Marking scheme Compartment – 2019

CHEMISTRY (043)/ CLASS XII

56/1/2

Q.No	Value Points	Marks
	SECTION A	
1	Chemicals which prevent spoilage of food due to microbial growth . eg: sodium benzoate / table	1/2,1/2
	salt/ sugar/ any other correct example	
2	Homopolymer	1
3	Glucose and Fructose	1
4	N- NH-CO-NH2	1
	OR	
4	CH ₃ -CH ₂ -CH ₃	1
5	No unpaired electron.	1
	OR OR	
5	$[Fe(C_2O_4)_3]^{3-}$; $C_2O_4^{2-}$ is a didentate / chelating ligand so it is more stable	1/2,1/2
	SECTION B	
6	Since its a first order reaction,	
	a) Unit of rate constant is s ⁻¹ / time ⁻¹	1
	b) $t_{1/2} = \frac{0.693}{k}$	9 8
	$= \frac{\kappa}{0.693}$	1/2,
	$= 1.26 \times 10^{-14}$ = 1.26 × 10 ¹³ s (or any other unit of time)	
	Aig 2	1/2
/	a) Conductivity of a solution at any given concentration is the conductance of one unit volume of	1/2
	solution kept between two platinum electrodes with unit area of cross-section.	1,
	Molar conductivity is the conductivity of solution for 1M solution.	1/2
0	b) Because number of ions per unit volume that carry the current in a solution decreases.	1
8		1
	S	
	ОН	
	a)	
	b) Carbon dioxide is formed, $C + 2H_2SO_4(conc.) \rightarrow CO_2 + 2SO_2 + 2H_2O$	1/2,1/2
	(Award full marks if only balanced equation is given)	/2 , /2
9	a) Because Cr is more stable in +3 oxidation state due to t₂g³ configuration whereas Mn is more	1
	stable In +2 oxidation state due to half filled 3d ⁵ configuration.	
	B) Because it undergoes disproportionation reaction	1
10.	For fcc,	
	$r = \frac{a}{2\sqrt{2}}$	1/2
	$a = 2r \times \sqrt{2}$	
	$= 2 \times 125 \text{pm} \times 1.414$	1/2
	= 353.5 pm	1
	OR	
10.	$d = \frac{zM}{r}$	1/2
	$a^3 N_A$	

	$a^3 = 4 \times 99 \text{ g mol}^{-1}$	5 4	1/
	3.04 g cm ⁻³ X 6.022 X 10 ²³	mol ⁻¹	1/2
	$a^3 = 21.6 \times 10^{-23} \text{ cm}^3$ (Dedu	ct half marks if correct unit is not given)	1
11	CH ₃ -C=CH ₂		1,1
	CH ₃		
	; 2Methylpropene	OR	
11	LI	UI LI	1
	$-\overset{\Pi}{{C}}-\overset{{C}}{{{\sim}}}+{{H_2}}\overset{{\circ}}{{\circ}}\overset{{\sim}}-\overset{{{\sim}}}{{\sim}}-\overset{{{\sim}}}{{\sim}}$	- C-O+H	
	b) 2,6-dimethylphenol		1
12	a) A ₂ B ₃		1
	b) Frenkel defect, due to small size of Zn ²⁺ ion.		1/2,1/2
	SEC	TION C	
13	$\log \frac{\kappa^2}{k1} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$	3.5	1/2
	$\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 J K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{100} \right]$	$-\frac{1}{320}$] K^{-1}	1
	$\log 3 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$	25 Review Pro	
	$0.4771 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{20}{300 \times 320} \right]$	dest Student	1/2
	The lia's la		
		duct half marks if correct unit is not given)	1
14	$Zn^{2+} + 2e \rightarrow Zn(s)$		
	$E_{Zn2+/Zn} = E^{o}_{Zn2+/Zn} - \frac{0.059}{2} log \frac{1}{[Zn2+]}$		1
	$\begin{bmatrix} - & 0.059 \\ - & 0.76 \end{bmatrix}$		
	$E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} log \frac{1}{[0.01]}$		1
	$= -0.76 - \frac{0.059}{2} \log 10^2$		
	= -0.76 - 0.059 V		3552-11
	$E_{Zn2+/Zn} = -0.819 \text{ V}$ (De	educt half marks if correct unit is not given)	1
15	a) Calamine is an ore of Zn while malachite is an	ore of copper. / Calamine is ZnCO₃ while	1
	malachite is CuCO ₃ .Cu(OH) ₂ b) 7n is more reactive than Curse reduction w	vill be factor in case of 75	1
	b) Zn is more reactive than Cu, so reduction wc) Cryolite makes alumina a good conductor of		1
	mixture.	ciccurately and lowers include point of the	
		OR	
15	a)		
	Cast iron	Pig iron	
	1.It contains low percentage of carbon and	1.It contains high percentage of carbon and	1+1
	other impurities	other impurities	
	2.It is moulded pig iron	2. It is directly obtained from blast furnace	

