AIEEE 2003 PHYSICS & CHEMISTRY

A particle of mass M and charge Q moving with velocity \vec{v} describe a circular path of radius R when 1. subjected to a uniform transverse magnetic field of induction B. The work done by the field when the particle completes one full circle is

(a)
$$\left(\frac{Mv^2}{R}\right) 2\pi R$$
 (b) Zero (c) BQ2 πR (d) BQ v2 πR

2. A particle of charge -16×10^{-18} coulomb moving with velocity 10 ms^{-1} along the x-axis enters a region where a magnetic field of induction B is along the y-axis, and an electric field of magnitude 10⁴V/m is along the negative z-axis. If the charged particle continues moving along the x-axis, the magnitude of B is

(a)
$$10^{3}$$
Wb/m² (b) 10^{5} Wb/m² (c) 10^{16} Wb/m² (d) 10^{-3} Wb/m

3. A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same

field. If its period of oscillation is
$$T'$$
, the ratio $\frac{T'}{T}$ is

- (d) $\frac{1}{4}$ (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 2
- 4. A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60°. The torque needed to maintain the needle in this position will be

(a)
$$\sqrt{3}W$$
 (b) W (c) $\frac{\sqrt{3}}{2}W$ (d) 2W

5. The magnetic lines of force inside a bar magnet

(a) are from north-pole to south-pole of the magnet

(b) do not exist

- (c) depend upon the area of cross-section of the bar magnet
- (d) are from south-pole to north-pole of the magnet
- 6. Curie temperature is the temperature above which

(a) a ferromagnetic material becomes paramagnetic

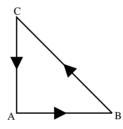
(c) a ferromagnetic material becomes diamagnetic

(b) a paramagnetic material becomes diamagnetic

- (d) a paramagnetic material becomes ferromagnetic 7. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N, when the lift is stationary. If the lift moves downward with an acceleration of 5m/s², the reading of the spring balance will be
 - (a) 24 N (b) 74 N (d) 49 N (c) 15 N
- 8. The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f of a battery whose internal resistance is 0.5Ω . If the balance point is obtained at l = 30cm from the positive end, the e.m.f. of the battery is

(a)
$$\frac{30E}{100.5}$$
 (b) $\frac{30E}{(100-0.5)}$ (c) $\frac{30(E-0.5i)}{100}$, where i is the current in the potentiometer wire (d) $\frac{30E}{100}$

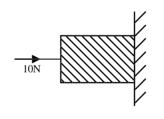
9. A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of (a) each of these decreases (b) copper strip increases and that of germanium decreases (c) copper strip decreases and that of germanium increases (d) each of these increases


