

0-4	AT -	-
set	No.	1

18P/208/21

79 Question Booklet No.

	(To be	filled up by the	candidate by b	ue/black ball-po	pint pen)
Poll No.					
				1	
coll No. (Write)	he digits in wo	ords)	20	3	
erial No. of C	MR Answer S		201	3	
	MR Answer S		201	3	***************************************

INSTRUCTIONS TO CANDIDATES

Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Intigilators immediately to obtain a fresh Question Booklet
- 2. Do not bring any loose paper, written of plank, it side the Examination Hall except the Admit Card.
- 3. A separate OMR Answer Sheet is given. It should not be folded or muticated. A second OMR Answer Sheet shall not be provided. Only the OIR Answer Sheet will be evaluated.
- 4. Write all the entries by blue/black ball ben in the space provided above.
- 5. On the front page of the OMR Answer Sheet, write by pen your Roll Number in the space provided at the op, and by darkening the circles at the bottom. Also, write the Question Booklet Number, Centre Code Number and the Set Number (wherever applicable) in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR Answer Sheet and also Roll No. and OMR Answer Sheet Serial No. on the Question Booklet.
- Any change in the aferesaid entries is to be verified by the Invigitator, otherwise it will be taken as unfair means.
- Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the OMR Answer Sheet by darkening the appropriate circle in the corresponding row of the OMR Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMR Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet
- On completion of the Test, the Candidate must handover the OMR Answer Sheet to the Invigilator the examination room/hall. However, candidates are allowed to take away Text Booklet and copy of OMR Answer Sheet with them.
- 3. Candidates are not permitted to leave the Examination Hall until the end of the Test.
- 4. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

रबंच निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं।

SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

No. of Questions: 120

Time: 2 Hours

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- Power set of empty set has exactly —— subset.
 - (1) zero
- (2) one
- (3) two
- (4) three
- 2. The truth table for $(p \lor q) \lor (p \land r)$ is the same as the truth table for
 - (1) $(p \lor q) \land (p \lor r)$

(2) $(p \lor q) \land r$

(3) $(p \lor q) \land (p \land r)$

- (4) $p \vee q$
- 3. For a complete graph with N vertices, the total number of spanning trees is given by
 - (1) 2N-1
- (2) $N^{(N-1)}$
- (3) $N^{(N-2)}$
- (4) 2N+1

76) 1 (P.T.O.

4.		$x \le -1$ or $1 \le x \le 2$ ". The negation of this
	statement is (1) $x < -2$ or $2 < x$	(2) $-1 < x < 1$
	(3) $-2 < x < 2$	(4) $x \le -2$ or $2 \le x$ or $-1 < x < 1$
5.	Consider the following matrix $A = \begin{bmatrix} 2 \\ x \end{bmatrix}$	$\begin{bmatrix} 3 \\ y \end{bmatrix}$. If the eigenvalues of A are 4 and 8.
	(1) $x = -4$, $y = 10$	(2) $x = 5, y = 8$
	(1) $x = -4$, $y = 10$ (3) $x = -3$, $y = 9$	(4) $x = 4$, $y = 10$
6.	The convergence of which one of the value	following method is sensitive to starting
	(1) Newton-Raphson method	(2) Gauss-Scidal method
	(3) False position	(4) All of the above
7.	How many licence plate can be form digits?	ned from 3 English letters followed by 3
	3 2 2 3	(2) 253 - 103 (4) 253 - 123

8. How many integers from 100 to 999 are divisible by 7?

(1) 112

(2) 115

(3) 126

(4) 128

Data about data is termed as

(1) directory (2) root

(3) meta data (4) data bank

(76)

10.	Which one of the following is true?						
	(1) Every relation in 3NF is also in BCNF						
(2) No relation can be in both BCNF and 3NF							
(3) Every relation in BCNF is also in 3NF							
	(4) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R						
11.	Consider a schema $R(A, B, C, D)$ and functional dependencies $A \rightarrow B$ and $C \rightarrow D$. Then the decomposition of R into $R1(AB)$ and $R2(CD)$ is						
	(1) dependency preserving and lossless join						
	(2) dependency preserving but not lossless join						
	(3) lossless join but not dependency preserving						
	(4) not dependency preserving and not lossless join						
12.	ensures that once transaction changes are done, they cannot be undone or lost, even in the event of a system failure.						
	(1) Atomicity (2) Durability (3) Isolation (4) Consistency						
13.	When a transaction is abnormally terminated, the equivalent of a ——command occurs?						
	(1) QUIT (2) EXIT (3) COMMIT (4) ROLLBACK						
14.	Deadlocks are possible only when at least one of the transactions wants to obtain a(n) ——— lock on a data item.						
76)	(1) partial (2) shared (3) exclusive (4) binary (P.T.O.)						

