Mrs. im Forensic Science Code No Question Booket No.

Set No. 1

00700

17P/302/23(i)

(To	be filled up	by the can	didate by bl	ue/black bal	Point pen	,
Roll No.						7
Serial No. of OM	IR Answer	Sheet	2	上	22	1.
Day and Date		**************	***************************************	*****	(Signat	ure of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet skall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places,
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to recent the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding raw of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Anather Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer ance filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Half until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he she shall be flable to such punishment as

Total No. of Printed Pages: 48 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एफ कार्य

Mrs. im Forensic Science code No (472)

2017 17P/302/23(1)

No. of Questions: 240

Time : 2 Hours

Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3 [Three] marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This question paper contains two Sections, viz : Section-A and Section-B. Details of Section-A and Section-B are as follows :
 - (a) Section-A contains 60 questions from General Secinces and 20 questions of General Nature.
 - (b) Section-B contains four sub-sections namely: Biology, Chemistry, Mathematics and Physics with 40 questions in each. The candidate has to select only one of the four sub-sections of Section-B.

SECTION - A

- 01. Forensic Science is the application of science to:
 - (1) those criminal laws that are enforced by police agencies
 - (2) those civil laws that are enforced by police agencies
 - (3) those religious laws that are enforced by police agencies
 - (4) those criminal and civil laws that are enforced by police agencies

P.T.O.

02. Agglutination describes :

- (1) the separation of red blood cells by the action of an antibody
- (2) the clumping together of red blood cells by the action of an antibody
- (3) the non-clumping of red blood cells by the action of the antibody
- (4) the dissolution of red blood cells by the action of the antibody

03. Y-chromosome is:

- (1) the male sex harmones
- (2) the female sex harmones
- (3) the male sex choromosome
- (4) the female sex chromosome
- 04. The power of a lens is measured in:
 - (1) Diopters

(2) Aeon

(3) Lumen

(4) Candela

- 05. Albert Einstein was awarded Nobel Prize for his path-breaking research & formulation of the:
 - (1) Theory of Relativity
 - (2) Law of Photo-electric Effect
 - (3) Principle of Wave Particle Duality
 - (4) Theory of Critical Opalescence
- 06. L.P.G. is a hydrocarbon consisting of a mixture of :
 - (1) Methane and Butane

(2) Propane and Butane

(3) Ethane and Propane

(4) Ethane and Butane

(1) Bacteria (2) Fungi (3) Algae (4) Lichens O8. "Amalgam" is term for an alloy of a metal with: (1) Copper (2) Mercury (3) Lead (4) Aluminium O9. News websites deliver customized 'jeeds' of contreaders via RSS, which stands for: (1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as Bit genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	•
(3) Algae (4) Lichens O8. "Amalgam" is term for an alloy of a metal with: (1) Copper (2) Mercury (3) Lead (4) Aluminium O9. News websites deliver customized 'jeeds' of contreaders via RSS, which stands for: (1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Brigenetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	ent to their
(1) Copper (3) Lead (4) Aluminium O9. News websites deliver customized 'jeeds' of contreaders via RSS, which stands for: (1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Bt genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	ent to their
(1) Copper (3) Lead (4) Aluminium O9. News websites deliver customized 'jeeds' of contreaders via RSS, which stands for: (1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Bt genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	ent to their
(3) Lead (4) Aluminium O9. News websites deliver customized 'jeeds' of contreaders via RSS, which stands for: (1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Brigenetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	ent to their
(1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Bt genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	ent to their
(1) Really Simple Syndication (2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as 'Bt genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	
(2) Really Social Syndication (3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as Bigenetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	
(3) Registered Subscriber Syndication (4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as Bigenetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	
(4) Reclly Simple Synchronisation 10. Pest - resistant cotton commonly known as Best genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	
10. Pest - resistant cotton commonly known as 'Bit genetically engineered by inserting a gene from a: (1) Bacterium (2) Virus (3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	12
(3) Microalgae (2) Virus (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	-Cotton' is
(3) Microalgae (4) Protist 11. Brass gets discoloured in air because of the presence the following gases in air:	
Bonnes Hi dit .	4
(1) Ominant	of which of
(1) Oxygen (2) Hydrogensulph	ido
(3) Carbon dioxide (4) Nitrogen	ide
12. 'Anemophily' is pollination by :	•
(1) Dieda	
(3) Anto	
(4) Dats	
3. Which of the following is a non metal that remains lique temperahere?	id at room
(1) Phoenhouse	• • • • • • • • • • • • • • • • • • • •
(3) Chloring	
(4) Helium	

14.	Chlo	rophyll is a naturally ocur al metal is :	ring c	helate compound in which
		Copper	(2)	Magnesium
	(3)	Iron	(4)	Calcium
15.	Whi	ch of the following is used i	n pen	cils ?
	(1)	Grapthite	(2)	Silicon
	(3)	Charcoal	(4)	Phosphorus
16.		ich of the following substating?	ances	under go 'Sublimation' on
	(A) 1	lodine (B) Napthalene (C)	Camp	hor
			(2)	A and C
	(1) (3)	A and B B and C	(4)	All of them
17	. Coi	nsider the following statem	ents :	
	A.	Radon is the heaviest g		
	B.	Astatine is the rarest e		
	C.	ductor.		al is also an electrical con
		Which of the following	Stater	nentl(s) is/are correct?
	(1)	- 1 D	(2)	
	(1)		(4)	A, B & C
		Lish of the following is used	lasa	moderator in nuclear reacter?
13	1000	. HTM	(2	Graphite
	(1	- 11	(4	

					17	P/302/23
19.	. "Pı	rinciple of Exchang	e" lies on the fa	act that :		
	(1)		ige of traces ta	kes place	betwee	n the
	. (2)	an unilateral exc criminal, the vict	hange of trace	s takes of	ace beh	ween the
	(3)	an exchange of the	races takes pla	ce betwee	n the c	rime spot
	(4)	no exchange of to	races take plac	e between	1 the cr	ime spot
20.	En	tomology' is study	of:			
	(1)	trees	(2)	bugs		
	(3)	fertilizers	(4)	animal		
21.	Mis ind	appropriation, ne ustrial road, train	gligences che	ating, bu	lidging	collapose
	(1)	Non-forensic mai	ntainenace div	ision	uider.	. •
	(2)	Forensic engineer	ing division	ratoit '		
	(3)	Non-forensic phys	sical division	(A	811	
	(4)	Forensic physics				
22.	Poly	graph is a:		•		
	(1)	a pictorial informa	tion of human			
	(2)	a non-pictorial inf	ormation of his	man		
	(3)	a brain mapping				
	(4)	a lie-detectors		į		
		The state of the s				2.5

23. DNA is found an everybody. Which of the following body materials cannot be used to isolate it?

. ...

(1) Semen

(2)Hair

(3)bone

Vicera (4)

P.T.O.