10		به به ب	· 101 ****		
10.	Consider telecommunication through optical fibres. Which of the following statements is not true?				
	(a) Optical fibres can be of graded refractive index				
	(b) Optical fibro	es are subjective to ele	ctromagnetic interferen	ce from outside	
	(c) Optical fibro	(c) Optical fibres have extremely low transmission loss			
	(d) Optical fibres may have homogeneous core with a suitable cladding.				
11.	tance, capable	of detecting current a	as low as 10^{-5} A, is con	temperature. A galvanometer of 40 ohm resis- inected with the thermo couple. The smallest	
			tected by this sytem is		
	(a) 16° C	(b) 12° C	(c) 8^{0} C	(d) 20°C	
12.	0.13 g in 30 m	-	hemical equivalent of 2	urrent through a circuit, decreases in mass by Zn and Cu are 32.5 and 31.5 respectively, the	
	(a) 0.180 g	(b) 0.141 g	(c) 0.126 g	(d) 0.242 g	
13.	Dimension of	$\frac{1}{\mu_0\epsilon_0}$, where symbols	have their usual meani	ng, are	
			(c) $[L^2 T^{-2}]$		
14.				thickness t, and another disc Y of radius 4R is	
			-		
	made from an i	ron plate of thickness	$\frac{1}{4}$. Then the relation be	etween the moment of inertia ${\boldsymbol{I}}_{{\boldsymbol{X}}}$ and ${\boldsymbol{I}}_{{\boldsymbol{Y}}}$ is	
	(a) $I_{Y} = 32 I_{X}$	(b) $I_{y} = 16 I_{x}$	(c) $I_{Y} = I_{X}$	(d) $I_{y} = 64 I_{x}$	
15.	-		th is 5 hours. If the sep ue, the new time period	paration between the earth and the satellite is will become	
	(a) 10 hours	(b) 80 hours	(c) 40 hours	(d) 20 hours	
16.		orming uniform circula agular momentum is	r motion has angular fre	equency is doubled & its kinetic energy halved,	
				L	
	(a) $\frac{L}{4}$	(b) 2L	(c) 4 L	(d) $\frac{L}{2}$	
17.		-	s the least wavelength?		
	(a) γ-rays	(b) β -rays	(c) α -rays	(d) X-rays	
18.		cleus originally at res sidual nucleus is	st, decays by emitting a	in alpha particle having a speed 'u', the recoil	
	(a) $\frac{4u}{238}$	(b) $-\frac{4u}{234}$	(c) $\frac{4u}{234}$	(d) $-\frac{4u}{238}$	
19.					
	(a) 2.5 R	(b) 4.5 R	(c) 7.5 R	(d) 1.5 R	
20.		in the variation of rest difference in the	istance with temperatur	e in a metal and a semiconductor arises essen-	
	(a) crystal struc	ture	(b) variation of th	e number of charge carriers with temperature	
	(c) type of bond	ling	(d) variation of sc	attering mechanism with temperature	
21.				akes after at least 6 m. If the same car is moving	
	-	0 km/hr, the minimum			
	(a) 12 m	(b) 18 m	(c) 24 m	(D) 6 m	

22. A boy playing on the roof of a 10 m high building throws a ball with a speed of 10m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

	$[g = 10m/s^2, sinf$	$30^{\circ} = \frac{1}{2}$, cos $30^{\circ} =$	$=\frac{\sqrt{3}}{2}$]			
	(a) 5.20m	(b) 4.33m	(c) 2.60m	(d) 8.66m		
23.		An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to 10 A the value of the required shunt is				
	(a) 0.03 Ω	(b) 0.3 Ω	(c) 0.9 Ω	(d) 0.09 Ω		
24.	The physical quantities not having same dimensions are					
	(a) torque and w	ork	(b) momentum	n and Planck's constant		

- (c) stress and Young's modulus (d) speed and $(\mu_0 \varepsilon_0)^{-1/2}$
- 25. Three forces start acting simultaneously on a particle moving with velocity, \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity



(a) less than \vec{v} (b) greater than \vec{v} (c) |v| in the direction of the largest force BC (d) \vec{v} , remaining unchanged

26. If the electric flux entering and leaving an enclosed surface respectively is ϕ_1 and ϕ_2 , the electric charge inside the surface will be

(a) $(\phi_2 - \phi_1)\epsilon_0$ (b) $(\phi_1 + \phi_2)/\epsilon_0$ (c) $(\phi_2 - \phi_1)/\epsilon_0$ (d) $(\phi_1 + \phi_2)\epsilon_0$

27. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The co-efficient of friction between the block and the wall is 0.2. The weight of the block is

(a) 20 N (

(b) 50 N

(d) 2 N

(d) 0.01

- 28. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
 - (a) 0.02 (b) 0.03
- (c) 0.04

(c) 100 N

29. Consider the following two statements:

(A) Linear momentum of a system of particles is zero

(B) Kinetic energy of a system of particles is zero

Then (a) A does not imply B and B does not imply A

(b) A implies B but B does not imply A

(c) A does not imply B but B implies A (d) A implies B and B implies A

- 30. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon
 (a) the rates at which currents are changing in the two coils
 (b) relative position and orientation of the two coils
 (c) the materials of the wires of the coils.
 - (d) the currents in the two coils
- 31. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied at the free end of the rope, the force exerted by the rope on the block is

