CAT 2000 Answer Key

	1	41.	4	81.	4	121.	1	161. 1
2.	3	42.	2	82.	3	122.	4	162. 2
3	1	43.	2	83.	1	123.	4	163. 1
4,	2	44	1	84.	2	124.	3	164. 2
5	4	45	4	85.	1	125.	3	165 . 1
6	2	46.	1	86.	2	126.	4	
7.	4	47.	3	87.	1	127.	1	
8.	1	48.	3	88,	4	128.	2	
9.	3	49.	2	89.	3	129.	1	
10,	3	50.	4	90.	2	130.	2	
11,	2	51.	1	91.	2	131.	1	
12.	3	52.	4	92.	3	132.	4	
13.	1	53.	1	93.	3	133.	2	
14.	3	54.	3	94,	4	134.	4	
15	4	55.	2	95,	2	135.	3	
16.	4	56.	3	96.	2	136.	2	
17.	2	57.	3	97.	2	137.	2	
18.	1	58.	4	98.	3	138.	2	
19.	3	59.	1	99.	3	139.	3	
20.	2	60.	4	100.	2	140.	4	
21.	3	61.	4	101.	1	141.	4	
22.	4	62.	3	102.	3	142.	4	
23.	1	63.	2	103.	3	143.	3	
24,	4	64.	3	104	2	144.	1	
25,	1	65.	4	105.	3	145.	2	
26.	2	66.	4	106.	4	146.	1	
27.	3	67.	2	107.	2	147.	3	
28.	1	68.	3	108.	1	148.	4	
29.	4	69.	3	109.	2	149.	4	
30.	3	70.	2	110.	4	150.	1	
31.	1	71.	1	111.	2	151.	2	
32	2	72	2	112	2	152.	2	
33	4	73	4	113	4	153.	3	
34.	2	74	3	114	1	154	4	
35.	2	75.	2	115.	3	155.	3	
36.	1	76.	2	116.	1	156.	2	
30. 37,	3	70. 77.	2	117	3	156.	4	
38,	4	78.	2	118	4	158.	3	
39.	1	79.	4	119	4	159.	1	
40.	3	80.	2	120.	3	160.	4	
	5		-		5		r	J

CAT 2000 Solutions

1.	The paragraph must start with B and followed by E
1.	and C
2.	B introduces the subject and must be followed by
	"But being educated by photographs."
3.	A introduces the subject "culturally literate"
	followed by "that information."
4.	The introduction is social cost followed by "both
_	parties" mentioned in A.
5.	The best introduction is "simplest strategic
6.	problem" followed by B and then A must precede C. B is the logical sequel to changing colours
0.	mentioned in (1), then A is directly related to B.
7.	"Low light must follow "darkened sheds" hence
	para must start with B.
8.	D introduces a contrary idea and there is a direct
	link with B.
9.	The logical sequence to fraud is suspicion in C
	followed by A and then B.
10.	After the first sentence, we must describe horses and
11	communists, in A and B.
11. 12.	Directly stated in the second paragraph. Third paragraph, second line.
12. 13.	Stated in third last paragraph, second line.
13. 14.	Stated in third last paragraph, "according to Paulo
17.	Freitas"
15.	"By measuring the current that flows through the
	sandwich"
16.	Note that they are all working on different aspects,
	hence 4.
17.	Directly stated in the fourth paragraph.
18.	The first statement is not stated in the passage.
19.	The author is clearly comparing two innovations.
20.	Traditionally, neighbours provide solace to the bereaved family, as stated.
21.	Directly stated in the last paragraph.
21.	"a formally trained person armed with a diploma
	from the university"
23.	First paragraph.
24.	All the given choices re directly stated in the
	passage.
25.	It is stated the county regulations require making
	use of the counseling as a right.
26.	The innovations do not lead to migration of
27.	communities. Third last paragraph: the author explains the notion
21.	of property.
28.	First paragraph: the tradition of <i>guru</i> and <i>shishya</i> ,
	hence 1.
29.	The cassette does not serve the purpose of capturing
	the transient moments.
30.	The tradition is stated to be oral – hence it does so
	without written words.
31.	The question asks why the raga remains greater than
	the artist. That's because performance is valued
32.	greater than permanent record.
32. 33.	The music does not lie mute but is written down in According to the passage, Indian classical music
55.	through a codified format has not produced any
	anough a counted format has not produced any

	noteworthy student or performer.
4.	A comparison is done of two systems of music,
	hence (2) conveys the central idea.
5.	The debate is about building a dynamic national
	agricultural research system, hence (2) is wrong.
6.	By definition, a public good is something that can
	be used by all.
57.	The passage states that both public and private
	sector companies should be involved because of
	their different objectives.
8.	Directly answered in the last paragraph.
9.	Development of newer varieties will lead to
	monocultures, not biodiversity.
0.	Stated in the first paragraph – patents were
	necessary to stimulate inventions.
1.	All the given choices are mentioned in the passage.
2.	It is stated that public and quasi-public institutions
	have a broader and long-term, hence (2).
3.	Third paragraph: "it led art towards the exploration
	of the subconscious mind"
4.	Same as above – it was not part of the conservative
	trend.
5.	It is stated that some artists have taken it to the point
	of extinction, hence (1).
6.	Middle of the passage – points of affinity with the
	more mystically oriented of the major sources.
7.	The passage says, "Like all solutions" hence we
	infer (3) which says it has not taken the path of
	politics or art.
8.	"the idiom is based on the lyric play of forms"
9.	Last paragraph: "it is an art that points up the loss of
	a shared language of signs in society."
50.	All the choices are stated in the passage.
51.	Since the images are conflicting, the first word
	should be "reconcile" and then decide goes with
	reconcile than understand.
52.	Since the sentence has a negative tone, the word
	should be "touts" who do not care for the poor.
3.	Morals goes with manners (idiom) and then
	recurrent theme is better than story.
54.	The best choice is spiraling prices and soaring crime
	rates.
5.	One eye is kept on the future, yet contemporary
	popular art is promoted.
6.	For a triangle the sum of its any two sides is always
	greater than the third side (5,5,4), (3,5,6), (6,6,2),
	(4,4,6) all possible sides of the triangle.
	So triangles are four in number.
57.	N = $(1421 \times 1423 \times 1425)/12$ The remainder of each
	term will be as
	$5 \times 7 \times 9$, which when divided by 12 leaves the
	remainder 3.
0	Therefore option 3 is correct.
8.	Between 100 to 200, there are total of 33 numbers
	that are divisible by 3. Tatal number of odds among them $= 16$, but the
	Total number of odds among them = 16, but the numbers $(105, 147, 180)$ are divisible by 7
	numbers (105, 147, 189) are divisible by 7. Therefore x will be = $16 - 3 = 13$.