24. Abraision means:

- (1) loss and damages of deep layer of body wound
- (2) loss and damages of middle layer of body wound
- (3) loss and damages of deep epithelial layer of skin
- (4) loss and damages of superficial epithetial layer of skin

25. Black powder is a mixture of:

- (1) potassium nitrate, sulphur and charcoal
- (2) potassium citrate, sulphure and charcoal
- (3) potassium bromate, sulphuric acid and graphite
- (4) potassium chloride, hydrochloric acid and graphite

26. CD-RW is:

- (1) A compact disc to which data can not be written and stored
- (2) A compact disc to which data can be written and erased
- (3) A compact disc to which data can be recorded and stored
- 4) A compact disc to which data cannot be transferred

27. 'Dactyloscopy' is a science:

- (1) Dealing with fingerprint
- (2) Dealing with DNA
- (3) Dealing with footprint
- (4) Dealing with documents

28. Decibel is the unit of:

- (1) Speed of light
- (2) Radio wave frequency
- (3) Intensity of sound
- (4) Intensity of heat

29. Fanthom is the unit of:

(1) Sound

- (3) Frequency

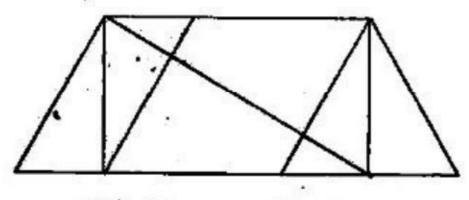
(2) Depth(4) Distance

			•	
3 0.		ich prefix is often used nething is the same, equ		entific terms to indicate that stant?
	(1)	Iso	(2)	Mega
	(3)	Meta	(4)	Quasi
31.	The	study of phenomenon	at a very	low temperature is called :
	(i)	Heat transfer	(2)	Morphology
	(3)	Crystallography	(4)	Cryogenics
32.		at percent of fire-relate her than burns?	d deaths	are due to smokeinhalation
	(1)	10%	(2)	50%
	(3)	80%	. (4)	99%
33.	Pol	ination by birds is calle	d:	
10	(1)	Autogamy	(2)	Orthinophilly
	(3)	Entomophilly	- (4).	
34.	The	per capita birth rate of	a popula	tion is known as its:
	(1)	Mortality	. (2)	Natality
	(3)	Population density	. (4)	Carrying capacity
35.	Wh	ich of the following i	s prima	rily composed of calcium
	(1)	Fish scales	(2)	Shark teeth
	(3)	Oystershells	(4)	Whale bones
36.	rate	ter flows through a hori . At a location where the city of the fluid :	zontal p	pe at a constant volumetric ectional area decreases, the
	(1)	Increases	(2)	Decreases
	(3)	Stays the sume	(4)	Reduces to half

(1) Radioactivity (2) Particulate formulation (3) Thermal pollution (4) Noise pollution 38. The process by which a substance absorbs moisture u exposure to the atmosphere is called; (1) Efflorescence (2) Deliquescence	
38. The process by which a substance absorbs moisture u exposure to the atmosphere is called;	pon
exposure to the atmosphere is called;	pon
(1) Efflorescence (2) Deliquescence	
(-)	
(3) Dehydrogenation (4) Desalination	
39. A temperature of 295 K is equivalent to approximately:	
(1) 0 degrees Fahrenheit (2) 32 degrees Fahrenheit	
(3) 72 degrees Fahrenheit (4) 97 degrees Fahrenheit	
40. The statue of Liberty is green because of :	
(1) Green stone (2) Oxidised brass	
(3) Steel painted green (4) Oxidised copper	
41. One metal dissolved in another is called:	
(1) an alloy (2) an assay	
(3) a mineral (4) a ceramic	
42. Which of the following contains carbohydrates the most?	
(1) Barley (2) Maize	
(3) Wheat (4) Rice	
43. Alcoholic fermentation is characteristic of:	
(1) Virus (2) Algae	
(3) Yeasts , (4) Bacteria	

	(1)	tosynthesis?			(2)	Carbohydrate	
	(3)	Amino Acid			(4)	Protein	¥
15.	Two		lose the	same	wei	qht in water must	have the
	(1).	Weight in air	•		(2)	Weight in water	
	(3)	Density			(4)	Volume .	
6.	Def	iciency of whi	ch vitamir	n affec	ts th	ne ability to see in d	lim light?
	(1)	A .			(2)	C	1
	(3)	D			(4)	B ₁₂	•
7.	Wh	ich of the folk	wing is a	conta	giou	s disease ?	
	(1)	Small Pox		•	(2)	Typhoid	
	(3)	Cholera			(4)	Beri-Beri	
8.	The	substance th	at harder	as whe	n m	ixed with water is	:
	(1)	Red "Lead			(2)	Gypsum Salt	
	(3)	Epson Salt	*		(4)	Plaster of Paris	*
9.	The	heart of hun	an-being	:			
	(1)	Rests while	you sleep				
	(2)	Never Rests	•				
	(3)	Rests betwe	en beats				
	(4)	Rests during	period of	stres	S		10
0,	Whe	urs. This phe	on water nomenon	is see	n in e to	day time, it shows	beautiful
	(1)	Diffraction	4		(2)	Refraction	
	(3)	Polarisation			(4)	Interference	•
				79.700			
				11			P.T.O

	D . C		910	
51.		ixation of nitrogen is meant	:	*
	(1)	Manufacture of nitrogen		
	(2)	Liquefaction of nitrogen	0.500 0.5	
	(3)	Conversion of nitrogen into		
	(4)	Conversion of atmospheric	nitro	ogen into useful compounds
52.	Ator	ms of the same element i.e. t differs in atomic weight, ar	havii e call	ng the same atomic number led:
	(1)	Isotopes	(2)	Isomers
	(3)	Isobars	(4)	Isohytes
53.	Jou	le is the unit of :		
	(1)	Temperature	(2)	Energy
	(3)	Heat	(4)	Pressure
54.	Hov	v many Dynes are there in o	ne gr	am weight?
	(1)	900 (2) 375	(3)	981 (4) 250
55.	Whi	ich substance is mixed to st	iffer 1	rubber?
	(1)	Sulphur	(2)	Iron
	(3)	Calcium	(4)	Magnesium
56.	Twi	nkling of stars is due to the e	ffect	of:
	(1)	Refraction of light	(2)	Reflection of authosphere
	(3)	Refraction of atmosphere	(4)	Total Internal Reflection
57.	Whi	ich type of mirror is used wh	nile sl	having?
•••	(1)	Concave mirror	(2)	Convex mirror
	(3)	Plane mirror	(4)	No specific mirror
58.	The	process of formation of var	pour	from solid camphor is called
		:	NO.	
	(1)	Freezing	(2)	Evaporation
	(3)	Sublimation	(4)	Condensation

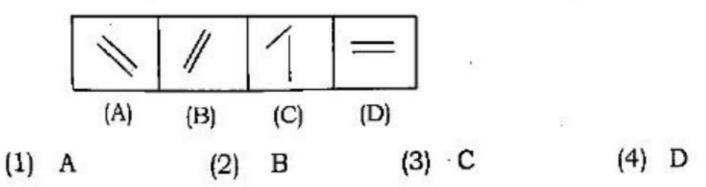


- 59. Atomes are composed of:
 - (1) electrons and protons
- (2) electrons only
- (3) protons only
- (4) eletrons and nuclei
- 60. Epoxy resins are used as:
 - (1) detergents