(a)
$$\frac{Pm}{M+m}$$
 (b) $\frac{Pm}{M-m}$ (c) P (d) $\frac{PM}{M+m}$

- 32. A light spring balance hangs from the hook of the other light spring balance and a block of mass M kg hangs from the former one. Then the true statement about the scale reading is
 - (a) Both the scales read M kg each (b) The scale of the lower one reads M kg and of the upper one zero
 - (c) The reading of the two scales can be anything but the sum of the reading will be $M\,kg$
 - (d) Both the scales read $M\!/\!2$ kg each
- 33. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower end. The weight stretches the wire by 1 mm. Then the elastic energy stored in the wire is
 - (a) 0.2 J (b) 10 J (c) 20 J (d) 0.1 J
- 34. The escape velocity for a body projected vertically upwards from the surface of earth is 11 km/s. If the body is projected at an angle of 45° with the vertical, the escape velocity will be

(a)
$$11\sqrt{2}$$
 km/s (b) 22 km/s (c) 11 km/s (d) $\frac{11}{\sqrt{2}}$ km/s

35. A mass M is suspended from a spring of negligible mass. The spring is pulled a little and then released so that

the mass executes SHM of time period T. If the mass is increased by m, the time period becomes $\frac{51}{3}$. Then

the ratio of $\frac{m}{M}$ is

- (a) $\frac{3}{5}$ (b) $\frac{25}{9}$ (c) $\frac{16}{9}$ (d) $\frac{5}{3}$
- 36. "Heat cannot by itself flow from a body at lower temperature to a body at higher temperature" is a statement or consequence of
 - (a) second law of thermodynamics (b) conservation of momentum
 - (c) conservation of momentum (d) first law of thermodynamics
- 37. Two particles A and B of equal masses are suspended from two massless springs of spring constant k_1 and k_2 , respectively. If the maximum velocities, during oscillation, are equal, the ratio of amplitude of A and B is

(a)
$$\sqrt{\frac{k_1}{k_2}}$$
 (b) $\frac{k_2}{k_1}$ (c) $\sqrt{\frac{k_2}{k_1}}$ (d) $\frac{k_1}{k_2}$

38. The length of a simple pendulum executing simple harmonic motion is increased by 21%. The percentage increase in the time period of the pendulum of increased length is

(a) 11% (b) 21% (c) 42% (d) 10%

39. The displacement y of a wave travelling in the x-direction is given by $y = 10^{-4} \sin\left(\frac{600t - 2x + \frac{\pi}{3}}{3}\right)$ metres where x is expressed in metres and t in seconds. The speed of the wave-motion, in ms⁻¹, is

(a) 300 (b) 600 (c) 1200 (d) 200

40.	When the current ch coefficient of self-ind	-	-2A in 0.05 second, an	n e.m.f. of 8V is induced in a coil. The
) 0.4 H	(c) 0.8 H	(d) 0.1 H
41.	_		charge on the capacitor is ric and magnetic field is	s Q. The charge on the capacitor when the
	(a) $\frac{Q}{2}$ (b)	$\frac{Q}{\sqrt{3}}$	(c) $\frac{Q}{\sqrt{2}}$	(d) Q
42.	The core of any trans	sformer is laminated s	so as to	
	(a) reduce the energy(c) make it robust and	y loss due to eddy cur d strong	rents	(b) make it light weight(d) increase the secondary voltage
43.		-	ving position vector \vec{r} a	nd \vec{T} be the torque of this force about the
ч.Э.	origin. Then			ind 1 be the torque of this force about the
	(a) $\vec{r}.\vec{T} = 0$ and $\vec{F}.\vec{T} = 0$	≠0	(b) $\vec{r}.\vec{T} \neq 0$ and $\vec{F}.\vec{T} = 0$)
	(c) $\vec{r}.\vec{T} \neq 0$ and $\vec{F}.\vec{T} \neq 0$	≠0	(d) $\vec{r}.\vec{T} = 0$ and $\vec{F}.\vec{T} = 0$)
44.	utes, the rate is 1250	disintegrations per m	disintegration rate 5000 ninute. Then, the decay c	-
		o) 0.2 ln 2	(c) 0.1 ln 2	(d) 0.8 ln 2
45.	A nucleus with $Z = 9$			
			hen Z of the resulting nu	
10) 78 	(c) 82	(d) 74 If the secler it is a fither all stars a leater sec (af
46.	Two identical photoc mass m) coming out			If the velocities of the photo electrons (of
	(a) $v_1^2 - v_2^2 = \frac{2h}{m}(f_1 - f_2)$	-f ₂)	(b) $v_1 + v_2 = \left[\frac{2h}{m}(f_1 + f_2)\right]$	f_{2})] ^{1/2}
	(c) $V_1^2 + V_2^2 = \frac{2h}{m}(f_1 + f_2)$	+ f ₂)	(d) $v_1 - v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]$	$\left[f_2\right]^{1/2}$
47.	Which of the followi	ing cannot be emitted	by radioactive substanc	es during their decay?
16) Neutrinoes	(c) Helium nuclei	(d) Electrons
48.	A 3 volt battery with current I, in the circu		resistance is connected	in a circuit as shown in the figure. The
		Г	<u>\</u>	
		$\frac{1}{T^3}$	$V \qquad \begin{array}{c} 3\Omega \zeta^{4} \\ \zeta^{2} \\ \end{array}$	3Ω
			• • • • • • • • • • • • • • • • • • •	
	(a) 1 A (b) 1.5 A	(c) 2 A	(d) 1/3 A
49.		•••	ckness is introduced betw	ween the plates of a capacitor. The capaci-
	tance of the capacitor (a) decreases (b	r) remains unchanged	(c) becomes infinite	(d) increases
	(0	,		