b)Zone refining – impurities are more soluble in the melt than the solid state of the metal. 1 a) Because acid formed in the reaction provides H* which acts as a catalyst in hydrolysis. b) The solution becomes colourless because the molecules of methylene blue/ dye get adsorbed on the surface of charcoal. c) Milk / Vanishing cream (or any other suitable example) 1 a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 1 a) i) SNO ₂ + 2MnO ₄ + 6H* — > 2Mn ^{2*} + 5NO ₃ + 3H ₂ O 1 i) 3MnO ₄ ^{2*} + 4H* → 2MnO ₄ + MnO ₂ + 2H ₂ O b) Cerium / Ce a) i) Propene NH ₄ b) Propene NH ₄ c) NH ₄ NC NC NC NC NC NC NC NC NC N		3. It is less brittle 3. It is more brittle	
a) Because acid formed in the reaction provides H* which acts as a catalyst in hydrolysis. b) The solution becomes colourless because the molecules of methylene blue/ dye get adsorbed on the surface of charcoal. c) Milk / Vanishing cream (or any other suitable example) OR 16 a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 17 a) i) 5NO ₂ + 2MnO ₄ + 6H* -> 2Mn ^{2*} + 5NO ₃ + 3H ₂ O 1 b) Cerium / Ce a) i) Propene 18 a) i) Propene 19 b) Phenyl isocyanides / 19 19 1,1 19 1,1 19 1,1 19 1,1 19 1,1 19 1,1 19 1,1 10 10 10 11 11 11 12 13 14 15 15 16 17 17 17 17 18 19 19 10 10 10 11 11 11 11 12 13 14 15 16 17 17 17 17 17 18 19 19 10 10 10 11 11 11 12 13 14 15 16 17 17 17 17 17 18 19 10 10 10 11 11 11 12 13 14 15 16 17 17 17 17 17 18 19 10 10 11 11 11 12 13 14 15 16 17 17 17 17 17 18 19 10 10 10 11 11 11 12 13 14 15 16 17 17 17 17 18 19 10 10 11 11 11 12 12 13 14 15 16 17 17 17 17 18 18 19 19 10 10 10 10 10 10 10 10			
hydrolysis. b) The solution becomes colourless because the molecules of methylene blue/ dye get adsorbed on the surface of charcoal. c) Milk / Vanishing cream (or any other suitable example) OR 16 a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 17 a) i) 5NO ₂ + 2MnO ₄ + 6H ⁺ -> 2MnO ²⁺ + 5NO ₃ + 3H ₂ O 1 a) i) 3MnO ₄ ²⁺ + 4H ⁺ -> 2MnO ₄ + MnO ₂ + 2H ₂ O 1 b) Cerium / Ce 18 a) i) Propene 19 b) Phenyl isocyanides / NC Pe CN NH ₄ NC Pe CN NH ₄ NC Pe CN NH ₄ NH ₄ NC Pe CN NH ₄ NH ₄		b)Zone refining – impurities are more soluble in the melt than the solid state of the metal.	1
get adsorbed on the surface of charcoal. c) Milk / Vanishing cream (or any other suitable example) OR 16 a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 17 a) i) 5NO2 + 2MnO4 + 6H* -> 2MnO2* + 5NO3* + 3H2O 1 a) i) 3MnO4* + 4H* → 2MnO4* + MnO2* + 2H2O 1 b) Cerium / Ce 18 a) i) Propene 19 NH4 NC Pe CN NC NC NC NC NC NC NH4 a) cis Iturans b)In the presence of strong field ligand CO, the unpaired d-electrons of Ni pair up so [Ni(CO)2] is diamagnetic but Cl' being a weak ligand is unable to pair up the unpaired electrons, so [Ni(CL)]* is paramagnetic. OR 1 b) Ligand that can ligate through two different atoms. CR 1 a) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands. 1	16		1
c) Milk / Vanishing cream (or any other suitable example) OR a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 17 a) I) 5NO ₂ + 2MnO ₄ + 6H → 2MnO ² + 5NO ₃ + 3H ₂ O ii) 3MnO ₄ + 4H → 2MnO ₄ + MnO ₂ + 2H ₂ O b) Cerium / Ce 18 a) i) Propene 19 NH ₄ NC PO NN NN NN NN NN NN NN NN NN			1
OR a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 17 a) i) 5NO₂ + 2MnO₄ + 6H → 2MnO₂ + 2H₂O j) 3MnO₄² + 4H⁺ → 2MnO₄ + MnO₂ + 2H₂O j) b) Cerium / Ce 18 a) i) Propene 1 19 NH₃ NC NC NC NC NC NC NC NC NC N			1
a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentration b) The movement of colloidal particles towards a particular electrode under the influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 1 a) i) 5NO₂ + 2MnO₄ + 6H⁺ → 2MnO₂ + 5NO₃ + 3H₂O i) 3MnO₄² + 4H⁺ → 2MnO₄ + MnO₂ + 2H₂O b) Cerium / Ce a) i) Propene 1 b)Phenyl isocyanides / 1 1 nc Fe CN NC Fe CN NC Fe CN NC Fe CN NC NC Fe CN NC NC NC NC NC NC N			
influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite charges. 1 1 1 1 1 1 1 1 1 1 1 1 1	16	behaviour at high concentration	1
charges. 17 a) i) 5NO ₂ + 2MnO ₄ + 6H ⁺			1
17 a) i) 5NO ₂ + 2MnO ₄ + 6H ⁺ -> 2MnO ₄ + 5NO ₃ + 3H ₂ O 1 1 ii) 3MnO ₄ ² + 4H ⁺ -> 2MnO ₄ + MnO ₂ + 2H ₂ O 1 1 b) Cerium / Ce 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
ii) 3MnO ₄ ²⁺ + 4H ⁺ → 2MnO ₄ ⁻ + MnO ₂ + 2H ₂ O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17		1
b) Cerium / Ce 1 1 1 1 1 1 1 1 1 1 1 1 1	1/	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_9 + 2H_9O_9$	1
a) i) Propene 1 1 1 1 1 1 1 1 1 1 1 1 1			1
b)Phenyl isocyanides 1 19 NH ₃ NC Fe CN NC	18		1
19 NC NC NC NC NC NC NC NC NC N		ii) SO,H or SO, India's largest Student Re	1
19 NC NC NC NC NC NC NC NC NC N			
NC Fe CN NC NH ₃ a) Cis trans b)In the presence of strong field ligand CO, the unpaired d-electrons of Ni pair up so [Ni(CO) ₄] is diamagnetic but Cl ⁻ being a weak ligand is unable to pair up the unpaired electrons, so [Ni(Cl ₄)] ²⁻ is paramagnetic. OR 19 a) Ligand that can ligate through two different atoms. b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands. 1		b)Phenyl isocyanides /	
OR 19 a) Ligand that can ligate through two different atoms. b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands. 1	19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1
a) Ligand that can ligate through two different atoms. b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands.			1
b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands.	10		1
	19	b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally	1 1
I DELL'AND DE MANOR DE MANDE DE L'ANDERDE LE LEIGHE LE RECHE DE L'ANDRE L'ANDR			<u>1</u> 1