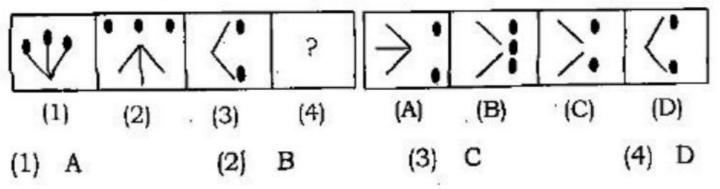
(2) insecticides

(3) adhesives

- (4) moth repellents
- 61. Find the numbers of triangles in the given figure:


- (1) 8
- (2) 10
- (3) 12
- (4) 14
- 62. Look at this series: 7, 10, 8, 11, 9, 12, what number should come next?
 - (1) 7
- (2) 10
- (3) 12
- (4) 15
- 63. Father is aged three times more than his son Ronit. After 8 years, he would be two and a half times of Ronit's age. After further 8 years, how many times would he be of Ranit's age?
 - (1) 2 times

(2) $2\frac{1}{2}$ times


(3) $2\frac{3}{4}$ times

(4) 3 times

64. Chose the figure which is different from the result:

65. Select a suitable figures from the Answer figure, that would replace the question mark:

66. Based on the following statements, which is the Correct conclusion drawn?

Only gentlemen can become members of the club are officers, Some of the officers have been invited for dinner:

- (1) All the members of the club have been invited for dinner
- (2) Some of the officers are not gentlemen
- (3) All gentlemen are members of the club
- (4) Only gentlemen have been invited for dinner
- 67. If A is soln of Q, Q and Y are sisters, Z is the mother of Y, P is the son of Z, then which of the following statements is correct?
 - (1) P is the maternal uncle of A
 - (2) P and Y are sisters.
 - (3) A and P are cousins
 - (4) None of the above

68.	Ma	rathon is to	race	as hibern	ation i	s to:		
	(1)	Winter	(2)	Bear	(3)	Dream	(4	Sleep
69.		rain runnir onds. What					crosses	a pole in
	(1)	120 metre	es .	•	(2)	180 me	tres	
	(3)	324 metre	es:		(4)	150 me	tres	*
70.	the	this series, number pa D, TEF, UGF	attern	Fill in bl	ank in	the midd	e letter	pattern and series :
	(1)	CMN	(2)	UJI	(3)		(4)	IJT
71.	stre	ed of the bo am and con ne speed of	me ba	ck to the	startin	g point in	goes 12 three h	2 Km. down
	(1)	3.5 Km./h	T.		(2)	3 Km./h	īr.	5
	(3)	5 Km./hr.			(4)	5.5 Km.	/hr.	
72.	ıṃa	ose the alt ge of the give 343Q12	ernat ven co	ive which mbination	is clo n?	sely rese	m bles	the mirror
	(a)	210348NA			(b)	ANS43Q12		
	(b)	12Q43ANS	•		(d)	SNA34021	•	
	(1)	a	(2)	b	(3)	С	(4)	d
73.	Yar	is to inch	as qua	art is to :		-		
	(1)	Gallon	(2)	Ounce	(3)	Milk	. (4)	Liquid

74.	two	h problem o statements ertain:	onsis s, the	ts of three third sta	e stat atem	ements. Ba	e true	n the fire , false o	st
	(a)	Tanya is old	ler th	an Eric					
	(b)	Cliff is older				. 1			
		Eric is older							
	, ,	If first two s			rue, t	he third sta	atemer	it is:	
	(1)	True			(2)	False			
	(3)	Uncertain			(4)	Can't say			
75.	Cho "EN	ose the wor	d whi	ch is the e	xact (OPPOSITE	of the	given wo	rd
		Soft	(2)	Average	(3)	Tiny	(4)	Weak	
76.	Thr	ee times the	first	of three co	nsec	utive odd i	nteger	s is 3 mo	re
	(1)	_	(2)	11	(3)	13	(4)	15	
77.	If or	ne-third of o	ne-fo	urth of a r	numb	er is 15, th	en thr	ee-tenth	of
	(1)	35	(2)	36	(3)	45	(4)	54	
78.	A ri 3cn	ght triangle i to form a c	with	sides 3cm The volum	, 4cm e of t	& 5cm is r he cone so	otated formed	the side l is :	of
	(1)	12 π cm ³			(2)	$15\pi \text{cm}^3$			
	(3)	$16\pi cm^3$			(4)	$20\pi \text{cm}^3$			
79.	A chas	lock is starte	ed at	noon. By	10 mi	nutes past	5, the		nđ
		145°	_	150°	(3)	155°	(4)	160°	
80.	foll diff but wo: original wa (1)	a four-day owing temperent day. It she traded rk on wedne ginally sche s done, who Mr. Carter Ms. Johns	Ms. Journal of With esday duled work	office work ohnson wa Mr. Carter Ms. Fall to work of	s scl r, who k trace n thu sday	neduled to was originated with Marsday. After Ms. Falk	work of ally so	n Monda	to
	101								

SECTION - B

(BIOLOGY)

81.	Dia	atoms belongs to the grou	p:	
	(1)		(2)	Fungi
	(3)	Lichens	(4)	
82.	W	nich of the following plant	causes	allergy and hav fever :
	(1)	Argemone mexicama		Panthenium hysterophones
	(3)	Jatropha curcas	(4)	the state of the s
83.	Ca	runcle is found in the see	ds of :	
	(1)	Nerium	(2)	Dhatura
	(3)	Ricinus	(4)	Litchi
84.	Res	erpene drug is extracted	from :	
	(1)	Atropa belladona	(2)	Ricinus Communis
	(3)	Rauvoffia Serpentina	(4)	Tagetes erecta
85.	Wh	ich of the following drug	is used	for treatment of Pulmonary
	(1)	Nicotine	(2)	AND THE RESERVE OF THE PERSON
	(3)	Ricin	(4)	Abrin Ephedrine
86.	Vele	men is found in the roots	of.	
	(1)	Mangroves	(2)	Orchids
	(3)	Cuscuta	(4)	Cycas
37.	Peri	sperm in seeds develop fr	vira :	
	(1)	Nucellus		This see & will be
	(3)	Hilum	(2) . (4)	Ovary wall
		*	(.)	- vary war

88.	Tran	genic golden rice is enriched	d with	h:
	(1)	Glutenin		5t.
	(2)	Methionine		
	(3)	Vitamin A		
	(4)	All the essential amino acid	S	
89.	Prin	nary Precersor of I.A.A. is:		
	(1)	Leucine	(2)	Tryptophan
	(3)	Methionine	(4)	Aspartic acid
90.	Circ	inotropouds ovale is found i	in:	· ·
	(1)	Opuntia	(2)	Raphanus .
	(3)	Crotalaria	(4)	Polygonum
91.	Fine	d the false statement with re	gard	s to Asteraceas:
•	(1)	Epigynous Flower	(2)	Syngenesious authers
		Cypsella fruits	(4)	Axile placentation
92.	Coi	r is obtained from :		
	(1)	Cocos nucifera	(2)	Crotalaria juncea
	(3)	Gossypium arboreum	(4)	Agave americana
93	. Wh	ich ecological pyramid is alv	vays	upright:
	(1)	Pyramid of number		
	(2)	Pyramid of biomass		•
	(3)	Pyramid of energy		
	(4)	Pyramid of number and py	ram	id of biomass
~4	1171	nich of the following enzyme	s is a	ctive above 90°C?
94		Amr Comthatase	(2)	Taq Polymerase
	(1)		(4)	Lipase
	(3)	Peroxidase	,	