9 .	The product of 2 and 5 will give the only possible
	zero.
50.	The difference of these two numbers will be
	completely divided by <i>n</i> . Therefore 1535 is divisible
	by <i>n</i> , and hence option 4 is correct.
51.	In option 4, $(x - y)$ is even, and any number

1		1	
	multiplie d by an even number is always even.		also a square. Then the equation of the other side
62.	Focus on only the last four digits. For the number to		will be $y + x = -1$.
	be odd, it has to end in 1, 3, 5, 7 or 9.	77.	Area = $1 + 1 + 2$ half squares = 3 .
	When the number starts with 635, total possible case	78.	$x^2 + y^2 = 0.1,$
	$= (1 \times 9 \times 9 \times 4 + 9 \times 1 \times 9 \times 4 + 9 \times 9 \times 1 \times 4 + 9 \times 9 \times 9 \times 1)$		$(x-y)^2 = 0.2^2;$
	$= 21 \times 81 = 1701$		$x^2 + y^2 - 2xy = 0.04 \; ,$
	Similar number of cases when it starts with 674.		2xy = 0.1 - 0.04 = 0.06,
	Total cases = $1701 \times 2 = 3402$.		So $xy = 0.03$, So $x = 0.3$, $y = 0.1$.
63.	f(0,2) = 2 + 1 = 3	79.	Triangle ABC is isosceles, if $\angle DAE = x$, $\angle CBD =$
	f(0,1) = 2 f(1,2) = f(0, f(1,1))		180-2 <i>x</i> .
	f(1,1) = f(0,f(1,0)) = f(0,2) = 3,		The remaining angle of the triangle will be
	So f(1,2) = f(0,3) = 4.		180 - (2x + 2x) = 180 - 4x.
64.	1982 in base 12 will be		If we look at the 3 angles forming at point C, we get
04.	$1982 = 1728 \times 1 + 144 \times 1 + 12 \times 9 + 1 \times 2 = 1192.$		the third angle as $3x (180 - x - (180 - 4x))$.
(5	Let x be number of posts. $120 \times 1 + 144 \times 1 + 12 \times 9 + 142 - 1192$.		But that angle and the $\angle AED$ are the same = 3x.
65.			Because of the symmetry, $\angle ADE = 3x$.
	The length of the property will be $(x - 1)$.		Adding all the internal angles of ADE, we get
	Number of posts required at 8 m intervals is $8(x - 1)$		Adding an the internal angles of ADE, we get $x + 3x + 3x = 180$. So $x = 25^{\circ}$.
	1). If the posts are placed at 6 m interval, he would $16(1 + 1) = 16(1 + 1) $	- 00	$x^{3} - ax^{2} + bx - a$ can be rewritten as
	need $6(x - 1 + 5)$ or $6(x + 4)$ posts.	80.	
	And the distance covered is the same.		$x(x^2 + b) - a(x^2 + 1).$
	Hence $8(x - 1) = 6(x + 4)$.		In case $b = 1$, then the equation becomes
	Solve for x ; $x = 16$ and the distance is 120.		$(x-a)(x^2+1).$
66.	Let <i>c</i> be cone vol.		We know for sure that the second term will have
	So $c + 300 = 2 (c - 200)$;		imaginary roots.
	c + 300 = 2c - 400; c = 700.	81.	$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$
	So cylinder = $700 + 500 = 1200$ litres.		$= 72 \left[55^2 - 55.17 + 17^2 - 72^2 \right]$
67.	Heaviest + second heaviest = 121 kg ,		$= 72[17^*(55+72)-55.17+17^2],$
	lightest + second lightest = 110 kg .		so divisible by 3 and 17.
	Total weight of all $4 = 121 + 110 = 231$ kg	82.	$S1 + 2S1 + 2^2S1 + \dots 2^6S1$
	Weight of all $5 = (110 + 112 + 113 + 114 +121) /$		$= \pi \times 1/8 \times S1 [2^7 - 1]/(2 - 1) = \pi/8,$
	4 = 1156 kg. [each is counted 4 times in above, so		So $S1 = \pi/(8 \times 2^7) = \pi/1016$.
	weight of all $5 = 1156/4 = 289 \text{ kg}$	83.	Because of the symmetry of the figure, it should be
	Weight of median = $289 - 231 = 58$ kg.	0.5.	equilateral
	Both heaviest and 2nd heaviest > 58 kg.	84.	Another way of saying that $g(n)$ are all
	And also they must add up to 121.	04.	$g(1) = f(f(1)) + 1$ for $n \ge 1$, so it has to be even.
	It only fits in when weights are 60, 61 or 59, 62.	85.	Here the number of jumps required will always be
68.	Distance travelled = $(19.5 \times 100) / (130 \times 10)$	05.	even (4 jumps in case it is not going back to any
	= 150 km.		vertex, 6 if it regresses once and so on) $-2n - 1$ will
69.	The given equation can be re written as		always be odd.
	$\frac{1}{2} [1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots - \frac{1}{2}]$		It is not possible that the number of jumps is odd, so
	$= \frac{1}{2} [1 - \frac{1}{2}]$		the answer is zero.
	= 10/21.		Or
70.	Since $x > 2$, $-x < -2$ and since $y > -1$, $2y > -2$.		
70.	Hence the option is 2.		In order to reach E from A, it can walk clockwise as
71.	There can be 6 possible arrangements		well as anticlockwise. In all cases, it will have to take
/1.	1) W B W B W R 2) W B W R W B		odd number of jumps from one vertex toanother. But
	3) W R W B W B 4) B W B W R W		the sum will be even. In simple case, if $n = 4$,
	5) W K W B W B 4) B W B W K W 5) R W B W B W 6) B W R W R W		then $a_n = 2$. For $a_{2n-1} = 7$ (odd), we cannot reach the point E.
70			
72.	The data is not linear. So check (b).	86.	Let number of direct roads between A and B be x,
	Let the equation be $y = a + bx + cx^2$. Putting the values of x and y, we get the following	00.	that between B and C be y and that between A and C
	result.		be z.
	\Rightarrow 4 = a + b + c, 8 = a + 2b + 4c and 14 = a + 3b + 9c.		The equations are $x + z + y(x + z) = 56$
	\Rightarrow 4 = a + b + c, 8 = a + 2b + 4c and 14 = a + 3b + 9c. Solving these, we get a = 2, b = 1 and c = 1.		Or $(x + z)(y + 1) = 56$ 1
	Solving these, we get $a = 2$, $b = 1$ and $c = 1$. So the equation is $y = 2 + x + x^2$.		Of $(x + z) (y + 1) = 30 - 1$ (x - z) (x - y) = 10 - 2
	b = c + x + x		(x-z)(x-y) = 10 2 Now substitute values of z in these equations from
73.	a_1 can be written as $(6 \times 2^0 - 5)$.		