20.	a) i) $OH \rightarrow OH \rightarrow OH$	1
	$CH_3-CH=CH_2$ \longrightarrow $CH_3CH_2CH_2OH$	
	ii) NaOH, H2O2 ii)	1
	(or any other suitable method) b) Because –NO ₂ is an electron withdrawing group and stabilises the conjugate base.	1
21	$\frac{NH_2}{Br}$	
	a) A = / Aniline , B = Br / 2,4,6-Tribromoaniline	1+1
	b) Because of hydrogen bonding in ethylamine whereas it is hindered by the bulky phenyl group in aniline.	1
22	a) Antiseptics – chemicals applied on living tissues to prevent the growth of microorganisms while disinfectants are applied on non-living tissues. Example: Antispetic-Dettol, Disinfectants- 1% phenol (or any other suitable example)	1/2 + 1/2 1/2 + 1/2
<u>.</u>	b) It is needed by diabetic persons as it is excreated from the body in urine unchanged. / Reduces calories intake	1
22	i) Chemical compounds used for the treatment of stress and mental diseases.	1
	ii) Chemical compounds which stop overproduction of acid in stomach. iii) Chemical compounds which reduce or abolish pain without disturbing nervous system.	1 1
23	CH ₂ -C-CH=CH ₂ Chloroprene	1/2 , 1/2
	a) b) C ₆ H ₅ OH + HCHO , phenol and formaldehyde c) CH ₂ =CH-Cl , vinyl chloride	½,½ ½,½
24	a) i) CHO (CHOH) ₄ $\xrightarrow{\text{HI, } \Delta}$ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	1
	CH ₂ OH or n-Hexane is formed	
	ii)	
	CHO Conc. HNO3 COOH	
	$(CHOH)_4 \longrightarrow (CHOH)_4$	1
	CH ₂ OH COOH	267-057
	or Saccharic acid is formed b) Starch is a polymer of α -glucose while cellulose is a polymer of β -glucose.	1
	SECTION D	
25	a) Compound = Benzaldehyde or C ₆ H ₅ CHO	1