95.	Inc	Incomplete dominance is found in:								
	(1)	Solanum		(2)	Mirabilis					
	(3)	<i>Iberis</i>		(4)	Pisum					
96.	Tot	al numbr of ho	t spots of	biodiver	sity in India is :					
	(1)	Two			Four					
٠.	(3)	Five	*	. (4)	Ten .					
97.	Fire	st transgenic cr	op was :							
	(1)	Tobacco		(2)	Brinjal	•				
	(3)	Rice		(4)	Pea					
98.	Cap	sule of fern Ep	orangium	burst at	::					
	(1)	Annulus	. •	(2)	Stomium					
	(3)	Placenta		(4)	Romenta					
99,	Inse	ectivorous plan	ts grow in	the soil	deficient in :	*				
	(1)	Magnesium	•	(2)	Calcium					
•	(3)	Water ·	P)	(4)	Nitrogen	¥				
100	.Mol	ecular scissor	used in ge	netic en	gineering is :					
	(1)	Ligase	(.)	(2)	Restriction end	lonucleus				
	(3)	Catalase	¥1	(4)	Peroxidase					
101	.Lab	yrinthiform org	ans are fo	und in :	•					
	(1)				espiratvory orga	ens				
	(2)	1) Anabas and work as accessory respiratyory organs 2) Clarias and help in excretion								
	(3)	Sharks and for	Marin No.							
	(4)									
						20				

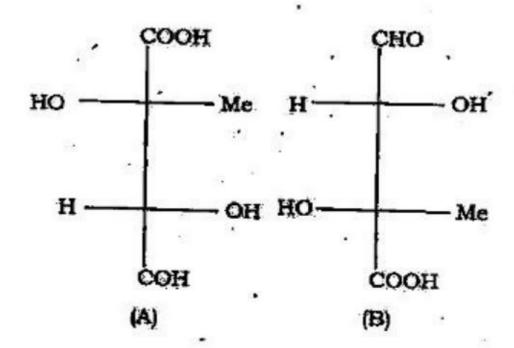
102.In a shark fish, epibranchial arteries:

(1)	-				ipply it to						
(2)					apply it to		orta				
(3)	carry oxygenated blood and supply it to gills										
(4)	carry oxygenated blood and supply it to dorsal aorta										
103.Delt	oid ridge	and acro	omion p	rocess a	are presen	t in:					
(1)	Femur ar	nd Pecto	ral girdl	le							
(2)	Humerus	and Pe	lvic gird	lle							
(3)	Humerus	s and Pe	ctoral g	irdle			¥				
(4)	Femur ar	nd Pelvio	girdle								
1 04. Ant	erior chor	oid plex	us of br	ain:							
(1)	Secretes										
(2)	Controls										
(3)	Regulate	s salt ba	dance in	n the bo	dy						
(4)	Coordina										
enl infr	arged sca a-labial sc	les on t	he mid	ale of t	Jack and	very la	lly scales, rge fourth Rat snake				
(1)		(2)	Krait		Viper	, ,					
106.De	licate hair his with fe	like feat	hers ha	ving shos are k	ort calami nown as :	ıs, long t	thread like				
(1)	Down fe			(2)		feathers	3				
(3)	Powder o		athers	(4)	Filoplum	e feathe	ers				
107.Or	gan of Jac	obson is	absent	in adul	t:						
(1)	Columbo			(2)		lon					
(3)	Naja			(4)	Hemidad	ctylus					
100 An	imal that	shows U	Inguligr	ade loco	motion is	:					
/41	D		Dog	(3)	Deer	(4)	Primates				
(1)	Bear	. (2)	DOB	(-)		• •	•				
				20							

1	09. Pa	rental care in Alytes is:								
	. (1)		eggs.o	n its back						
	(2)	Shown by female by keeping eggs in the mouth								
	(3)	Shown by both sexes by keeping eggs in abdominal brood pouch								
	(4)	Both parents gaurd egg	s one at	fter the other						
1	lo.w	hich of the following anima	ls show	s biradial symmetry ?						
	(1)	Volvox	(2)	Sea anemone						
•	(3)	Hydra	(4)	Sycon						
11	1.WI wo	nich one of the following a	nimal i	s commonly called as hook-						
Š	(1)	Ascaris lumbricoides	(2)	Enterobius vermiularis						
	(3)	Trichuris trichura	. (4)	Ancylostoma duodenale						
11	2.W	nich class of mollusca has	closed	circulatory system 2						
	(1)	Pelecypoda	(2)	Scaphopoda						
	(3)	Gastropoda	(4)	Cephalopoda						
L1	3.Pla	mula is a larval form of :		•						
	(1)	Prtozoans	(2)	Cindarians						
	(3)	Molhuscans	(4)	Nematodes						
11	4.Ex	cretory organ of Limulus is		•						
	(1)	Malpighian tubuics	(2)	Nephridia						
	(3)	Coxal glands	(4)	Green glands						
1	5.Pse	oudocoelom is :								
	(1)	A body cavity lined with	mdode	from .						
	(2)	A body cavity completely	lined u	ith massal						
	(3)	A body cavity whose inne outer edge is lined by me	r edge	is lined by						
	(4)	None of the above								

- 116. Which of the following is not a major factor in the success of the Arthropoda?
 - Highly developed sensory organs \cdot (1)
 - A chitinous exoskeleton (2)
 - Segmentation and appendages (3)
 - Open circulatory system
- 117. Annelids are also called as:
 - Flatworms (1)

- Thread worms
- Bristle worms (3)
- Whipworms
- 118.c l B technique in Drosophila is used to detect :
 - (1) autosomal recessive mutations
 - autosomal dominant mutations (2)
 - sex linked recessive lethal mutations (3)
 - sex linked dominant lethal mutations
- 119.If a couple, husband having an X-linked dreadly disease and wife homozygous normal, seeks your advice regarding having children, what will be your advice out of the following?
 - (1) The will have 50% chance of having the affected male child
 - (2) They can safely go for only female child
 - (3) They can safely go for only male child
 - (4) They should not plan to have a child
- 120. Segregation of alleles usually takes place at which phase of cell division?
 - First anaphase of meiosis (2) Anaphase of mitosis


Pachytene (3)

(4) Diplotene

SECTION - B (CHEMISTRY)

121. Compound A and B are:

- (1) Enantiomers
- (2) Epimers
- (3) Diastereomers
- (4) Identical

122. The IUPAC name of the compond given below is:

- (1) Bicyclo [2,2,0] octa -2,6-diene
- (2) Bicyclo [1,1,1] octanone
- (3) Bicyclo [2,2,2] octa -2,5-dione
- (4) Bicyclo [2,2,1] octa -2,5- dione

123.A suitable reagent combination for carrying out the following conversion is:

- (1) Triethyl orthoacetate and p- toluene sulfonic Acid
- (2) 2-methoxypropene and sodium hydroxide
- (3) Trimethylorthoacetate and sodium hydroxide
- (4) 2- methoxypropene and p-toluene sulfonic Acid

124. The major product (A) in the reaction given below, is:

$$CH_3 - CH_2 - CH - CH_3 \xrightarrow{Ag_2O} \underline{A} + N (CH_3)_3$$

$$\oplus N(CH_3)_3 I^{\Theta}$$

- (1) 2- lodobutane
- (2) 1- Butene
- (3) cis-2-Butene
- (4) trans -2- Butene

125. Benzene ring substituent is deactivating, but O/P - directing:

(1) - N = O

(2) - OCH₃

(3) C - CH₃

(4) -NO₂

126. The major product obtained from the mono-bromination of Phenyl benzoate is:

(1)
$$O - COO - O$$
 (2) $O - COO - O$ (3) $O - COO - O$ (4) $O - COO - O$

127.In the given reaction,

the reaction sequence is:

- (1) Two times Aldol reaction followed by Cannizzaro reaction
- (2) Two times Aldol reaction followed by Cannizzaro reaction
- (3) Cannizzaro reaction followed by Aldol reaction
- (4) Simple consecutive Aldol reactions.