15.	 If there is more than one key for relation schema in DBMS, then each is relation schema is classified as 						
	(1) candidate key	(2) primary key					
	(3) super key	(4) composite key					
16.	What type of join is needed when you matching values?	ou wish to include rows that do not have					
	(1) Cross-join (2) Inner-join	(3) Outer-join (4) Equi-join					
17.	Which one of the following is true a	about PL/SQL cursors?					
	(1) Explicit cursors are automatical	ly created by Oracle.					
	(2) Implicit cursors are programmer	defined cursors.					
		is called the SQL cursor, and has the EN, %NOTFOUND and %ROWCOUNT					
	(4) All of the above						
18.	Given relations r(w, x) and s(y, z), t r, s is guaranteed to be same as r,	he result of SELECT DISTINCT w, x FROM provided					
	(1) s has no duplicates and r is no	n-empty					
	(2) r and s have the same number	of tuples					
	(3) r has no duplicates and s is no	n-empty					
	(4) r and s have no duplicates						
19.	What are the time complexities of find element from end in a singly linked lillist, you may assume that n > 10.	ling 10th element from beginning and 10th st? Let n be the number of nodes in linked					
	(1) $O(n)$ and $O(1)$	(2) $O(n)$ and $O(n)$					
	(3) $O(1)$ and $O(n)$	(4) O(1) and O(1)					
(76)	4						

20.	Several factors that affect the efficiency of lockup operations in a hash table are stated. Which one of the following is not one of those factors?
	(1) Number of elements stored in the hash table

(2) Size of elements stored in the hash table

(3) Number of buckets in the hash table

(4) Quality of the hash function

What is the infix expression of the following postfix expression? 21.

$$x 12 + z 17 y + 42 */+$$

(1)
$$x+12+z/((17+y)*42)$$
 (2) $x+12+z/(17+y)*42$

(2)
$$x + 12 + z / (17 + y) * 42$$

(3)
$$x + (12+z)/(17+y*42)$$
 (4) $(x+12+z)/(17+y*42)$

(4)
$$(x+12+z)/(17+y*42)$$

Consider a situation where you don't have function to calculate power (pow() 22. function in C) and you need to calculate x'n, where x can be any number and n is a positive integer. What can be the best possible time complexity of your power function?

- (1) O(n)
- (2) $O(\log \log n)$ (3) $O(n \log n)$ (4) $O(\log n)$

The upper bound on the time complexity of the nondeterministic sorting 23. algorithm is

- (1) O(n)
- (2) $O(n^2)$
- (3) $O(\log n)$
- (4) O(1)

Consider a situation where swap operation is very costly. Which of the following 24. sorting algorithms should be preferred so that the number of swap operations is minimized in general?

(1) Heap sort

(2) Merge sort

(3) Insertion sort

(4) Selection sort

25.	Which is better cor	nputing time for an	alyzing an algorith	m in the given options?
	(1) O(N log N)		(2) O(100 log N)	
	(3) O(2 ^N)		(4) O(N)	
26.	The given array is How many iteration	arr = { 1,2,4,3 } . Bub ons will be done to	ble sort is used to so sort the array wi	sort the array elements th improvised version?
	(1) 4	(2) 1	(3) 0	(4) 2
27.	Given an undirect		V vertices and E	edges, the sum of the
	(1) E	(2) 2E	(3) V	(4) 2V
28.	What is the mini function (AB+C)	mum number of g if we have to use	gates required to i	implement the Boolean gates?
	(1) 2	(2) 3	(3) 4	(4) 5
29.		line decoders with der without using a		e needed to construct a
	(1) 7	(2) 8	(3) 9	(4) 10
30.	In an SR latch ma		ng two NAND gates	, if both S and R inputs
	(1) $Q = 0$, $Q' = 1$		(2) $Q = 1$, $Q' = 0$	
	(3) $Q = 1$, $Q' = 1$		(4) indeterminate	e states
(76)		6		

