CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. In which molecule, dehydrohalogenation forms maximum number of isomers (excluding rearrangement)
(1)

(2)

(3)

(4)

Answer (1)
Sol. (1)
 (cis + trans)

Total 3 isomers are possible
(2) \rightarrow Only 1 product
(3) $\rightarrow 2$ products
(4) \rightarrow Only 1 product
2. Which of the following complex has zero spin only magnetic moment?
(1) $\left[\mathrm{Fe}(\mathrm{F})_{6}\right]^{3-}$
(2) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(3) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(4) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer (3)

Sol. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ has $d^{2} s p^{3}$ hybridisation and $3 d^{6}$ electronic configuration and it has zero unpaired electrons.
3. Which of the following diseases can be cured by equanil drug?
(1) Pain
(2) Stomach ulcer
(3) Depression
(4) Hyperacidity

Answer (3)

Sol. Based on fact
4. If Bohr's Radius of H -atom in Ground state is $0.6 \mathrm{~A}^{\circ}$. Find out Bohr's Radius of 3 rd orbit of He^{+}Ion.
(1) $2.7 \mathrm{~A}^{\circ}$
(2) $0.9 \mathrm{~A}^{\circ}$
(3) $5.4 \mathrm{~A}^{\circ}$
(4) $1.8 \mathrm{~A}^{\circ}$

Answer (1)

Sol. $r \propto \frac{n^{2}}{z}$
$r=\frac{.6 \times n^{2}}{\mathrm{z}}$
$r=\frac{.6 \times(3)^{2}}{(2)}$
$=.3 \times 9$
$=2.7 \mathrm{~A}^{\circ}$
5. Compare the bond order of the following molecules $\mathrm{O}_{2}^{-2}, \mathrm{NO}, \mathrm{CO}$
(1) $\mathrm{O}_{2}^{-2}>\mathrm{NO}>\mathrm{CO}$
(2) $\mathrm{O}_{2}^{-2}>\mathrm{CO}>\mathrm{NO}$
(3) $\mathrm{CO}>\mathrm{NO}>\mathrm{O}_{2}^{-2}$
(4) $\mathrm{NO}>\mathrm{CO}>\mathrm{O}_{2}^{-2}$

Answer (3)

Sol. The correct bond order :
$\mathrm{O}_{2}^{-2} \rightarrow 1$
$\mathrm{CO} \rightarrow 3$
$\mathrm{NO} \rightarrow 2.5$
\therefore Correct order is $\mathrm{CO}>\mathrm{NO}>\mathrm{O}_{2}^{-2}$
6. Which one of the following ores contains sulphide ions?
(1) Malachite
(2) Calamine
(3) Sphalerite
(4) Siderite

Answer (3)

Sol. The chemical formulae of the given ores are
Malachite : $\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$
Calamine : ZnCO_{3}
Sphalerite : ZnS
Siderite : FeCO_{3}
\therefore Sphalerite contains sulphide ions.
7. Statement-I : Ionisation enthalpy difference from B to Al is more than that of Al to Ga .
Statement-II : Ga has completely filled d-orbital.
Then, the correct option is?
(1) Statement-I and Statement-II both are correct.
(2) Statement-I is incorrect and Statement-II is correct.
(3) Statement-I is correct and Statement-II is incorrect.
(4) Statement-I and Statement-II both are incorrect.

Answer (1)

Sol. Ga has similar ionisation enthalpy as Al because of inert pair effect (or completely filled d-orbital in Ga).
8. Which of the following relation is correct?
(1) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ (at constant $\mathrm{T} \& \mathrm{P}$)
(2) $\Delta \mathrm{U}=\Delta \mathrm{H}+\mathrm{nR} \Delta \mathrm{T}$ (for n moles of ideal gas)
(3) $\mathrm{P} \Delta \mathrm{V}=(\Delta \mathrm{n}) \mathrm{RT}$
(4) None of these

Answer (1)

Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \rightarrow$ correct relation at constant $T \& P$
$\Delta H=\Delta U+n R \Delta T$ (for n moles of an ideal gas)
$\mathrm{P} \Delta \mathrm{V}=(\Delta \mathrm{n}) \mathrm{RT}$ [is only true for a chemical reaction at constant T \& P] (not always true)
So, correct answer is (1)
9. Match the correct column.
(A) Thermosetting
(p) Neoprene
(B) Thermoplastic
(q) Polyester
(C) Elastomer
(r) Polystyrene
(D) Fibre
(s) Urea formaldehyde resin
(1) $\mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{s}$
(2) $\mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{q}$
(3) $\mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{p}$
(4) $\mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{q}$

Answer (2)

Sol. - Urea- formaldehyde resin is Thermosetting

- Polystyrene is Thermoplastic

10. At 300 K the ratio of $\mathrm{V}_{\mathrm{rms}}$ and $\mathrm{V}_{\text {avg }}$ of oxygen molecule is $\sqrt{\frac{\alpha \pi}{\alpha+5}}$, the value of α will be
(1) 1
(2) 2
(3) 3
(4) 4

Answer (3)