15.			the options and see which yield integer values of x
	a_2 can be written as $(6 \times 2^1 - 5)$.		and y. Only for $z = 2$, $y = 7$ and $y = 2$, do we estimate both
	So $a_{100} = (6 \times 2^{99} - 5)$		Only for $z = 3$, $x = 7$ and $y = 2$, do we satisfy both the equations with integer values
74.	D = 0.a1a2a1a2 = (a1a2) / 99,	05	the equations with integer values.
	i.e. the number has to be a multiple of 99.	87.	(A,B),2) = /(A+B/2, 2) = A + B.
	Therefore option 3.		Hence option 1 is the correct answer.
75.	Let the numbers be A, A+1, A+2, therefore	88.	From the earlier question, $\@(A,B),2) = A + B$
	(5A+10) / 5 = A + 2 = n		and @ (A+B, C) is the average of A, B and C.
	and $(7A + 21)/7 = A + 3 = n + 1$.	89.	Substitute $x = 2$ in the formula and we get $f(2) = 1/3$.
76.	Diagonals intersect at right angles, so rhombus is		Similarly we get $f^2(2) = 3/4$, $f^3(2) = 4/7$, $f^4(2) = 7/11$,

	\$(0) 11/10		
	$f^{5}(2) = 11/18$.		breaking rule, and entry into the next round is not
00	So the required value is $1/18$.	101	assured. We can have a situation where the points by teams
90.	We can generalise, $f^n(-x) = n - x$.	101	
	Substituting, we get expression as $(n + 1 - n) + (n - 1) + (n - 1) = 0$		in descending order are 7, 6, 2, 2, 2, 2, 2, 2 - in which case two of the teams also qualify - with 1 win.
91.	(r - 1 - r) + (r - r) + (r + 1 - r) = 0 These problems can be solved by referring to the		Such a thing is not possible.
91.	following table:	102	$8 \Rightarrow 4 \Rightarrow 2$ - there will be 3 rounds.
	For every value of x , write down table of $f(x)$.	102	$3 \rightarrow 4 \rightarrow 2$ - there will be 3 founds. Options 1, 2 and 3
	For this question it will be, -2 , -1 , 0 , 1 , 2	105	\Rightarrow group 1 and group 2 results can vary.
	f(x) will be 1, 1, 1, 1, 1.	104	After the end of the first instruction, we will have 3
	For $f(-x)$ the values can be found be referring	104	litres in A and 2 in C.
	previous table $-1, 1, 1, 1, 1$.		At the end of it we know that A has only 1 liter. So
	In this question, $f(x) = f(-x)$.		in the second step, something must happen that
92.	Here the tables are –		leads to 2 litres more being taken out of A.
	<i>x</i> : -1, 0, 1		If we look at the second option, then we know that
	f(x) = 1, 0, 2.		liquid is being transferred to B from C.
	f(-x): 2, 0, 1;		So, then C will be empty again and ready to receive
	-f(-x) - 2, 0, -1.		2 more litres from A.
	Here $3(f(x) = 3 \times 2 = 6.$	105	Once A has been drained – 1 liter of water has left
	And $6 \times f(-x) = 6 \times 1 = 6$ are equal.		the system. In all now only 4 litres remain.
	So answer is 4.		If all 4 litres are in A, then at the end of it, 0 litres
93.	Here the tables are		must be in both B and C.
	x: -3,-2,-1,0,1,2,3,	106	4 th option definitely gives us the positive value.
	f(x): 2,1,0,0,0,0,0,-1,-2,	107	If both x & y are -1 , $f(x, y) = (-1-1)^2 = 4$,
	f(-x): -2, -1, 0,0,0,0,0, 1, 2; -f(-x): 2, 1, 0,0,0,0,0, -2, -1.		g(x, y) = -(-1-1) = 2, f(x, y) > g(x, y).
	So we get $f(x) = -f(-x)$.	100	Hence option 2 is valid. The condition can only be possible when <i>n</i> is even.
	So option 3 is correct.	108 109	Total % ge of people below 35 years of age = 64.75 .
94.	Since the numbers are distinct, none of them are	109	Therefore total number of people = 617.76 m.
	equal. Hence the possibilities are $x > y > z$;		Total number of females = $617.76 \times 0.3 \times 0.96/1.96$
	y > z > x and $z > y > x$.		= 90.8 m.
	Check the options taking all the three cases.	110	Steps are –
95.	Same as above.	110	1. Entire lot from $A - B$.
96.	Same as above.		2. Both 2-3 from B - A
97.	(1) (1) (1) $(1)^{2}$		3. Both 3 from A - B
91.	$f \left[x + \frac{1}{2} \right] = x^2 + \frac{1}{2} f \left[x + \frac{1}{2} \right] = \left[x + \frac{1}{2} \right] - 2$		
97.	$f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2} f\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right)^2 - 2$		4. Both 2 from A –B.
91.	$f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} f\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right) - 2$ $\implies f(y) = y^{2} - 2 \text{ where } y = x + \frac{1}{2},$		4. Both 2 from A –B. So in all 4 steps.
21.	$f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2} f\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right) - 2$ $\implies f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$	111	4. Both 2 from A –B.So in all 4 steps.In circle will give us altitude and so similar triangles
<i></i>	$f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} f\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right) - 2$ $\implies f(y) = y^{2} - 2 \text{ where } y = x + \frac{1}{x},$ $\implies \text{Now for } x > 0 \ y = x + \frac{1}{2} > 2$	111	4. Both 2 from A –B.So in all 4 steps.In circle will give us altitude and so similar triangles will give ratio of PR/QR
31.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$		 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns
31.	$f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} f\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right) - 2$ $\implies f(y) = y^{2} - 2 \text{ where } y = x + \frac{1}{x},$ $\implies \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} < -2$.	111 112	 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid
31.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$ for $x < 0 \ y = x + \frac{1}{x} \le -2$.	112	 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$ for $x < 0 \ y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y, where $ y \ge 2$.		 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$ for $x < 0 \ y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y, where $ y \ge 2$. The rule for divisibility by 4 is that the last two	112 113	 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$ for $x < 0 \ y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y, where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4.	112	 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives <i>x</i> < 0 <i>x</i> > -3 or <i>x</i> > 0 and <i>x</i> < -3
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 \ y = x + \frac{1}{x} \ge 2$ for $x < 0 \ y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y, where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we	112 113	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits.	112 113	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36,	112 113	 4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives <i>x</i> < 0 <i>x</i> > -3 or <i>x</i> > 0 and <i>x</i> < -3 B gives <i>x</i> > 0 and <i>x</i> > 3 or <i>x</i> < 0 and <i>x</i> < -3. Either way in statement B, <i>x</i> will always be > 3. So statement B gives a definite answer
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64.	112 113 114	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$	112 113 114 115	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus$ $1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without	112 113 114	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus$
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$.	112 113 114 115	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required.