50. The displacement of a particle varies according to the relation x = 4(cos πt + sin πt). The amplitude of the particle is
(a) -4 (b) 4 (c) 4√2 (d) 8
51. A thin spherical conducting shell of radius R has a charge q. Another charge Q is placed at the centre of the

shell. The electrostatic potential at a point P a distance $\frac{R}{2}$ from the centre of the shell is

(a)
$$\frac{2Q}{4\pi\epsilon_0 R}$$
 (b) $\frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$ (c) $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$ (d) $\frac{(q+Q)2}{4\pi\epsilon_0 R}$

52. The work done in placing a charge of 8×10^{-18} coulomb on a condenser of capacity 100 micro-farad is (a) 16×10^{-32} joule (b) 3.1×10^{-26} joule (c) 4×10^{-10} joule (d) 32×10^{-32} joule

53. The co-ordinates of a moving particle at any time 't' are given by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the particle at time 't' is given by

(a) $3t\sqrt{\alpha^2 + \beta^2}$ (b) $3t^2\sqrt{\alpha^2 + \beta^2}$ (c) $t^2\sqrt{\alpha^2 + \beta^2}$ (d) $\sqrt{\alpha^2 + \beta^2}$

54. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_p/C_v for the gas is

(a)
$$\frac{4}{3}$$
 (b) 2 (c) $\frac{5}{3}$ (d) $\frac{3}{2}$

55. Which of the following parameters does not characterize the thermodynamic state of matter?

- (a) temperature (b) Pressure (c) Work (b) Volume
- 56. A Carnot engine takes 3×10^6 cal. of heat from a reservoir at 627^{0} C, and gives it to a sink at 27^{0} C. The work done by the engine is

(a)
$$4.2 \times 10^6$$
 J (b) 8.4×10^6 J (c) 16.8×10^6 J (d) Zero

- 57. A spring of spring constant 5×10^3 N/m is stretched initially by 5 cm from the unstretched position. Then the work required to stretch it further by another 5 cm is
 - (a) 12.50 N-m (b) 18.75 N-m (c) 25.00 N-m (d) 6.25 N-m
- 58. A metal wire of linear mass density of 9.8 g/m is stretched with a tension of 10 kg-wt between two rigid supports 1 metre apart. The wire passes at its middle point between the poles of a permanent magnet, and it vibrates in resonance when carrying an alternating current of frequency n. The frequency n of the alternating source is
 - (a) 50 Hz (b) 100 Hz (c) 200 Hz (d) 25 Hz
- 59. A tuning fork of known frequency 256 Hz makes 5 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per second when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was

(a)
$$256 + 2$$
 Hz (b) $256 - 2$ Hz (c) $256 - 5$ Hz (d) $256 + 5$ Hz

60. A body executes simple harmonic motion. The potential energy (P.E), the kinetic energy (K.E) and total energy (T.E) are measured as a function of displacement x. Which of the following statements is true?