128. The two reactions involved in the Robinson Annulation is:

- (1) Michael reaction followed by Perkin reaction
- (2) Hydroboration reaction followed by oppenauer oxidlation
- (3) Diels-Alder reaction followed by Aldol reaction
- (4) Michael reaction followed by Aldol reaction

129. The reaction given below involved:

- (1) Benzyne mechanism
- (2) Addition-Elimination mechanism
- (3) Concerted Mechanism
- (4) Free radical mechanism

130. Which of the following compound have the greatest resonance energy:

131. How many grams per mililiter of Nacl are contained in a 0.250M solution?

(1) 0.143 g/ml

- (2) 0.0146 g/ml
- (3) 0.0014 g/ml
- (4) 1.460 g/ml

132. The criteria for selection of a redox indicator is:

(1) $E < \frac{0.0591}{n}$

(2) $E > \frac{0.059}{n}$

(3) $E = \frac{0.0591}{n}$

(4) $E = \frac{n}{0.0591}$

133. The salt of a weak acid is:

(1) Neutral

(2) Strong acid

(3) Strong base

(4) Weak base

134. Which of the following reagents is used for the estimation of selective C-C cleavage?

- (1) Karl-Fishcer reagent
- (2) Chloramine-T
- (3) Potassium Bromate
- (4) Periodic acid

135. The concentration of zinc ion is about 1ppm. This can be expressed as meq/L:

(1) 3.10 × 10-2

- (2) 3.20×10^{-2}
- (3) 3.30 × 10-2
- (4) 3.06 × 10°

136.A 2.6g sample of plant tissue was analyzed and found to contain 3.6 µg zine. What is the concentration of zinc in the plant in ppb?

(1) 1400 ppb

(2) 1200 ppb

(3) 1300 ppb

(4) 1000ppb

137. The distribution ratio of weak acid in water is given by:

(1) $D = \frac{K_B}{[H^*]^{+1}}$

(2) $D = \frac{K_a}{\frac{K_D}{[H']} + 1}$

(3) $D < \frac{K_0}{K_1 + 1}$

 $(4) \quad \frac{K_s}{[H^*]} + 1$

138. The Van Deemter Equation is:

- (1) HETP = A + $\frac{B}{\overline{\mu}}$ + $C\overline{\mu}$ (2) HETP = B + $\frac{A}{\overline{\mu}}$ + $C\overline{\mu}$
- (3) HETP = C + $\frac{A}{\overline{\mu}}$ + B $\overline{\mu}$ (4) HETP = A + $\frac{C}{\overline{\mu}}$ + B $\overline{\mu}$

139. The relation between A and T is:

(1) $A = \log \frac{1}{T}$

 $(2) \quad A = \log T$

140. The Ksp of Agcl is 1.0 × 10-10. The concentrations of Ag+ is:

(1) 1.0×10^{-10}

(2) 1.0×10^{-5}

(3) 1.0×10^{-4}

 1.0×10^{-3} (4)

141. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is:

- (1) critical temperature
- (2) boyle's temperature
- inversion temperature
- (4) reduced temperature

142. The rise of liquid in a capillary is due to:

(1)viscosity

- (2) osmosis
- surface tension
- (4) diffusion

143. For coagulating Sb_2S_3 colloidal sol, which one of the following will have the lowest coagulation value?

28

(1) AlCl₃

BaCl,

(3) KC1

NaCl (4)

144. For the reaction 2NO(g) + Cl₂(g) 2NOCl(g)

(1)
$$k_n = k_c \times RT$$

(2)
$$k_p = k_c/RT$$

(1)
$$k_p = k_c \times RT$$
 (2) $k_p = k_c / RT$
(3) $k_p = k_c \times (RT)^2$ (4) $k_p = k_c / (RT)^2$

(4)
$$k_n = k_c/(RT)^2$$

145.In a three component system the maximum number of degree of freedom can be:

146. The rate equation for the oxidation of bromide ions by hydrogen peroxide in acid solution:

$$2Br + H_2O_2 + 2H^* \rightarrow Br_2 + 2 H_2O \text{ is } v = k [H_2O_2] [H^*] [Br]$$

If the concentration of H₂O₂ is increased by a factor of 3, by what factor the rate of consumption of Br ions will be increased:

147.2.0 g of a solute X is distributed between 100 ml of water and 5 ml of CCl4. If the equilibrium amount of X in the aqueous layer is 0.5, the partition coefficient of X between CCl, layer and aqueous layer is:

- (1) 50
- (2) 60
- (3) 30
- (4) 40

148. The isotope "Po undergoes one alpha and one beta particle emission sequentially to form an isotope X. The number of neutrons in X would be:

- (1) 82
- (2) 83 (3) 127 (4) 210

P.T.O.

143.441	nen of the following statemen	its 18	not true for chemisorption?							
(1)	1 12 10 10 10 10 10 10 10 10 10 10 10 10 10									
(2)	Very high order of heat is evolved in it									
(3)										
(4)										
150.Wi	nich of the following crystalergy (or binding energy)?	s wi	llhave the highest cohesive							
(1)	NaCl	(2)	CsCl							
(3)	MgCl ₂	(4)	CaO							
151.Th	e name of Alfred Werner is as	ssoci	ated with:							
(1)	supramolecular chemistry	(2)	coordination chemistry							
(3)	heterocyclic chemistry	(4)	homogeneous catalysis							
152. Wh	ich of the following is a set of	f line	ar molecules/ions?							
	CO, NCS and NO,	(2)	CO, NCS and NO,							
	NO ₂ , N ₃ and NCS	(4)	ClO ₂ , CO ₂ and NO ₂ ⁺							
153.Tw str	o isomers are known for Pt(uctures are consistent with th	NH ₃) his o	Cl ₂ . Which of the following bservation?							
(i)	tetrahedral									
(ii)	planar									
(iii)	trigonal pyramidal									
(1)	only (i)	(2).	only (ii)							
(3)	(i) and (ii)	(4)	(ii) and (iii)							
by a	nsider the reaction in which a strong acid H ₂ X. What volume L of 3M acid?	stror me o	ng base M(OH) ₃ is neutralized f 2 M base will be equivalent							
(1)	1L (2) 1.5 L	(3)	2 L (4) 0.7 L							
139										