	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without	112 113 114 115 116	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches.	112 113 114 115 116	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$;
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds.	112 113 114 115 116 117	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will.
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The	112 113 114 115 116 117	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points,	112 113 114 115 116 117 118	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x < 0 and x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4.
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the	112 113 114 115 116 117	4. Both 2 from A −B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, x will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that 0 ⊕ 1 = 0 unless we know that 1 ⊕ 0 = 0 ⊕ 1 Only A is required. Profit % does not depend on number of shares Both required as P + Q + P ∩ Q = 1500; Q = 1000 P ∩ Q = 100 If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams.	112 113 114 115 116 117 118	4. Both 2 from A −B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that 0 ⊕ $1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as P + Q + P ∩ Q = 1500; Q = 1000 P ∩ Q = 100 If a/b = d/e then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight.
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams. But we cannot have 5 teams with 6 points (then sum	112 113 114 115 116 117 118	4. Both 2 from A −B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight. For the arrival time we should have information
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams. But we cannot have 5 teams with 6 points (then sum will be greater than 28). In this case also entry is	112 113 114 115 116 117 118	4. Both 2 from A −B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that 0 ⊕ $1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as P + Q + P ∩ Q = 1500; Q = 1000 P ∩ Q = 100 If a/b = d/e then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight.
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams. But we cannot have 5 teams with 6 points (then sum will be greater than 28). In this case also entry is assured.	112 113 114 115 116 117 118	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3 . So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight. For the arrival time we should have information regarding he time zone difference of Mumbai and No- man's-land.
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams. But we cannot have 5 teams with 6 points (then sum will be greater than 28). In this case also entry is assured. But with a score of 5, we can have 5 teams with 5	112 113 114 115 116 117 118	4. Both 2 from A −B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, ktl will always be > 3. So statement B gives a definite answer Both required because we cannot conclude that 0 ⊕ $1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as P + Q + P ∩ Q = 1500; Q = 1000 P ∩ Q = 100 If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight. For the arrival time we should have information regarding he time zone difference of Mumbai and No- man's-land. Statement I implies X>Y, or X>Z, or X>Y and Z
98.	$\Rightarrow f(y) = y^2 - 2 \text{ where } y = x + \frac{1}{x},$ $\Rightarrow \text{Now for } x > 0 y = x + \frac{1}{x} \ge 2$ for $x < 0 y = x + \frac{1}{x} \le -2$. Thus $f(y) = y^2 - 2$ for all y , where $ y \ge 2$. The rule for divisibility by 4 is that the last two digits should be divisible by 4. But we have a further limitation in this case, that we can only use these 6 digits. The numbers thus possible are 12, 16, 24, 32, 36, 52, 56 and 64. For each of these 8 numbers, there are $4 \times 3 \times 2 =$ 24 combinations of the remaining digits without repetition. So the answer is $24 \times 8 = 192$. 28 + 28 in round robin, 7 in next rounds. Total = 63 matches. There are a total of 28 points in each group. The highest that any team can get is 7. Here qualification is certain. We can have a case where 4 teams have 6 points, the balance 4 points being distributed amongst the remaining 4 teams. But we cannot have 5 teams with 6 points (then sum will be greater than 28). In this case also entry is assured.	112 113 114 115 116 117 118 119	4. Both 2 from A –B. So in all 4 steps. In circle will give us altitude and so similar triangles will give ratio of PR/QR Put together 2 equations and 2 unknowns Both statements independently mean that C is mid point of BD. Infinite combinations of difference 6 and pairs divisible by 6 are possible. A gives $x < 0 x > -3$ or $x > 0$ and $x < -3$ B gives $x > 0$ and $x > 3$ or $x < 0$ and $x < -3$. Either way in statement B, $ x $ will always be > 3 . So statement B gives a definite answer Both required because we cannot conclude that $0 \oplus 1 = 0$ unless we know that $1 \oplus 0 = 0 \oplus 1$ Only A is required. Profit % does not depend on number of shares Both required as $P + Q + P \cap Q = 1500$; $Q = 1000 P \cap Q = 100$ If $a/b = d/e$ then they will not intersect otherwise they will. Since everything will depend on the values of a, b, d and e, the answer is 4. Here, by combining the two statements, we get the duration of the flight. For the arrival time we should have information regarding he time zone difference of Mumbai and No- man's-land.

	Combining both statements, we can get Y>X>Z or			growth rate
	X>Y>Z. Hence, Z is the smallest.		127	Clear from the grap
121	Find the difference between FEI in 1998 relative to		128	In 1990, there is 4%
	its FEI in 1997. Hence, for India it is 0.72-1.71=-			So weightage in 19
	0.99. For China it is 4.8-5.96=-1.16. For Malaysia it is 9.92-10.67=-0.75 and for			1991 it becomes 15
	The ill result is $5.82-5.09=0.73$.			is 14.97, in 1994 it Hence, it can be see
	Change in FEI in 1998 relative to its FEI in 1997.			production was in 1
	For India, percentage=		129	Find out the weight
	-099		14/	For manufacturing
	$\times 100 = -57.89$			quarrying it is 16, f
	1.71			14.5 and for chemic
	-0.75 100 7			approximately 77. I
	for Malaysia, percentage= $\frac{-0.75}{10.67} \times 100 = -7$.0.		Hence, 77-60=17 v
	For Thailand, change is 14.34%			increase.
	For China and Korea, changes are -19.76% and		130	Since the index of t
	15.74% respectively.			1994 is 50% more t
	Hence, we can see that the country with the largest			Now total weightag
	change in FEI in India.			quarrying, electrica approximately 77. S
122	Since the absolute values are not given, it cannot be			In 1989, it was 100
	calculated.			So 73-40=33, which
123	Assume of GDP of India for 1997 to be x.		131	As from the table, t
	$0.72 \times 102x$ 0.7244			to 1997-98 are 5.1,
	For 1998, India's FEI= $\frac{0.72 \times 102x}{100} = 0.7344x$			Therefore, highest
	And foreign equity inflows for 1997=1.71x			is in 1994-95
	For China, assume GDP as y. Then FEI in 1998		132	The highest growth
	· · · · · · · · · · · · · · · · · · ·			$rate = \frac{7.6 - 6.3}{1000} \times 1000$
	$=\frac{107y}{100} \times 4.8 = 5.136y$. And FEI in			$rate = \times 6.3$
	100		133	From the tables giv
	1997=5.96y.		155	Import of raw mate
	For South Korea, let GDP be z. FEI in			Capital goods = 17 .