31. Given the following K-map, which one of the following represents the minimal SOP of the map?

			W	x	
		00	01	11	10
	00	0	х	0	x
117	01	x	1	x	1
yz	11	0	x	1	0
	10	0	1	x	0

(1)
$$xy + y'z$$

(2)
$$wx'y' + xy + xz$$

(3)
$$w'x + y'z + xy$$

$$(4)$$
 $xz + y$

32. Consider a 4 bit Johnson counter with an initial value of 0000. The counting sequence of this counter is

33. Given $\sqrt{(224)_r} = (13)_r$. The value of the radix r is

$$(2)$$
 8

$$(3)$$
 5

$$(4)$$
 6

- 34. Computers use addressing mode techniques for
 - giving programming versatility to the user by providing facilities as pointer to memory counters for loop control
 - (2) to reduce no. of bits in the field of instruction
 - (3) specifying rules for modifying or interpreting address field of the instruction
 - (4) All of the above

(P.T.C

35.	A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, valid bits, 1 modified bit and 1 replacement bit. The number of bits in the tag field of an address is						
	(1) 11	(2) 14	(3) 16	(4) 27			
36.	The extra time need	ded to bring the	e data into mem	ory in case of a miss is	called		
	(1) delay		(2) propaga	ation time			
	(3) miss penalty		(4) none o	the mentioned			
37.	The return address	s from the inte	rrupt-service re	utine is stored on the			
	(1) system heap		(2) process	or register			
	(3) processor stack		(4) memory				
38.	The time taken to while the time take following is TRUE?	n to switch be	n user and kern tween two proce	nel modes of execution esses be t2. Which one o	be tl		
	(1) $t1 > t2$						
	(2) $t1 = t2$						
	(3) t1 < t2						
	(4) nothing can be	said about th	e relation betwe	en t1 and t2			
(76)			8				

39.	A process execute	es the code					
	fork();	14					
	fork();						
	fork();						
	fork();						
	The total number	of child processes	cre	ated is			
	(1) 8	(2) 7	(3)	16	(4)	15	
40.	Which one of the	following does not	int	errupt a runni	ng p	rocess?	
	(1) A device		(2)	Timer			
	(3) Scheduler pro	ocess	(4)	Power failure			
41.	units and arrive a	PU-intensive procest at times 0, 2 and 6 operating system in hm? Do not count to	res	pectively. How ments a shorte	man	y context so	witches ne first
	(1) 4	(2) 3	(3)	2	(4)	1	
42.	operation. The m	is four programs a inimum number of cks never arise is					
	(1) 12	(2) 13	(3)	14	(4)	16	
43.		phore was initialize completed on this					
	(1) 0	(2) 8	(3)	9	(4)	10	
76)		9					(P.T.O.)

44.	Which one of the following page replacement algorithms suffers from Belady's anomaly?					
	(1) FIFO	(2)	LRU			
	(3) Optimal page repla	cement (4)	Both LRU and	FIFO		
45.	A system uses FIFO po pages loaded to begin w order and then accesses many page faults will o	ith. The system fir s the same 100 pa	st accesses 100	distinct pages in some		
	(1) 192 (2)	100 (3)	196	(4) 200		
46.	A 1000 Kbyte memory is It currently has two parties. The smallest allocation	rtitions of sizes 20	00 Kbyte and 26	50 Kbytes respectively.		
	(1) 151 (2)	181 (3)	231	(4) 541		
47.	Consider a disk pack w per track. 512 bytes of capacity of the disk pac sector in the disk are	data are stored in the data are stored in the number	n a bit serial m	anner in a sector. The		
	(1) 64 Gb, 28 bits	(2)	512 Mb, 20 bi	ts		
	(3) 256 Mb, 28 bits	(4)	256 Mb, 19 bi	ts		
48.	Communication between	een a computer	and a keyb	pard involves		
	(1) automatic	(2)	half-duplex			
	(3) full-duplex	(4)	simplex			
(76)		10				