155.Con	aplete the se	ntence	: An octa	hed	al con	mplex,	MA ₄ B	2	
(1)	will have tw	o cons	titutional	ison	ers				
(2)	will have tw								
(3)	can not sho	w isom	erism	L					
(4)	will be option				C				
156.Wh	at is the coo	rdinati	on numb	er of	a me	etal ior	ı situa	ted at	the
· cen	ter of a squa	re anti	prism of	ligan	d ator	ns?	.,		
(1)	2	(2)	٠ ١	(3)	6	4	(4)	8	
cop	en ammonit per sulphat e. The reacti	e, the	colour of	the	solut	ion be	comes		
(1)	redox			(2)	rear	ranger	nent		
(3)	addition			(4)	sub	stitutio	on		
158.Hov	v may moles i medium ?	of Mn	O4 will be	e equ	ivaler	nt to or	ne mole	of Fe	2+ in
(1)	5 moles			(2)	1/5	moles			
(3)	2 moles					moles			
con	oordination h of which he ld be isolate sistent with NH ₃) ₄ Cl ₂ ; only [Cr(H ₂ Cr(H ₂ O) ₃ Cl Cr(H ₂ O) ₃ Cl only Ni (NH	ed. Wh this ob [NH, O) ₅ ,Cl] and [I	thedral colors ich amores servation [2] [NiCl6]	oording the	nation e foll	i. No a owing	ddition formu	al isor las is	ners (are)
			31		(n/*)	u -; + .		P.	T.O.

160. How many moles of iodine will be equivalent to one mole of hydrogen peroxide in a redox reaction?

(1) 1 mole

(2) 1/2 mole

(3) 2 mole

(4) 4 mole

SECTION - B (MATHEMATICS)

161. The last digit of 2199 is:

- (1) 2
- (2) 4
- (3) 6
- (4) 8

162. If the coefficient of x^7 and x^8 in $\left(2+\frac{x}{3}\right)^n$ are equal, then n is :

- (1) 15
- (2) .45
- (3) 55
- (4) 25

a b 0

163. The value of b 0 a b is:

(1) a^3

(2) b^3

(3) $a^3 - b^3$

(4) None of these

164. The value of the roots of determinant $\begin{bmatrix} 0 & x+1 & 2x-3 \\ 0 & 0 & x-1 \end{bmatrix} = 0$ are

- (1) Real and distinct
- (2) Irrational

(3) Imaginary

(4) Coincident

165. The matrix $\begin{bmatrix} 1 & 1 & -9 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ is

- (1) Idempotent
- (2) Not nilpotent
- (3) Nilpotent of order 2
- (4) Nilpotent of order 3

166.If A is a 3×3 matrix with rank 2 and B is a 3×3 matrix with rank 3, then:

(1) ρ (AB) ≤ 1

(2) ρ (AB) ≤ 2

- (3) ρ (AB) = 3
- (4) ρ (AB) = 6

167. If the roots of x^2 - bx + c = 0 are two consecutive integers, then b^2 - 4c is:

(1) 0

(2) 2

(3) 1

(4) none of these

168. If a + b + c = 0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has

- (1) Imaginary roots
- (2) at least one root in [0,1]
- (3) one root in [2,3] and other in [-2,-1]
- (4) None of these

169. For what values of k, the following equations are inconsistent?

$$3x + 2y - 5x = 3$$

$$5x - 4y - z = 5$$

$$2x - 6y + kz = 9$$

(1) 0

. (2) 10

(3) 4

(4) none of these

170. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is:

- (1) $4x + y + 1 = \tan(2x + c)$.
- (2) $4x + y + 1 = 2\tan(2x + c)$
- (3) $2(4x + y + 1) = \tan(2x + c)$
- (4) $\tan(4x + y + 1) = 2x + c$

171. Given that $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$. Which one of the following is always true?

(1)
$$\frac{d^2y}{dx^2} \cdot \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$$
 (2) $\frac{d^2y}{dx^2} \cdot \frac{dx}{dy} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$

(2)
$$\frac{d^2y}{dx^2}\frac{dx}{dy} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$$

(3)
$$\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^{\frac{1}{2}} + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$$
 (4) $\frac{d^2y}{dx^2}\frac{dx}{dy} + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$

(4)
$$\frac{d^2y}{dx^2}\frac{dx}{dy} + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$$

172. The differential equation $(2x^2 + by^2) dx + cxydy = 0$ is made exact by multiplying the integrating factor $1/x^2$. Then:

(1)
$$2c = b$$

(2)
$$c = b$$

(1)
$$2c = b$$
 (2) $c = b$ (3) $2b + c = 0$ (4) $2c + b = 0$

(4)
$$2c + b = 0$$

173. The boundary value problem $\frac{d^2y}{dx^2} + y = 0$, $x \in [0,\pi]$, y(0) = 0, y(n) = 0 has:

174.A differential equation $\frac{dy}{dx} = y \tan x - 2 \sin x$ has an integrating factor:

175. The integrating factor of the differential equation (x2 + y2 + 2x) dx + 2ydy = 0 is:

$$(4) ex^2$$

176. The particular integral of $(D^2 - 2D)y = e^x \sin x$ is:

$$(1) \quad -\frac{1}{2}e^{x}\sin x$$

$$(3) \quad -\frac{1}{2}e^{x}\cos y$$

177. $\int_0^\infty \frac{\sin t}{t} dt$ equals to:

$$(3)$$
 $\frac{\pi}{4}$

(3)
$$\frac{\pi}{4}$$
 (4) $\frac{\pi}{2}$

178. The inverse laplace transform of $\frac{1}{s^2(s^2+1)}$ is:

(2)
$$1 - \sin t$$
 (3) $t - \sin t$

(3)
$$t - \sin t$$

179. If the laplace transform of y(t) is y(s), then application of laplace transform in initial value problem y + 9y = 6cos 3t, y (0) = 2, y'(0) = 0 gives that:

(1)
$$y(s) = \frac{2s^3 + 24s}{(s^2 + 9)^2}$$
 (2) $y(s) = \frac{5s^3 + 12s}{(s^2 + 9)}$

(2)
$$y(s) = \frac{5s^3 + 12s}{(s^2 + 9)}$$

(3)
$$y(s) = \frac{s^2 + 18s}{(s^2 + 9)^2}$$

180. The inverse laplace transform of $\frac{s+1}{s^2+6s+25}$ is:

(1)
$$e^{-3t}(\cos 4t - \frac{1}{2}\cos 4t)$$

(2)
$$e^{-3t} (\sin .4t - \frac{1}{2} \cos .4t)$$

(3)
$$e^{-3t} (\cos 4t - \frac{1}{2} \sin 4t)$$

181. The integral equation $y(x) = \int_0^x (x-t) \dot{y}(t) dt - x \int_0^1 (1-t) \dot{y}(t) dt$ is equivalent to:

(1)
$$y^{1!} - y = 0$$
, $y(0) = 0$, $y(1) = 0$

(2)
$$y^{\dagger \dagger} - y = 0$$
, $y(0) = 0$, $y'(0) = 0$

(3)
$$y^{||} + y = 0, y(1) = 0, y(1) = 0$$

(4)
$$y^{11} + y = 0$$
, $y(0) = 0$, $y'(0) = 0$

182. The solution of the integral equation $g(s) = s + \int_0^1 su^2 g(u) du$ is:

(1)
$$g(t) = \frac{3t}{4}$$

(1)
$$g(t) = \frac{3t}{4}$$
 (2) $g(t) = \frac{4t}{3}$ (3) $g(t) = \frac{2t}{3}$ (4) $g(t) = \frac{3t}{2}$