				Given imports=Rav
	$1998 = \frac{95y}{100} \times 2.5 = 2.375z$. and FEI = 2.16z.			So import = 10.1 S
	100			
	we can see that India and China were lower in 1998			
	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998			Hence, $14.2 \text{ S} = 10$
	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997			Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{100000000000000000000000000000000000$
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence,		134	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{4}$
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x.		134 135	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of stu
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore 0.72 <u>x</u>			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unrepresent
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore			Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore 0.72 <u>x</u>			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu- do not fit into that a and hence, unrepres- bloated ratios. (a) is gross enrolment ration not the focus of our concerned with demi-
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 = $\frac{10x}{x}$		135	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unrepresent bloated ratios. (a) is gross enrolment ratt not the focus of our concerned with deministry given data
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$			Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unrepresent bloated ratios. (a) is gross enrolment ratt not the focus of our concerned with dem given data The Central Bank c
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India)		135	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank co 'monetisation' to the
124	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10\times0.72)/4.8=1.5$		135	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with dem given data The Central Bank co 'monetisation' to the 'boss', it only advise
	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India.		135	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of study do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advisis conclusion in any w
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph.		135	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advise conclusion in any w observations, but th answer.
	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four		135	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advis conclusion in any w observations, but th answer.
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence.		135 136	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu- do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den- given data The Central Bank c 'monetisation' to the 'boss', it only advise conclusion in any wo observations, but the answer. 'Manoeuvrability' ichanges' in (d). (c)
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it		135 136	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu- do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den- given data The Central Bank c 'monetisation' to the 'boss', it only advise conclusion in any wo observations, but the answer. 'Manoeuvrability' ichanges' in (d). (c) (a) makes no infere
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10\times0.72)/4.8=1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it		135 136	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advise conclusion in any w observations, but th answer. 'Manoeuvrability' ic changes' in (d). (c) (a) makes no infere be true. There is inst
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it		135 136 137	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu- do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den- given data The Central Bank c 'monetisation' to the 'boss', it only advise conclusion in any wo observations, but the answer. 'Manoeuvrability' in changes' in (d). (c) (a) makes no infered be true. There is insistent
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10\times0.72)/4.8=1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it is 16.1, now in 1991 there is 1% negative growth in manufacturing. So 1% of 21.8 becomes 0.218. Thus, 21.8-0.218=21.582. Similarly, for mining and		135 136	Hence, 14.2 S = 10 Hence, $\frac{S}{GFA} = \frac{1}{2}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advise conclusion in any w observations, but th answer. 'Manoeuvrability' changes' in (d). (c) (a) makes no infere be true. There is ins sounds rather farfet (a) and (d) cover th
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10\times0.72)/4.8=1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it is 16.1, now in 1991 there is 1% negative growth in manufacturing. So 1% of 21.8 becomes 0.218. Thus, 21.8-0.218=21.582. Similarly, for mining and quarrying it is 15.44. For electrical it is 11.88 and		135 136 137	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advise conclusion in any w observations, but th answer. 'Manoeuvrability' if changes' in (d). (c) (a) makes no infere be true. There is ins sounds rather farfet (a) and (d) cover th intentions, which low
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it is 16.1, now in 1991 there is 1% negative growth in manufacturing. So 1% of 21.8 becomes 0.218. Thus, 21.8-0.218=21.582. Similarly, for mining and quarrying it is 15.44. For electrical it is 11.88 and for chemical it is 16.21. Now we add the figures for		135 136 137	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advise conclusion in any w observations, but th answer. 'Manoeuvrability' if changes' in (d). (c) (a) makes no infere be true. There is ins sounds rather farfet (a) and (d) cover th intentions, which lo
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10\times0.72)/4.8=1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it is 16.1, now in 1991 there is 1% negative growth in manufacturing. So 1% of 21.8 becomes 0.218. Thus, 21.8-0.218=21.582. Similarly, for mining and quarrying it is 15.44. For electrical it is 11.88 and for chemical it is 16.21. Now we add the figures for 1991 of all the sectors which comes to		135 136 137	Hence, $14.2 \text{ S} = 10$ Hence, $\frac{S}{GFA} = \frac{1}{4}$ Clear from the table If the number of stu do not fit into that a and hence, unreprese bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advis conclusion in any w observations, but th answer. 'Manoeuvrability' if changes' in (d). (c) (a) makes no infere be true. There is ins sounds rather farfet (a) and (d) cover th intentions, which lo
125	we can see that India and China were lower in 1998 than in 1997, and South Korea is higher in 1998 than in 1997 Let x be the foreign equity inflow of India. Hence, China's foreign equity inflow is 10x. Now in 1998, FEI in India was 0.72, therefore $0.72 \frac{x}{GDP \text{ of India}}$ Similarly, FEI in China in 1998 was 4.8, therefore 4.8 $= \frac{10x}{GDP \text{ of India}}$ Hence, (GDP of China/GDP of India) $=(10 \times 0.72)/4.8 = 1.5$ Thus, China's GDP is 50% higher than that of India. Clear from the given graph. First find out the growth in 1990 of the all four sectors. So manufacturing 9% of 20=1.8. Hence. 20+1.8=21.8. Similarly, for mining and quarrying it is 15.6. For electrical, it is 10.85 and for chemical it is 16.1, now in 1991 there is 1% negative growth in manufacturing. So 1% of 21.8 becomes 0.218. Thus, 21.8-0.218=21.582. Similarly, for mining and quarrying it is 15.44. For electrical it is 11.88 and for chemical it is 16.21. Now we add the figures for		135 136 137	Hence, $GFA = 4$ Clear from the table If the number of stu do not fit into that a and hence, unrepres bloated ratios. (a) is gross enrolment rat not the focus of our concerned with den given data The Central Bank c 'monetisation' to th 'boss', it only advis conclusion in any w observations, but th

	growth rate
27	Clear from the graph
28	In 1990, there is 4% growth. Hence, 4% of 15=0.6
	So weightage in 1990 becomes 15.6. Similarly, in
	1991 it becomes 15.44, in 1992 it is 15.6, in 1993 it
	is 14.97, in 1994 it is 16.16.
	Hence, it can be seen that the lowest level of
	production was in 1993.