49.	A —— is a device that forwards packets between networks by processing the routing information included in the packet.						
	(1) Bridge	(2) Firewall					
	(3) Router	(4) All of the mentioned					
50.	Network congestion occurs						
	(1) in case of traffic overloading						
	(2) when a system terminates						
	(3) when connection between two n	odes terminates					
	(4) None of the mentioned						
51.	Bits can be send over guided and u	anguided media as analog signal b	у				
	(1) digital modulation	(2) amplitude modulation					
	(3) frequency modulation	(4) phase modulation					
52 .	Which one of the following task is	not done by data link layer?					
02 .	(1) Framing	(2) Error control					
	(3) Flow control	(4) Channel coding					
E 2	The packet of information at the ap	pplication layer is called					
53.	(1) packet (2) message	(3) segment (4) frame					
	Electronic mail uses this application	on layer protocol					
54.		(3) FTP (4) SIP					
	(1) SMTP (2) HTTP						
(76)	1	.1	(P.T.O.)				


```
The function of physical layer is
 55.
       (1) error correction and detection
       (2) piggybacking
       (3) flow control
       (4) determine number of volts to represent 1 or 0
       A half byte is known as
 56.
                          (2) bit
                                            (3) nibble
       (1) data
                                                               (4) variable
      What is the results of the programme?
            #include <stdio.h>
            int main()
                  printf("Hello World! %d \n", x);
                  return 0;
            }
       (1) Hello World! x;
       (2) Hello World! followed by a junk value
       (3) Compile time error
       (4) Hello World!
 58.
      The scope of an automatic variable is
      (1) within the block it appears
      (2) within the blocks of the block it appears
      (3) until the end of program
       (4) Both (1) and (2)
(76)
                                         12
```


59.	What would be the equivalent p	ointer expression	for referring the	e arrav	element
	a[i][j][k][1]?	No purposes to the American Company of the Company	0		0.0000000000000000000000000000000000000

(1)
$$(((a+i)+j)+k)+1)$$

(3)
$$(((a+i)+j)+k+1)$$

(4)
$$((a+i)+j+k+1)$$

60. What is the similarity between a structure, union and enumeration?

- (1) All of them let you define new values
- (2) All of them let you define new data types
- (3) All of them let you define new pointers
- (4) All of them let you define new structures
- 61. What will be the output of the program?

```
#include<stdio.h>
int main()
{
    enum days {MON = -1, TUE, WED = 6, THU, FRI, SAT};
    printf("%d, %d, %d, %d, %d, %d\n", MON, TUE, WED, THU, FRI, SAT);
    return 0;
}
```

(1) -1, 0, 1, 2, 3, 4

(2) -1, 2, 6, 3, 4, 5

(3) -1, 0, 6, 2, 3, 4

(4) -1, 0, 6, 7, 8, 9

62. How would you round off a value from 1.66 to 2.0?

(1) ceil(1.66)

(2) floor(1.66)

13

(3) round(1.66)

(4) roundto(1.66)

76)

(P.T.O.)

(76)

63.	What about the fol	lowing statement?			
		extern i	nt i		
	(1) Declaration	(2) Definition	(3)	Function	(4) Error
64.	<pre>How many times to #include<stdid 0;="" int="" main()="" main();="" pre="" printf("c="" return="" to="" {="" }<=""></stdid></pre>		rint	"C Programmir	ng" ?
	(1) Infinite times (3) 65535 times		(2) (4)	m:::	flows
65.	The Newton-Raphson (1) converge to -1 (3) converge to - V		(2)	nd the root of the converge to √2 not converge	
66.	A graph consisting (1) 1-chromatic	***			(4) n-chromatic
67.	A subnet has been maximum number				
	(1) 14	(2) 30	(3)	62	(4) 126

68.	Which	one	of	the	following	statements	is	FALSE	regarding	a	bridge?
-----	-------	-----	----	-----	-----------	------------	----	-------	-----------	---	---------

- (1) Bridge is a layer 2 device
- (2) Bridge reduces collision domain
- (3) Bridge is used to connect two or more LAN segments
- (4) Bridge reduces broadcast domain