(3)
$$g(t) = \frac{2t}{3}$$

(4)
$$g(t) = \frac{3t}{2}$$

183. Convert the following differential equation into an integral equation:

$$y'' + \lambda xy + f(x), y(0) = 1, y'(0) = 0$$
:

(1)
$$y(x) = 1 + \int_0^x (x - t) [f(t) - \lambda ty(t)] dt$$

(2)
$$y(x) = 1 + \int_0^x (x - t) [2f(t) - \lambda t^2 y(t)] dt$$

(3)
$$y(x) = 1 - \int_0^1 (x - t) [f(t) - \lambda ty(t)] dt$$

184. The laplace transform of $\frac{\sin at}{t}$ is:

(1)
$$\cot^{-1} \frac{2as}{s^2 + a^2}$$

1 85. The	number of g	ener	ators of a cy	clic	group of	orde	er 12	are	:
(1)	2	(2)	6	(3)	12		(4)	4	
186. The	number of 5	-sylc	w subgroup	os of	Z ₂₀ is:				
(1)	127	(2)	4	(3)			(4)	6	
187.Whi	ch of the foll	owin	g cannot be	the	cardinal	ity of	a fi	eld?	
	4	(2)	6	(3)				27	
188.Wha	at is the dim	ensid	n of a vecto	or su	bspace	W of	a ve	ctor	space
\mathbb{R}^3 (1	R), where W	= {(a,	b, c): a + b	= c		100			
(1)	1			(2)	2	•			
(3)	3			(4)	none of	thes	e		
100 Di-	ension of a	racta	r space Cil	D) is					
	3	rect.o	space & ((2)	6		•		
(1) (3)	9	71		(4)	none of	thes	se		
10.00			1:-						
190.Whi	ich of the foll					maue	311 7		
(1)	$T: \mathbb{R}^3 \to \mathbb{R}^2 d$								
(2)	$T: \mathbb{R}^3 \to \mathbb{R}^3 d$								
(3)	$T: \mathbb{R}^2 \to \mathbb{R}^2 d$	efine	d by $T(x,y)=0$	2x,y	- x)				
(4)	$T: \mathbb{R}^2 \to \mathbb{R}^2 d$	efine	d by $T(x,y) = ($	y – x)				
191.Nev	vton's iterati	ve for	mula to fin	d √N	is:				
	$\mathbf{x}_{n+1} = \mathbf{x}_n (2 -$				$X_{n+1} = X$	n (2 +	Nx,	,)	
(3)	$\mathbf{x}_{n+1} = 2 \left(\mathbf{x}_{n} \right)$	$+\frac{N}{x_n}$		(4)	none of	f the	se		
		5 AC11	al to .						
	number i ⁱ i		iai to .	(2)	1				
(1)	0			(-)	-				
(0)	$\frac{\pi}{2}$			(4)	none o	f the	se		
(3)	2								
			38						
			30						

193. The complex number $\frac{1+2i}{1-2i}$ lies in the:

- (1) I quadrant

- (1) I quadrant (2) II quadrant (3) III quadrant (4) IV quadrant

194.Let $A = \begin{bmatrix} 0 & \omega \\ \omega & 0 \end{bmatrix}$, where ω is a complex cube root of unity. Then A^{24}

- is:
- (1) A²

- (3) Zero matrix
- (2) A (4) Identity matrix

195. The sum of the infinite series $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \frac{8}{9!} + \dots + \infty$ is:

- (1) e (2) 2e (3) $\frac{1}{e}$ (4) $\frac{3e}{2}$

196. If $\frac{1}{\log_a x} + \frac{1}{\log_b x} = \frac{2}{\log_b x}$, then a, b, c are in :

- (1) H.P. (2) A.P. (3) G.P. (4) None of these

197. If f is twice differentiable function such that f''(x) = -f(x), f(x) = g(x)and $h(x) = [f(x)]^2 + [g(x)]^2$. If h(5) = 11 then h(10) is equal to:

(1) 22

(3)121

(4) none of these

198.The sum of the series: $1 + \frac{2}{1.2.3} + \frac{2}{2.3.4} + \frac{2}{3.4.5} + \frac{3e}{2} + \dots$ is:

(1) 2

(3) log 2

(2) 3/2 (4) log 2 - 1/2

199.If f(x) is differentiable in [a, a + h], there exists at least one real number θ such that:

$$f(a + h) - f(a) = h f'(a + \theta h).$$

Then θ has the value:

(1) $\theta = 1$

(2) $\theta = 0$

(3) less than 9

(4) none of these

200. The asymptote of the curve $r_{\theta} = a$ is:

(1) $r \sin \theta = a$

(2) r = a sin θ

(3) $r = a \cos \theta$

(4) $r \cos \theta = a$

SECTION - B (PHYSICS)

	(1)	2	(2) .	1/2		(3)	$\sqrt{2}$		(4)	$1/\sqrt{2}$	
202.	If th	e critica	angle	fo	r tota	l inter	mal	refle	ection fro	ma	medium	· to
	•		o. The	en	veloci	ity of l	ight	in th	ne medit	ım 18	:	
	(1)	1.5 × 10	8 m/s						× 108 m			
	(3)	3.8 × 10	8 m/s				(4)	5.5	× 108 m	/8		
203	An	ideal bla	ck bod	ly i	s rep	resen	ted l	y:	•			
	(1)	A metal	coate	d v	vith a	black	c dye		*			
	(2)	A glass	surfac	e c	pater	l with	coal	lter	•			
	(3)		w encl						inside a	nd h	aving a	
	(4)	A fump	of cha	rc	oal he	eated	to a	high	temper	ature	1	
204		t of the :	followi	ng	, whi	ch on	e is	not	an exam	aple	of capill	агу
	(1)	Plough	ing of	ne	field							
	(2)	Absorp					ing p	ape	r			
	(3)	floating										
	(4)		•			300						•
205		what ten		ur	e, the	rms :	spee	d of	gas mol	ecule	s is half	the

206	.The	velocity of sound in any ga	s dep	ends upon :
	(1)	Wavelength of sound only		
	(2)	Density and elasticity of ga	S	
	(3)	Intensity of sound waves of	nly	
	(4)	Amplitued and frequency of		ınd
207	rad	escape velocity for a body ius of the earth is increased ald be :	on th 4 tin	ne earth is 11.2 km/s. If the nes, then the escape velocity
	(1)	44.8 km/s	(2)	33.8 km/s
	(3)	25.7 km/s	(4)	22.4 km/s
208	A COLUMN TO SERVICE STATE OF THE PARTY OF TH	Q is the amount of heat sur in isothermal process:	pplie	d and dW is the work done,
	(1)	dQ + dW = 0	(2)	dQ - dW = 0
	(3)	dW/dQ = 0	(4)	none of the above
209	A ca	apacitor has a capacitive rea	actan	ce of 400 Ω when connected of capacitance is:
	(1)	15.92 µF	(2)	57.34 μF
	(3)	92.04 μF	(4)	23.12 µF
210.	In a of :	gas the transport of momen	tum g	gives rise to the phenomenon
	(1)	Viscosity	(2)	Conduction
	(3)	Diffusion	(4)	Volume
211	.A d	ecrease in the Helmholtz fur	action	n of a system is equal to:
	(1)	Change in temperature	(2)	External workdone
	(3)	Change in internal energy	(4)	All of the above
212	The	ody of mass m is suspended maximum distance up to wi the oscillation to remain har	nicu	a spring fo force constant k. the body can be pulled down ic is:
		2 mg/k (2) mg/k		