29	Find out the weightage for all the sectors for 1994.
	For manufacturing it is 25.54, for mining and
	quarrying it is 16, for electrical it comes out to be
	14.5 and for chemical it is 19.5. The total comes to
	approximately 77. In 1989, it was 60.
	Hence, 77-60=17 which is approximately 25%
••	increase.
30	Since the index of total industrial production in
	1994 is 50% more than in 1989, it becomes 150.
	Now total weightage for manufacturing, mining and quarrying, electrical and chemical in 1994 is
	approximately 77. So 150-77=73.
	In 1989, it was 100-60=40.
	So $73-40=33$, which is approximately 87.5% .
31	As from the table, the deficit intensity from 1993-94
51	to 1997-98 are 5.1, 6.3, 7.6, and 5.
	Therefore, highest growth rate is 7.6-6.3=1.3 which
	is in 1994-95
32	The highest growth
-	
	$rate = \frac{7.6 - 6.3}{6.3} \times 100 = 23.5\%$
33	From the tables given,
	Import of raw material=10.1×Sales (S) import of
	Capital goods = 17.6×Gross fixed assets (GFA)
	Given imports=Raw material + Capital goods
	So import = 10.1 S +17.6 GFA So import = 14.2 S
	So import = 14.2 S Hence, 14.2 S = 10.1 S + 17.6 GFA
	Hence, $\frac{S}{GFA} = \frac{17.6}{4.1} = 4.3$
	GFA 4.1
34	Clear from the table
35	If the number of students enrolled for a certain class
	do not fit into that age interval, they are in excess
	and hence, unrepresentative, thus resulting in
	bloated ratios. (a) is wrong because the definition of
	gross enrolment ratio itself is flawed. Attendance is
	not the focus of our argument. We are also not
	concerned with demographic trends, but only with
36	given data The Central Bank can only express 'reservations' on
50	'monetisation' to the government. It cannot be the
	'boss', it only advises (c) does not support the
	conclusion in any way. (a) and (d) are specific
	observations, but they do not contribute to our
	answer.
37	'Manoeuvrability' is linked to 'flight direction
	changes' in (d). (c) just vaguely mentions 'faster'.
	(a) makes no inference, as such. It may or may not
	be true. There is insufficient evidence to infer (d), it
	sounds rather farfetched
39	(a) and (d) cover the government's honourable
	intentions, which look best on paper. (b) discusses
	one feasibility factor. (c) is the best choice as it
	shows how the project has reached the
40	shows how the project has reached the implementation stage from the pilot stage. (a) would only in more cars per family.(b) and (c)

	defeat Athens' purpose as citizens devise ingenious		Private factories=90.3, the answer= $\frac{3876}{90.3} = 43$
	methods to maintain status quo both in terms of		Private factories=90.3, the answer= $\frac{1}{90.3}$ = 43
	number of cars and congestion.		90.5
141	Only (d) connects the recommendation directly to		Short Cut: $0.64 \div \frac{60}{0.903} < \left(\frac{2}{3}\right) \times 60 = 45$
	the cause 'rising tensions' in prisons and not to any		Short Cut: $0.04 \div \frac{-}{0.903} < \frac{-}{3} \times 60 = 43$
	marginal political factors. (a), (b) and (c) may have		
	contributed, but peripherally, to the minister's	151	Value added
	decision.		Value added per employee = $\frac{1}{\text{Employment}}$
142	(d) is a summary for the general words 'varied use'		¥ ¥
	'common basis' pertaining to the 'symbol' in the	152	Gross outpur
	geographical and historical context. (c) does not		Compound productivity = $\frac{\text{Gross output}}{\text{Fixed capital}}$
	present the complete picture. (a) refuses to divulge		-
	the significance of the umbrella. (b) is wrong as the		Hence, compound productivity for various sectors
	ruler is regarded as the instrument of firmament of		is: Public sector = 0.6 , Central Government = 0.725 ,
1.42	the supreme law		States/Local = 0.47, Central/States/Local = 1.07,
143	This answer goes without guessing. There are two		Joint sector = 1.23 and wholly private = 1.36 .
	parties in the game, and each has its own strategy		Hence, the order should be: Wholly private, Joint,
	and a guess on the opponent's move. (a) involves		Central/State/Local, Central Government, Public
	more of cooperation strategies than game plans. (b)		sector and state/ Local government.
	is competition involving more than two candidates. (d) is about cartels.	153	Calculate the ratios: Value added/employment and
144	(b) does not attack the argument it helps the		value added/fixed capital for the sectors mentioned
144	Association's cause. (c) is pointless, if there isn't		in the choices. The respective values are: Wholly
	adequate consumption. (d) has little to do with the		private 0.9 and 1.25; Joint sector 1.59 and 1.19; Central/State/Local 1.8, 1.28; others 0.92 and 0.75.
	core issue in the argument. But (a) if true, would	154	The number of factories in joint sectors is
	render the cumulative efforts of the Association	154	1.8%=2700, thus the number of factories in Central
	fruitless.		$1.8\% - 2700$, thus the number of factories in Central Government=1% of $(2700 \times 100/1.8) = 1500$. Value
145	Total exports		added by Central Government = 14.1% of 140000
140	= Software export + Hardware export + Peripherals		crore = 19740
	export		
	Hence, Total export as a percentage of IT business		Hence, answer = $\frac{19740}{100}$ = Rs.13.1 crore
	for		Hence, answer $=\frac{19740}{1500} = Rs.13.1$ crore
	668	155	Cost in shift operation = 800+1200= Rs. 2000
	$1994 - 95 = \frac{668}{2041} \times 100 = 32.7\%$		Variable cost for 40 units = $Rs. 3600$
			Approximate average unit cost for July
	$for 1995-96 = \frac{775}{2886} \times 100 = 26.8\%$		$=\frac{3600+2000}{Rs.140}$
	$101993-90 = \frac{100}{2886} \times 100 = 20.8\%$		== Rs.140
	1202	1.50	
	$for 1996-97 = \frac{1383}{3807} \times 100 = 36\%$	156	The only change for change of production from 40
	3807		to 41 is the variable cost which is Rs. $(3730-3600) =$ Rs.130.
		157	As the graph is an increasing function graph, MC
	for 1997-98 = $\frac{1970}{7024} \times 100 = 39\%$	157	always increases with increase in the number of
	5031		units produced.
	for 1998-99 = $\frac{2672}{100} \times 100 = 44\%$	158	Total sales revenue = $Rs.(150\times40)$ = $Rs.6000$
	$tor 1998-99 = \frac{100}{6052} \times 100 = 44\%$	150	Total production $\cos t = Rs. (3600+2000) = Rs. 5600$
1.1.5	6052		So profit = $Rs/400$
146	Percentage growth for 1995-96=41%,	159	Profit is highest when there is no second shift
1.45	1996-97=32%, 1997-98=32%, 1998-99= 20%	160	For production level in the range of 0-30 units, AC
147	(a) and (b) can be easily eliminated from the given	100	is always greater than Rs. 100 whereas MC is
1.40	table.		always less than or equal to Rs. 100.