69. Which one of the following statements is TRUE about CSMA/CD?

- (1) IEEE 802.11 wireless LAN runs CSMA/CD protocol
- (2) Ethernet is not based on CSMA/CD protocol
- (3) CSMA/CD is not suitable for a high propagation delay network like satellite network
- (4) There is no contention in a CSMA/CD network
- 70. The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by
 - (1) the instruction set architecture
- (2) page size
- (3) physical memory size
- (4) number of processes in memory
- 71. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements.
 The level-order traversal of the heap is given below

Two new elements 1 and 7 are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is

(1) 10,8,7,5,3,2,1

(2) 10,8,7,2,3,1,5

(3) 10,8,7,1,2,3,5

(4) 10,8,7,3,2,1,5

collegedunia

(P.T.O.)

72.	The followingiven order	ng numbers are in	serted into an emp	ty binary search tree in the
		10, 1,	, 3, 5, 15, 12, 16	
		e height of the bi a leaf node from t		the height is the maximum
	(1) 2	(2) 3	(3) 4	(4) 6
73.	The minimum function F =	om number of 2- (X' + Y')(Z + W) is	input NAND gates	required to implement the
	(1) 3	(2) 4	(3) 5	(4) 6
74.	How many p 10101100 to	oulses are needed to 00100111 (rightr	o change the conten	ts of a 8-bit up counter from
	(1) 134	(2) 133	(3) 124	(4) 123
75 .	pure deman memory fran	d paging system ne is recorded as	with 100 records process follows. What is the	cular program executing in a per page, with a free main number of page faults?
	(1) 13			
	(1) 13	(2) 8	(3) 7	(4) 10
76.	Consider the tuples, then	join of a relation I the maximum and	R with a relation S. I I minimum sizes of	If R has m tuples and has not the join respectively are
	(1) $m+n$ and		(2) mn and	
	(3) $m + n$ and	d m-n	(4) mn and	m + n
(76)			16	

16

77.	What is the minimum number function of two input OR gate?	of two-input NAND gates used to perform	ı the
	(1) One (2) Two	(3) Three (4) Four	
78.	The D-flip-flop captures the value	ue of the input D when there is a	
	(1) positive edge	(2) rising edge	
	(3) negative edge	(4) non-rising edge	
79.	The scheduling policy that has	long waiting times for small processes is	Ĺ
	(1) SJF (2) round rob	bin (3) FCFS (4) FJS	
80.	The most important schema for	application programmers is	
	(1) physical schema	(2) logical schema	
	(3) conceptual schema	(4) external schema	
81.		tightest upper bound that represents the ct into a binary search tree of n nodes?	time
	(1) $O(1)$ (2) $O(\log n)$	(3) $O(n)$ (4) $O(n \log n)$	
82.		of a binary search tree is 30, 20, 10, 15, 25 owing is the postorder traversal sequence o	
	(1) 10,20,15,23,25,35,42,39,30	(2) 15,10,25,23,20,42,35,39,30	
	(3) 15,20,10,23,25,42,35,39,30	(4) 15,10,23,25,20,35,42,39,30	
(76)		17 (P.	T.O.)

83.	The simplified SOP (Sum of Product) form of the Boolean expression $(P+Q'+R')$; $(P+Q'+R)$; $(P+Q+R')$ is
	(1) $(P'.Q + R')$ (2) $(P + Q'.R')$ (3) $(P'.Q + R)$ (4) $(P.Q + R)$
84.	Given the basic ER and relational models, which one of the following is INCORRECT?
	(1) An attribute of an entity can have more than one value
	(2) An attribute of an entity can be composite
	(3) In a row of a relational table, an attribute can have more than one value
	(4) In a row of a relational table, an attribute can have exactly one value or a NULL value
85.	In 'C' programming, if an array is used as a function argument, the array is passed
	(1) by value
	(2) by reference
	(3) none of these as array cannot be used as function argument
	(4) call by name
86.	In a memory-mapped I/O system, which one of the following will not be there?
	(1) LDA (2) IN (3) ADD (4) OUT
87.	The instructions which copy information from one location to another either in the processor's internal register set or in the external main memory are called
	(1) data transfer instructions (2) program control instructions
	(3) input-output instructions (4) logical instructions
(76)	18