and	rocess 'A' is adiabatic.	The en	rsible and a atropy cha	adiab inge i	atic. Proces n process '	s B' is A' and	process		
	Zero and p		e	(2)	Zero and r	regativ	re		
(3)				(4)	Positive ar				
214.In t	erms of ma	gnetic	properties	, Oxy	gen belong	s to?			
(1)	Magnetic r			(2)	Ferromagnetic materials				
	Paramagn		(4)	-	tic ma	terials			
the	applied vol	tage is moe is	250 mV a 0.04μF, t	nt a ir he va	equency of	it indu	I'm and mic		
(1)	63.3 µН	(2)	24.4 µH	(0)	12.7 µm	7.0	,		
216.For	r a given m dity module	aterial 18. Its	, the Your Poisson's	ng's n	nodulus is is:	2.4 tir			
(1)	2.4	(2)	1.2	(3)	0.4	(4)	0.2		
217.Wh	nich one of t	he foll	owing phe	nome	. W	81 0.4			
(1)	Polarizatio	n	52	(2)	Photoelec	tric eff	fect		
(3)	Interferen	ce		(4)	Refraction	1			
ma	e temperat mimum in it spectrum aperature o	s radi	ation spec ar is maxi	trum	at 1200 Ao.	If the	intensity in		
	650 °K	(2)	600 °K	(3)	480 °K	(4)	750 °K		
219.St	ars appear t	o mov	e from eas	t to w	est becaus	e:	,		
. (1)	All stars r								
(2)			es from we						
(3)			es from ear						
(4)					oves from w	rest to	east		
. (9	TATO Descrip				V				
			43	3		8	P.T.O.		

220		pe semicon			uicoi	a should be	doped	to make a	L
	(1)	Phosphoru		110.	(2)	Boron			
	(3)	Antimony				Arsenic			
					. (4)				
221	.Ligh	nt Emitting I	Diode	(LED) conv	erts				
	(1)	Light energ	gy into	electrical	ener	gy			
	(2)	Electrical e	nergy	into light e	nerg	gy			
	(3)	Thermal er	nergy	into light er	nergy	7			
	(4)	Mechanica	l ener	gy into elec	trice	al energy			
222	.Pas	cal is the un	it for	:					
	(1)	Thrust			(2)	Pressure			
	(3)	Frequency				Conductivity			
223	.Sou	nd waves in	air a	re:					
	(1)	Transverse			(2)	Longitudir	nal		
	(3)	Electromagnetic				Polarised			
224	.Wh	en a red gla	ss is f	eated in da	rk r	oom, it will	seem :		
	(1)	Black	(2)	Green		Yellow	(4)	Red .	
225	.lf th	e spinning	speed	of the eartl	h is i	ncreased, ti	hen th	e weight of	
	the	body at the	equat	tor:		•		_	
	(1)	Increases			$\{2\}$	Decreases	1		
	(3)	Doubles			(4)	Does not o	hange	1	
226		dy of mass							
		ring 200 cm			3 со	mplete revo	olution	in 2s, find	
		tension of th		_	(2)	0 4E N	(4)	7 0C N	
	(1)	1.77 N	(2)	9.65 N	(3)	3.45 N	(4)	7.36 N	
227	.Whi	ch one of the	e follo	wing pair of	rays	is electroma	ignetic	in nature :	
	(1)	Alpha rays	and X	K-rays	(2)	Alpha rays	and c	osmic rays	
	(3)	Infrared ra	ys an	d beta rays	(4)	Infrared ra	ys and	1X-rays	

its	e moment of center is 0.13 weight of th	Kgn	12. What is	the ra	dius of this		
(1)			0.36 m	-	0.79 m	(4)	1.01 m
229.Op	tical fiber wo	rks c	n the prin	ciple	of:		-
(1)	Refraction		či	(2)	Internal re	efractio	m
(3)	Scattering			(4)	Interferen	ce	
ten isol	w much wo perature of baric process	5 m	oles of the	gas	increases t	l gas, by 2 Ke	when the elvin in an
-(1)	83.1 J	(2)	73.2 J	(3)	12.6 J	(4)	33.7 J
elec	losed surfac etric flux thro	ough	loses a ne the surfac	t char e?(rge of 10nC = ₀ = 8.85 × 1	. What	t is the net m)
	1130 Nm ² /		•	(2)	1654 Nm ²	/C	
(3)	1931 Nm ² /	C		(4)	4397 Nm ²	C/C	•
232.A a	nd B are two etched by the	wire san	s. The radice load. Th	ius of en th	A is twice to	hat of I B is:	3. They are
(1)	Equal to th			(2)	Four time		on A
(3)	Two times t	hat c	n A	(4)	Half that on A		
are	e Young's mo ee wires ma as in the ra ngation's in t	de of tio I	: 2 : 3.	terial For a	s have the	T Cros	8-sectional
(1)	1:2:3			(2)	3:2:1		
(3)	5:4:3		12	(4)	6:3:4		
234.Wh	en an electro	n fal	ls from an	orbit	where n = 2	2 to n =	= 1:
(1)	A photon is						
(2)	A photon is	abso	irbed				
(3)	The atomic	ener	gy decreas	ses to	zero		
(4)	The atomic	ener	gy increas	es	1 · · · · · · · · · · · · · · · · · · ·		
	8	,					

235	radi rigio	od of lenght us r/2 of s I base and It angle at t	ame ma	aterial. The end of	he free larger	end of sm	all rod is en a twis	is fixed to a it of θ , the
	(1)	θ/4	(2)	$\theta/2$	(3)	5 ₀ /6	(4)	80/9
236		ssure insid io between			;			ospheres.
	(1)	102:101			(2)	$(102)^3$: (3	$101)^{3}$	
4	(3)	8:1			(4)	2:1		
237	SHI	pendulur M at the sa Illations of the phase	me tin	e from t	he mea	an positio	n. After ill be ag	ain in the
	(1)	•		4	(3)	11	(4)	6
238	.Phe	nomenon i	n which	radiation	ns split	matter in	to ions is	called?
		Denaturin			(2)	Ionizatio	n	
,		Condense	tion		(4)	Excitatio	n	
239	nac	sed through	gh the he ato	foil un- n can be	deflect explai	ned from	this obse	er vauoir :
	(1)	The atom	's nega	tive char	ge is co	oncentrat	ed in the	nucleus
	(2)	The nucle	us has	electron	s and	protons		
	(3)	The atom	ic mas	s is distri	buted	evenly thi	oughou	t the atom
	(4)	The size of	of the n	ucleus is	much	less than	the size	of the
	(')	atom						30
			•			9		
240	eV eV.	LA A A L	respec e ratio	vively T	ne WOT	k function	for the n	energy 2.0 netal is 0.5 ns emitted
		0.78	(2)	0.65	(3)	0.34	(4)	0.22
	(-)						•	
•					46			3000
			(8					

ROUGH WORK

47 P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दौनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-यत्र अलग से दिया गवा है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रवस वृष्ट वर पैन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यया यह एक अनुवित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-मत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