148	Total IT business in hardware (Export + Import) shows a continuous increase from 1994-95 to 1997-	161	Since yellow is between green and red, it should be
	98 and then declines in 1998-99.		house number 2 or 3. Also green is adjacent to blue
149	In this question there are two activities – hardware		house, it should have blue and yellow house on
147	and peripherals, hence for year X to dominate year		either side. Hence, the following table can be
	Y, at least one activity in year X has to be greater		constructed
	than that in year Y and the other activity in year X		House number 1 2 3 4
	cannot be in year Y. In (a), (b) and (c) while		Colour Blue Green Yellow Red
	hardware dominates in one year, the peripherals		Occupant X Z
	dominate in the other.		Since X does not live adjacent to Z, it has to live in
150	If the total number of factories is 100, then the total		blue house.
	number of employees	162	The following table can be created using the data
	$=60 \times 100 = 6000$ of which 64.6% = 3876 work in		given.
	wholly private factories. Since the number of wholly		Peros P M U T X
			n .
			Colo Blue Yello Red Black

					1						
	ur	and	W	and							
	choic	Red		Blue							
	e										
	Stays					Hotel					
	in										
	Does	Palac		Palac	Palac						
	not	e		e	e						
	stay										
	in										
	Since X	stays in h	otel and	P or U o	r T canno	ot stay in					
	a palace,					-					
163	The ratio				ks of var	ious					
	subjects	•									
	subjects is: Management : Mathematics : Physics : Fiction										
	= 4 : 3 : 2										
	Since the		re to be i	naximize	ed. the nu	umber of					
	books the										
	is manag										
	The ratio					cuon.					
	Managen										
	Mathema										
	This mea				lanagem	ent and					
	fiction be										
	while a c										
	book in t										
	Ramesh	ne railo (JII: ZW	ni give /	points, I	iciice,					
	books to										
	mathema	tics 2, pr	iysics 5 a	ind fictio	n 2, a tot	al of 22					
	points.										
164	By trial a				ferent						
	combinat										
	180. The	minimu	Like $20 \text{ kg} \times 2 + 10 \text{ kg} \times 4$, the cost would be Rs. 180. The minimum cost comes in the case of 10 kg								
	\times 8, i.e. Rs. 160.										
	× 8, i.e. I	Rs. 160.				110 118					
	× 8, i.e. I Direction					_					
	1 () () () () () () () () () (n for stu	dents: 7	The table	for quest	ions 126					
	Direction to 130 in and it sho	n for stu CAT 20 ould be re	dents: 7 01 Bulle ead like t	The table tin has so he follov	for quest ome misp ving.	ions 126					
	Direction to 130 in	n for stu CAT 20 ould be re	dents: 7 01 Bulle ead like t	The table tin has so he follov	for quest ome misp ving.	ions 126					
	Direction to 130 in and it sho	n for stu CAT 20 ould be re tion Tec	dents: 7 01 Bulle ead like t hnolog I	The table tin has sc he follov ndustry	for quest ome misp ving. in India	ions 126					
	Direction to 130 in and it sho Informa	n for stu CAT 20 ould be re tion Tec	dents: 7 01 Bulle ead like t hnolog I	The table tin has sc he follov ndustry	for quest ome misp ving. in India	ions 126					
	Direction to 130 in and it sho Informa	n for stu CAT 20 ould be re tion Tec are in n	dents: 7 01 Bulle ead like t hnolog I pillion U	The table tin has so he follov ndustry S dollars	for quest ome misp ving. in India	tions 126 rints					
	Direction to 130 in and it sho Informa	n for stu CAT 20 ould be re tion Tec are in n 1994	dents: 7 01 Bulle ead like t hnolog I tillion U 1995	The table tin has sc he follow ndustry S dollars 1996	for quest ome misp ving. in India	tions 126 rints					
	Direction to 130 in and it sho Informa (Figures Softw	n for stu CAT 20 ould be re tion Tec are in n 1994	dents: 7 01 Bulle ead like t hnolog I tillion U 1995	The table tin has sc he follow ndustry S dollars 1996	for quest ome misp ving. in India	tions 126 rints					
	Direction to 130 in and it sho Informa (Figures Softw are	n for stu CAT 20 ould be re tion Tec are in n 1994 -95	dents: 7 01 Bulle ead like t hnolog I nillion U 1995 -96	he table tin has sc he follov ndustry S dollars 1996 -97	for quest ome misp ving. in India i) 1997 -98	ions 126 rints					
	Direction to 130 in and it sho Informa (Figures Softw are Dome	n for stu CAT 20 ould be re tion Tec are in n 1994	dents: 7 01 Bulle ead like t hnolog I tillion U 1995	The table tin has sc he follow ndustry S dollars 1996	for quest ome misp ving. in India	tions 126 rints					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic	n for stu CAT 20 ould be ra tion Tec are in n 1994 -95 350	dents: T 01 Bulle ead like t hnolog I iilion U 1995 -96 490	The table tin has sc he follov ndustry S dollars 1996 -97 670	for quest me misp ving. in India () 1997 -98 950	1998 -98 1250					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor	n for stu CAT 20 ould be re tion Tec are in n 1994 -95	dents: 7 01 Bulle ead like t hnolog I nillion U 1995 -96	he table tin has sc he follov ndustry S dollars 1996 -97	for quest ome misp ving. in India () 1997 -98	ions 126 rints					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts	n for stu CAT 20 ould be ra tion Tec are in n 1994 -95 350	dents: T 01 Bulle ead like t hnolog I iilion U 1995 -96 490	The table tin has sc he follov ndustry S dollars 1996 -97 670	for quest me misp ving. in India () 1997 -98 950	1998 -98 1250					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard	n for stu CAT 20 ould be ra tion Tec are in n 1994 -95 350	dents: T 01 Bulle ead like t hnolog I iilion U 1995 -96 490	The table tin has sc he follov ndustry S dollars 1996 -97 670	for quest me misp ving. in India () 1997 -98 950	1998 -98 1250					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware	n for stu CAT 20 build be re tion Tec are in n 1994 -95 350 485	dents: T 01 Bulle ead like t hnolog I illion U 1995 -96 490 734	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083	for quest me misp ving. 1997 -98 950 1750	ions 126 rints 1998 -98 1250 2650					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome	n for stu CAT 20 ould be ra tion Tec are in n 1994 -95 350	dents: T 01 Bulle ead like t hnolog I iilion U 1995 -96 490	The table tin has sc he follov ndustry S dollars 1996 -97 670	for quest me misp ving. in India () 1997 -98 950	1998 -98 1250					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic	n for stu CAT 20 build be re ion Tec are in n 1994 -95 350 485 485 590	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083 1050	for quest me misp ving. 