88.	Inheritance makes it easier to
	(1) reuse and modify existing modules of code
	(2) write and read code by sharing method names
	(3) hide and protect data from external code
	(4) Both (1) and (2)
89.	In tuple relational calculus $P_1 \rightarrow P_2$ is equivalent to
	(1) $\neg P_1 \lor P_2$ (2) $P_1 \lor P_2$ (3) $P_1 \land P_2$ (4) $P_1 \land \neg P_2$
90.	Initial value of the semaphore that allows only one of the many processes to enter their critical section is
	(1) 8 (2) 1 (3) 16 (4) 0
91.	In SQL the statement select * from R, S is equivalent to
	(1) select * from R natural join S (2) select * from R cross join S
	(3) select * from R union join S (4) select * from R inner join S
92.	Controlling redundancy in a database management system DOES NOT help to
	(1) avoid duplication
	(2) avoid unnecessary wastage of storage space
	(3) avoid unauthorised access to data
	(4) avoid inconsistency among data
76	19 (P.T.O.)

19

(76)

93.	Relational calculu	s is a			
	(1) procedural lar	nguage	(2)	non-procedura	al language
	(3) data definition	n language	(4)	high level lan	guage
94.	A relation $R(X, Y,$ and $Y \rightarrow X$ is in	Z, W) with function	nal d	ependencies XX	$Z \to W, YZ \to W, X \to Y$
	(1) 1 NF only	(2) 2 NF only	(3)	3 NF only	(4) BCNF
95.	Which one of the	following is not a	broa	adband commu	inication medium?
	(1) Microwave		(2)	Fibre optic ca	ble
	(3) Twisted pair		(4)	Coaxial cable	
96.	Given two sorted I needed in the wor	ist of size m and n	resp	pectively. The n	umber of comparisons will be
	(1) $m \times n$		(2)	maximum of a	m, n
	(3) minimum of n	n, n	(4)	m+n-1	
97.	Part of program we executed indivisib		nemo	ory is accessed	and which should be
	(1) semaphores		(2)	directory	
	(3) critical section		(4)	mutual exclus	ion
98.	Maximum possible	height of an AVL	tree	with 7 nodes	is
	(1) 3	(2) 4	(3)	5	(4) 6
99.	In which of the stor	rage placement stra nemory in which i	itegie t wil	es a program is l fit?	placed in the smallest
	(1) Best fit	(2) First fit	(3)	Worst fit	(4) Buddy
(76)		20		9	

	(1) the page is co	orrupted by applica	tion software	
	(2) the page is in	main memory		
	(3) the page is no	ot in main memory		
	(4) one tries to di	ivide a number by	0	
101.		e with each frame of		y an average of 15000 ge of 8000 bits. What is
	(1) 2 Mbps	(2) 60 Mbps	(3) 120 Mbps	(4) 10 Mbps
102.	The same of the sa	gers to sort, each in dix sort can sort th		and each digit is in the
	(1) O(dnk)	(2) $O(dn^k)$	(3) $O((d+n)k)$	(4) $O(d(n+k))$
1 03 .	In propositional le	ogic, given P and P	\rightarrow Q, we can infe	er
	(1) ~ Q	(2) Q	(3) P ∧ Q	(4) $\sim P \wedge Q$
104.	The number of 1's	present in the bina	ry representation o	of $10 \times 256 + 5 \times 16 + 5$ is
	(1) 5	(2) 6	(3) 7	(4) 8
105.	8-bit 1's complem	nent form of -77.2	.5 is	
	(1) 01001101.010	00	(2) 01001101.00	010
	(3) 10110010.101	11	(4) 10110010.11	101
(76)		21		(P.T.O.)