(a) K.E. is maximum when x = 0 (b) T.E is zero when x = 0

(c) K.E is maximum when x is maximum (d) P.E. is maximum when x = 0

61. In the nuclear fusion reaction ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + n$ given that the repulsive potential energy between the two nuclei is ~7.7×10⁻¹⁴ J, the temperature at which the gases must be heated to initiate the reaction is nearly [Boltzmann's Constant k = 1.38×10⁻²³ J/K]

(a) 10^7 K (b) 10^5 K (c) 10^3 K (d) 10^9 K

62.	Which of the fo	llowing atoms has the	lowest ionization poten	tial?
	(a) $_{7}^{14}$ N	(b) $^{133}_{55}$ Cs	(c) $^{40}_{18}$ Ar	(d) $^{16}_{8}$ O
63.	The wavelength	is involved in the spec	ctrum of deuterium $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$) are slightly different from that of hydrogen
	spectrum, becau	ise	· ·	,
	(a) the size of th	e two nuclei are differ	rent (b) the nuclear for	ces are different in the two cases
	(c) the masses of	f the two nuclei are di	fferent	
	(d) the attraction	n between the electror	and the nucleus is diffe	erent in the two cases
64.	In the middle of	the depletion layer of	f a reverse biased p-n ju	nction, the
	(a) electric field	is zero	(b) potential is max	ximum
	(c) electric field		(d) potential is zero	
65.		energy of the electron the first excited state of		s 13.6eV, the energy required to remove the
	(a) 30.6eV	(b) 13.6 eV		(d) 122.4 eV
66.	•	d along a straight line is proportional to	by a machine delivering	g a constant power. The distance moved by the
	(a) $t^{3/4}$	(b) $t^{3/2}$	(c) $t^{1/4}$	(d) $t^{1/2}$
67.	A rocket with a initial thrust of t		kg is blasted upwards w	vith an initial acceleration of 10m/s ² . Then the
	(a) 3.5×10^5 N	(b) 7.0×10^5 N	(c) 14.0×10^5 N	(d) 1.75×10^5 N
68.	To demonstrate	the phenomenon of in	nterference, we require t	wo sources which emit radiation
	(a) of nearly the	e same frequency (b) of the same frequenc	У
	(c) of different	•	· •	and having a definite phase relationship
69.	Three charges - proportional to	\mathbf{q}_1 , $+\mathbf{q}_2$ and $-\mathbf{q}_3$ are pla	aced as shown in the fig	gure. The x-component of the force on $-q_1$ is
		*	q_3 Y a θ b - - q_1 + q_2	
	(a) $\frac{q_2}{b^2} - \frac{q_3}{a^2} \cos \theta$	θ (b) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \sin \theta$	(c) $\frac{q_2}{b^2} + \frac{q_3}{a^2}\cos\theta$	(d) $\frac{\mathbf{q}_2}{\mathbf{b}^2} - \frac{\mathbf{q}_3}{\mathbf{a}^2} \sin \theta$
70.	A 220 volt, 100	0 watt bulb is connect	ted across a 110 volt ma	ins supply. The power consumed will be
	(a) 750 watt	(b) 500 watt	(c) 250 watt	(d) 1000 watt
71.	-	• •	a compound microscop	
_	(a) virtual and d	iminished (b) real and	d diminished (c) real ar	nd enlarged (d) virtual and enlarged

- 72. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - (a) Rayleigh Jeans law (b) Planck's law of radiation
 - (c) Stefan's law of radiation (d) Wien's law
- 73. To get three images of a single object, one should have two plane mirrors at an angle of(a) 60^{0} (b) 90^{0} (c) 120^{0} (d) 30^{0}

