is
(A) $21!\times 24$.
(B) $22!\times 44$.
(C) $22!\times 88$.
(D) $23!\times 84$.
28. Let x, y, z be three distinct positive real numbers such that $x+y+z=1$. Which one of the following statements necessarily hold?
(A) $x y z>\frac{1}{27}$.
(B) $x y+y z+z x>\frac{1}{3}$.
(C) $(1-x)(1-y)(1-z)>\frac{8}{27}$.
(D) None of the above.
29. Let A be an $m \times n(m \leq n)$ matrix and B be an $n \times n$ matrix with non-zero determinant. Which one of the following statements necessarily hold?
(A) rank of $A B=$ rank of A.
(B) rank of $A B<$ rank of A.
(C) rank of $A B<m$.
(D) None of the above.
30. In a competition, a school awarded medals to students in different categories: 36 medals in dance, 12 medals in drama, and 18 medals in music. If these medals went to a total of 45 students and only 4 students got medals in all three categories, the number of students who received medals in exactly two categories is
(A) 25 .
(B) 13 .
(C) 12 .
(D) 10 .