1997 -98 950 1750 1205	1998 -98 1250 2650 1026					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Hard ware	n for stu CAT 20 build be re tion Tec are in n 1994 -95 350 485	dents: T 01 Bulle ead like t hnolog I illion U 1995 -96 490 734	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083	for quest me misp ving. 1997 -98 950 1750	ions 126 rints 1998 -98 1250 2650					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Expor ts	n for stu CAT 20 build be re ion Tec are in n 1994 -95 350 485 485 590	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083 1050	for quest me misp ving. 1997 -98 950 1750 1205	1998 -98 1250 2650 1026					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Hard ware	n for stu CAT 20 build be re ion Tec are in n 1994 -95 350 485 485 590	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083 1050	for quest me misp ving. 1997 -98 950 1750 1205	1998 -98 1250 2650 1026					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Expor ts	n for stu CAT 20 build be re ion Tec are in n 1994 -95 350 485 485 590	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083 1050	for quest me misp ving. 1997 -98 950 1750 1205	1998 -98 1250 2650 1026					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Hard ware Dome stic Expor ts Perip	n for stu CAT 20 build be re tion Tec are in n 1994 -95 350 485 485 590	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037	The table tin has sc he follow ndustry S dollars 1996 -97 670 1083 1050	for quest me misp ving. 1997 -98 950 1750 1205 201	1998 -98 1250 2650 1026 4					
	Direction to 130 in and it sho Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome	n for stu CAT 20 ould be re tion Tect are in n 1994 -95 350 485 485 590 1777	dents: 7 01 Bulle ead like t hnolog I iillion U 1995 -96 490 734 734 1037 35	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1083 1050 286	for quest me misp ving. 1997 -98 950 1750 1205	1998 -98 1250 2650 1026					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Expor ts Perip herals Dome stic	n for stu CAT 20 ould be re tion Tec are in n 1994 -95 350 485 590 1777 148	dents: 7 01 Bulle ead like t hnolog I 1995 -96 490 734 734 1037 35	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181	for quest me misp ving. 1997 -98 950 1750 1205 201 229	ions 126 rints 1998 -98 1250 2650 1026 4 329					
	Direction to 130 in and it shu Informa (Figures Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Expor ts Perip herals Dome stic Expor	n for stu CAT 20 ould be re tion Tect are in n 1994 -95 350 485 485 590 1777	dents: 7 01 Bulle ead like t hnolog I iillion U 1995 -96 490 734 734 1037 35	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1083 1050 286	for quest me misp ving. 1997 -98 950 1750 1205 201	1998 -98 1250 2650 1026 4					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts	n for stu CAT 20 ould be re ion Tect are in n 1994 -95 350 485 590 1777 148 6	dents: 1 01 Bulle ead like t hnolog I illion U 1995 -96 490 734 1037 35 196 6	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181 14	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19	1998 -98 -98 1250 2650 1026 4 329 18					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Expor ts Perip herals Dome stic Expor ts Traini	n for stu CAT 20 ould be re tion Tec are in n 1994 -95 350 485 590 1777 148	dents: 7 01 Bulle ead like t hnolog I 1995 -96 490 734 734 1037 35	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181	for quest me misp ving. 1997 -98 950 1750 1205 201 229	ions 126 rints 1998 -98 1250 2650 1026 4 329					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts Traini ng	n for stu CAT 20 ould be re ion Tec are in n 1994 -95 350 485 590 1777 148 6 107	dents: 1 01 Bulle ead like t hnolog I illion U 1995 -96 490 734 1037 35 196 6 143	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181 14 185	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19 263	1998 -98 -98 1250 2650 1026 4 329 18 302					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts Traini ng Maint	n for stu CAT 20 ould be re tion Tect are in n 1994 -95 350 485 590 1777 148 6	dents: 1 01 Bulle ead like t hnolog I illion U 1995 -96 490 734 1037 35 196 6	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181 14	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19	1998 -98 -98 1250 2650 1026 4 329 18					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts Traini ng Maint enanc	n for stu CAT 20 ould be re ion Tec are in n 1994 -95 350 485 590 1777 148 6 107	dents: 1 01 Bulle ead like t hnolog I illion U 1995 -96 490 734 1037 35 196 6 143	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181 14 185	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19 263	1998 -98 -98 1250 2650 1026 4 329 18 302					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts Perip herals Dome stic Expor ts Traini ng Maint enanc e	n for stu CAT 20 build be re iton Tec are in n 1994 -95 350 485 590 1777 148 6 107 142	dents: 1 01 Bulle ead like t hnolog I 1995 -96 490 734 1037 35 196 6 143 172	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 111 14 181 14 182	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19 263 221	1998 -98 -98 1250 2650 1026 4 329 18 302 236					
	Direction to 130 in and it shu Informa (Figures) Softw are Dome stic Expor ts Hard ware Dome stic Expor ts Perip herals Dome stic Expor ts Traini ng Maint enanc	n for stu CAT 20 ould be re ion Tec are in n 1994 -95 350 485 590 1777 148 6 107	dents: 1 01 Bulle ead like t hnolog I illion U 1995 -96 490 734 1037 35 196 6 143	The table tin has sche follow ndustry S dollars 1996 -97 670 1083 1050 286 181 14 185	for quest me misp ving. 1997 -98 950 1750 1205 201 229 19 263	1998 -98 -98 1250 2650 1026 4 329 18 302					

g and others							
Total	20	41	2886	3807	50	31	6052
The atten and Rita. in the dat	The	anir	nals und	er Mohar	n's ca	are is	s given
and bisor	n, the	e foll	owing ta	ible can b	e cre	eated	lusing
the data g	givei	1.		-			
Attenda	int	Mo	han	Jack		Rit	a
S							
Animal	s	Lion and		Bear and			
			nther	Panther			
Enclosu	ire	X		Y		Z	
Nam	Mo	oha	Jack	Rita	Sh	ali	Suma
e	n				ni		n
Anim als	s and		Bear and	Deer and	Lic and	1	Deer and
pai er		nth	panth er	bison	bea	ar	bison
Cage	Х		Y	Ζ	Q		Р

165

The data for Mohan and Jack can be filled directly. Similarly, X, Y, Z can be filled directly from data given. The key after filling in these animals is that Z and P have the same pair of animals, the only option is deer and bison.