74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta \theta)^n$, where $\Delta \theta$ is
	the difference of the temperature of the body and the surroundings, and n is equal to
	(a) two (b) three (c) four (d) one
75.	The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
	(a) 200% (b) 100% (c) 50% (d) 300%
76.	Which of the following could act as apropellant for rockets?
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms
	(a) $H_3C \longrightarrow N_2Cl$ (b) $H_3C \longrightarrow NHCHCl_2$ (c) $H_3C \longrightarrow NC$ (d) $H_3C \longrightarrow CN$
78.	Nylon threads are made of
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer
79.	The correct order of increasing basic nature for the bases NH_3 , CH_3NH_2 and $(CH_3)_2$ NH is
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
	(c) $CH_{3}NH_{2} < (CH_{3})_{2}NH < NH_{3}$ (d) $CH_{3}NH_{2} < NH_{3} < (CH_{3})_{2}NH$
80.	Bottles containing C_6H_5I and $C_6H_5CH_2I$ lost their original labels. They were labelled A and B for testing A
	and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yellow
	precipitate. Which one of the following statements is true for this experiment?
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I
	(c) Addition of HNO ₃ was unnecessary (d) A was C_6H_5I
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A
	to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy? (a) 40 kJ (b) 40 kJ
82.	(a)> 40 kJ (b) < 40 kJ (c) Zero (d) 40 kJ If at 298 K the bond energies of C-H, C-C, C = C and H-H bonds are respectively 414, 347, 615 and 435 kJ
021	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be
	(a) -250 kJ (b) $+ 125 \text{ kJ}$ (c) -125 kJ (d) $+ 250 \text{ kJ}$
83.	The radionucleide $\frac{234}{90}$ Th undergoes two successive β -decays followed by one α -decay. The atomic num-
	ber and the mass number respectively of the resulting radionucleide are
84.	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234 The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass of
04.	it remaining undecayed after 18 hours would be
	(a) 8.0 g (b) 12.0 g (c) 16.0 g (d) 4.0 g
85.	If liquids A and B form an ideal solution
	(a) the entropy of mixing is zero (b) the free energy of mixing is zero (c) the free energy of mixing is zero (d) the enthelay of mixing is zero
86.	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero The radius of La^{3+} (Atomic number of $La = 57$) is 1.06Å. Which one of the following given values will be
00.	closest to the radius of Lu^{3+} (Atomic number of $Lu = 71$)?
	(a) 1.40\AA (b) 1.06\AA (c) 0.85\AA (d) 1.60\AA
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solutions What is the masses for it?
	tions. What is the reason for it? (a) In acidic solutions protons coordinate with ammonia molecules forming NH_4^+ ions and NH_3^- molecules
	(a) In active solutions protons coordinate with animolia molecules forming 1411_4 fors and 1411_3 molecules are not available
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali
	(c) Copper hydroxide is an amphoteric substance
	(d) In acidic solutions hydration protects copper ions.