	Reaction	
	Reaction with 2,4-DNP	
	H $C = O + H_2 + NNH$ NO_2	1/2
	RCHO + $2[Ag(NH_3)_2]^+$ + $3\bar{O}H \longrightarrow RCO\bar{O}$ + $2Ag + 2H_2O + 4NH_3$ (Where R= -C ₆ H ₅)	1/2
	2 CHO + Conc. NaOH \longrightarrow CH ₂ OH + COONa	1
	b) i)Add neutral FeCl₃ to both the compounds, phenol will give violet colour]	1
	ii) Add NaHCO₃ to both the compounds, benzoic acid acid will give brisk effervescence of CO₂	1
25	a) A= CH ₃ COOH	1
23	B= CH ₃ COCI	1
	C= CH ₃ CONH ₂	1
	D= CH ₃ NH ₂	1
26	b) $HCOOH < CICH_2COOH < CCI_3COOH < CF_3COOH$ a) $\Delta T_f = T_f^0 - T_f = 273.15 - 271 \text{ K} = 2.15 \text{ K}$	
	$\Delta T_f = K_f m$	1/2
	$\Delta T_f = K_f \times \frac{w_B \times 1000}{M_B \times w_A}$	
	$K_{f} = \frac{2.15K \times 342 \ g \ mol^{-1} \times 95 \ g}{5g \times 1000 \ g \ Kg^{-1}}$ = 13.97 K kg mol ⁻¹	1/2
		1/2
	For 5% glucose in water,	
	$\Delta T_f = K_f m$ $w_b \times 1000$	
	$\Delta T_{f} = K_{f} \times \frac{w_{b} \times 1000}{M_{B} \times w_{A}}$	
	$= \frac{13.97 \ K \ Kg \ mol^{-1} \times 5g \times 1000 \ g \ K^{-1}}{180 \ g \ mol^{-1} \times 95 \ g}$ $= 4.08 K$	1
	$T_f = T_f^o - \Delta T_f = 273.15 - 4.08 \text{ K} = 269.07 \text{ K}$	1/2
	b) It is due to the fact that KCl dissociates to give K ⁺ and Cl ⁻ ions whereas urea does not dissociate	

	into ions c) Liquids having similar nature and polarities / which obey Raoults' law	1
26	OR	
26	$\Delta T_c = K_c m$	
	$\Delta T_f = K_f m$ $\Delta T_f = K_f \times \frac{w_b \times 1000}{M_B \times w_A}$	1
	$M_B \times W_A$	
	$M_{\bullet} - K_{\bullet} \times \frac{w_b \times 1000}{}$	
	$M_b = K_f \times \frac{w_b \times 1000}{\Delta T_f \times w_A}$	1
	$= 5.12 \times \frac{1 \times 1000}{0.40 \times 50}$	
	= 256 g mol ⁻¹	1
	b) Higher the value of K_H , lower will be the solubility of a gas in the liquid.	1
	c) Low level of oxygen in the blood and tissues of people at high altitudes leads to	1
	the condition of anoxia.	
27	A= S ₈ / Sulphur	1
	$S_8 + 8 O_2 \rightarrow 8SO_2 / S + O_2 \rightarrow SO_2$	1/2
	$B=SO_2$ $Ca(OH)_2 (aq) + SO_2 (g) \rightarrow CaSO_3 (s) + H_2O$	1 ½
	(milky)	/2
	Decolourises KMnO₄	
	$2KMnO_4 + 5SO_2 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4 / 2MnO_4 + 5SO_2 + 2H_2O \rightarrow 4H^+ +$	1
	$2Mn^{2+} + 5SO_4^{2-}$	
	Reduces Fe ³⁺ to Fe ²⁺	
	$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^{\dagger}$	1
27	a) $H_2Te > H_2Se > H_2S > H_2O$	1
21	b) PCl_4 , as phosphorous has 10 e which cannot be accommodated in sp ³ orbitals.	1/2,1/2
	c) Rhombic sulphur	1
	d) H ₃ PO ₄	1
	e) PCl_3 hydrolyses in presence of moisture to give fumes of $HCl / PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$	1