Sol. $\frac{V_{\text {ms }}}{V_{\text {avg }}}=\frac{\sqrt{3 \pi}}{\sqrt{8}}=\sqrt{\frac{\alpha \pi}{\alpha+5}}$
11. Thermal decomposition products of LiNO_{3} are

$$
\mathrm{LiNO}_{3} \xrightarrow{\Delta} \text { Products }
$$

(1) LiNO_{2} and O_{2}
(2) $\mathrm{LiNO}_{2}, \mathrm{NO}_{2}$ and O_{2}
(3) $\mathrm{Li} 2 \mathrm{O}, \mathrm{NO}_{2}$ and O_{2}
(4) Li, NO and O_{2}

Answer (3)

Sol. Thermal decomposition of LiNO_{3} gives the following products

$$
4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

12. BOD value of drinking water ranges between
(1) $3-5$
(2) $10-13$
(3) 14-17
(4) $20-22$

Answer (1)

Sol. BOD value of drinking water ranges between 3 and 5
13. Match List-I with List-II.
(A) Electro-osmosis
(P) Solvent moves from low concentration to high concentration of solution
(B) Electrophoresis
(C) RO (Reverse osmosis)
(Q) Solvent moves from high concentration to low concentration of solution
(R) Dispersion medium (DM) moves towards oppositely charged electrode across semi-permeable membrane
(D) Osmosis
(S) Colloidal particles move in the presence of electric field. (DP and DM)
(1) $A(R), B(S), C(Q), D(P)$
(2) $A(Q), B(P), C(R), D(S)$
(3) $A(P), B(Q), C(R), D(S)$
(4) $A(P), B(R), C(Q), D(S)$

Answer (1)

Sol. All options are definition based.
(A) Electro-osmosis \rightarrow movement of DM across SPM
(B) Electrophoresis \rightarrow movement of DP and DM towards respective electrodes
(C) RO \rightarrow movement of solvent from high concentration to low concentration
(D) Osmosis \rightarrow movement of solvent from low concentration to high concentration
14. The ratio of de-Broglie wavelength of proton to that of α-particle if they are accelerated through same potential
(1) $2 \sqrt{2}: 1$
(2) $2: 1$
(3) $1: 2 \sqrt{2}$
(4) $\sqrt{2}: 1$

Answer (1)

Sol. $\frac{\lambda \rho}{\lambda \alpha}=\sqrt{\frac{m \alpha \cdot \mathrm{kE}_{\alpha}}{\mathrm{m} \mathrm{\rho} \cdot \mathrm{kE}_{\rho}}}$
$=\sqrt{\frac{4 \mathrm{~m} \rho \cdot 2 \mathrm{~V}}{\mathrm{~m} \mathrm{\rho} \cdot \mathrm{~V}}}$
$=\sqrt{8}: 1$
$=2 \sqrt{2}: 1$
15. Which of the following is produced when propanamide is treated with Br_{2} in presence of KOH ?
(1) Ethyl nitrile
(2) Propanamine
(3) Ethylamine
(4) Propanenitrile

Answer (3)

Sol.

16. Consider the following reaction:

Find the number of $\alpha-\mathrm{H}$ in the major product ' P '?
(1) 7
(2) 8
(3) 9
(4) 10

Answer (4)

Sol.

Number of $\alpha-H$ in 'P' = 10
17.

A and B respectively
(1)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ and

(2)

(3)

(4)

Answer (1)

Sol.

18. The colour of CrO_{5} in ether is
(1) Yellow
(2) Green
(3) Blue
(4) Orange

Answer (3)

Sol. CrO_{5} is blue in colour
19. The number of voids in 0.02 moles of a solid which forms HCP lattice is \qquad .
[Given : $N_{A}=6 \times 10^{23}$]
(1) 3.6×10^{22}
(2) 3.6×10^{24}
(3) 7.2×10^{20}
(4) 5.4×10^{26}

Answer (1)
Sol. Voids $=\frac{18}{6} \times 6 \times 10^{23} \times 0.02$

$$
=3.6 \times 10^{22}
$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. How many oxides are acidic?
$\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{CO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~N}_{2} \mathrm{O}$

Answer (5)

Sol. Acidic oxides $\rightarrow \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$
22. A $1: 1$ (by mole) mixture of A and B is present in a container. Molar mass of $\mathrm{A}=16 \mathrm{~g}$ and molar mass of B is 32 and the half life of A is 1 day and half life of B is $\frac{1}{2}$ day. Then find the average molar mass of the mixture of A and B remained in the container after 2 days is \qquad .? [Round off to nearest integer]

Answer (19)
Sol. For A $\xrightarrow{2 \text { days }} \frac{1}{4}$ moles remained
For B $1 \xrightarrow{2 \text { days }} \frac{1}{16}$ moles remained
$\therefore M_{\text {avg }}=\frac{\frac{1}{4} \times 16+\frac{1}{16} \times 32}{\frac{1}{4}+\frac{1}{16}}$

$$
=19.2 \mathrm{~g}
$$

23.
24.
25.
26.
27.
28.
29.
30.