100. Page fault occurs when

106.	The number of di	fferent trees with	8 no	des is		
	(1) 256	(2) 255	(3)	248	(4)	250
107.	Multi-valued depe	endency among att	ribu	te is checked a	t wh	nich level?
	(1) 2 NF	(2) 3 NF	(3)	4 NF	(4)	5 NF
108.	An example of a	tautology is				
	(1) $x \vee y$		(2)	$x \vee (\sim y)$		
	(3) $x \vee (\sim x)$		(4)	$(x \Rightarrow y) \land (x \Leftrightarrow y)$	= y)	
109.	referenced in the	ve virtual pages, order 012301401 aults with FIFO w	1234	, with three p		
	(1) 0	(2) 4	(3)	6	(4)	9
110.	The following loop int i = 0; while (i + + < i;					
	(1) will terminate		(2)	will go into ar	inf	inite loop
	(3) will give comp	ilation error	(4)	will never be	exec	uted
111.	The memory alloc	ation scheme subj	ected	d to "external"	fragi	mentation is
	(1) segmentation		(2)	swapping		
	(3) demand pagin	g	(4)	multiple contig	guou	is fixed partition
(76)		22				

	(1) a statement that enables to start any DBMS
	(2) a statement that is executed by the user when debugging an application program
	(3) a condition the system tests for the validity of the database user
	(4) a statement that is executed automatically by the system as a side effect of modification to the database
113.	The algorithm, which may suffer from cascading roll back, is
	(1) 2 phase locking protocol (2) strictly two phase locking protocol
	(3) strictly two phase (4) time stamp ordering protocol
114.	Which one of the following sorting algorithm has almost the same worst case and best case complexity?
	(1) Quick sort (2) Merge sort (3) Heap sort (4) Shell sort
115.	In an empty circular queue, the front and rear are
	(1) -1, -1 (2) 0, 0 (3) 0, 1 (4) 1, 1
116.	A digital signature is used to provide security makes use of (1) digitally scanned signature (2) a unique ASCII code number of the sender
	(3) private key encryption
	(4) public key encryption
76)	23 (P.T.O.,

112. A trigger is

- 117. The address of a class B host is to be split into subnets with a 6-bit subnet number. What is the maximum number of subnets and the maximum number of hosts in each subnet?
 - (1) 62 subnets and 262142 hosts
- (2) 64 subnets and 262142 hosts
- (3) 62 subnets and 1022 hosts
- (4) 64 subnets and 1024 hosts
- 118. A relation over the set $S = \{x, y, z\}$ is defined by

$$\{(x,x),(x,y),(y,x),(x,z),(y,z),(y,y),(z,z)\}$$

what properties hold for this relation?

(I) Symmetric

(II) Reflexive

(III) Antisymmetric

(IV) Irreflexive

(1) (I) only

(2) (II) only

(3) (I) and (II) only

- (4) (I) and (IV) only
- 119. Which one of the following DMA transfer modes and interrupt handling mechanisms will enable the highest I/O band-width?
 - (1) Transparent DMA and polling interrupts
 - (2) Cycle-stealing and vectored interrupts
 - (3) Block transfer and vectored interrupts
 - (4) Block transfer and polling interrupts
- 120. The number of tokens in the following 'C' statement is

- (1) 3
- (2) 26
- (3) 21
- (4) 10

24

D/8(76)-300

SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ट पर तथा ओ॰एम॰आर॰ उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली/काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न-पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई पृष्ठ या प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरे पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लाये।
- ओ॰एम॰आर॰ उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा ओ॰एम॰आर॰ उत्तर-पत्र नहीं दिया जायेगा। केवल ओ॰एम॰आर॰ उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. सभी प्रविष्टियाँ प्रथम आवरण-पृष्ठ पर नीली/काली बाल पेन से निर्धारित स्थान पर लिखें।
- 5. ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दियं वृत्त को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक एवं केन्द्र कोड नम्बर तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰एम॰आर॰ उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न पुस्तिका पर अनुक्रमांक सं॰ और ओ॰एम॰आर॰ उत्तर-पत्र सं॰ की प्रविष्टियों में उपिरलेखन की अनुमति नहीं ले
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचिन स्टाला का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपका ओ०एम०आर० उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाइ। करें। एक से अधिक वृत्तों को गाइ। करने पर अधः
 एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाह हैं. तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शृन्य अंक दिये जाये।
- 11. रफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ॰एम॰आर॰ उत्तर-पत्र परीक्षा कक्ष/हाल में कक्ष निरीक्षक को सींप दं अभ्यः अपने साथ प्रश्न-पुस्तिका तथा ओ॰एम॰आर॰ उत्तर-पत्र की प्रति ले जा सकते हैं।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भाग होगा/होगी।