88.	One mole of the complex compound $Co(NH_3)_5Cl_3$, gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of AgNO ₃ solution to yield two moles of AgCl (s). The structure of the complex is			
	(a) $[Co(NH_3)_3Cl_3]$. 2NH ₃ (b) $[Co(NH_3)_4Cl_2]$ Cl. NH ₃ (c) $[Co(NH_3)_4Cl]Cl_2$. NH ₃ (d) $[Co(NH_3)_5Cl]$ Cl ₂			
89	In the coordination compound, $K_4[Ni(CN)_4]$, the oxidation state of nickel is			
	(a) 0 (b) $+1$ (c) $+2$ (d) -1			
90.	In curing cement plasters water is sprinkled from time to time. This helps in			
	(a) developing interlocking needle-like crystals of hydrated silicates			
	(b) hydrating sand and gravel mixed with cement			
	(c) converting sand into silicic acid (d) keeping it cool			
91.	Which one of the following statements is not true?			
	(a) $pH + pOH = 14$ for all aqueous solutions (b) The pH of 1×10^{-8} M HCI is 8			
	(c) 96,500 coulombs of electricity when passed through a $CuSO_4$ solution deposits 1 gram equivalent of copper at the cathode			
92.	(d) The conjugate base of $H_2PO_4^{-1}$ is HPO_4^{2-1} On mixing a certain alkane with chlorine and irradiating it with ultravioletlight, it forms only one			
12.	monochloroalkane. This alkane could be			
	(a) pentane(b) isopentane(c) neopentane(d) propane			
93.	Butene-1 may be converted to butane by reaction with			
	(a) Sn - HCI (b) Zn - Hg (c) Pd/H_2 (d) Zn - HCI			
94.	What may be expected to happen when phosphine gas is mixed with chlorine gas?			
	(a) PCI ₃ and HCI are formed and the mixture warms up			
	(b) PCI_5 and HCI are formed and the mixture cools down			
	(c) $PH_3.Cl_2$ is formed with warming up (d) The mixture only cools down			
95.	The number of d-electrons retained in Fe^{2+} (At.no.of Fe = 26) ion is			
0.6	(a) 4 (b) 5 (c) 6 (d) 3			
96.	Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that			
	(a) oxygen in air reacts with the emitted HCI gas to form a cloud of chlorine gas			
	(b) strong affinity of HCI gas for miosture in air results in forming of droplets of liquid solution which appears like a cloudy smoke.			
	(c) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards it self. This moisture forms droplets of water and hence the cloud.			
	(d) concentrated hydrochloric acid emits strongly smelling HCI gas all the time.			
97.	An ether is more volatile than an alcohol having the same molecular formula. This is due to			
	(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in ethers			
	(c) inter-molecular hydrogen bonding in alcohols (d) dipolar character of ethers			
98.	Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite			
	(a) is an allotropic form of diamond (b) has molecules of variable molecular masses like polymers			
	(c) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds			
	(d) is a non-crystalline substance			
99.	According to the Periodic Law of elements, the variation in properties of elements is related to their			
	(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios (d) atomic masses			

100. Which one of	100. Which one of the following statements is correct?			
(a) From a mi	(a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl			
(b) Ferric ions	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution			
	(c) On boiling a solution having K^+ , Ca^{2+} and HCO_3^- ions we get a precipitate of $K_2Ca(CO_3)_2$.			
	(d) Manganese salts give a violet borax bead test in the reducing flame			
101. Glass is a		v boud test in the roudein		
	led liquid (b) gel	(a) polymoria mixtu	ra (d) miero erretalline solid	
(a) super-cool	ieu iiquiu (b) gei	(c) porymetre mixtu	re (d) micro-crystalline solid	
102. The orbital an	gular momentum for an e	lectron revolving in an o	rbit is given by $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$. This momentum	
	on will be given by			
	h	h h	1 h	
(a) zero	(b) $\frac{h}{2\pi}$	(c) $\sqrt{2} \cdot \frac{1}{2\pi}$	(d) $+\frac{1}{2} \cdot \frac{1}{2\pi}$	
-	nit cells are present in a c ses: Na = 23, Cl = 35.5]	ubeshaped ideal crystal	of NaCl of mass 1.00 g?	
		(b) $1.29 \cdot 10^{21}$	-11-	
(a) 5.14×10^{21}		(b) 1.28×10^{21} unit c		
(c) 1.71×10^{21}		(d) 2.57×10^{21} unit c		
			be of equal length. What is the reason for it?	
	bond is weaker than the			
	HCOO ⁻ has two resonat	-		
(c) The anion	is obtained by removal of	of a proton from the acid	molecule	
(d) Electronic	orbitals of carbon atom a	are hybridised		
105. Which one of	the following characteris	stics is not correct for phy	ysical adsorption?	
(a) Adsorption	n increases with incresae	in temperature		
(b) Adsorption	n is spontaneous	(c) Both enthalpy an	nd entropy of adsorption are negative	
(d) Adsorption	n on solids is reversible			
	ction involving a two-ele ailibrium constant of the	•	rd e.m.f. of the cell is found to be 0.295 V at	
(a) 29.5×10^{-2}		(c) 1×10^{10}	(d) 1×10^{-10}	
× /			n which only pressure-volume work is being	
			opy (dS), satisfy the criteria	
(a) $(dS)_{VE} > 0$	$(dG)_{\rm TP} < 0 \ (b) \ (dS)_{\rm VF} =$	$0, (dG)_{TP} = 0 (c) (dS)_{v}$	$_{\rm E} = 0, (dG)_{\rm TP} > 0 (d) (dS)_{\rm VE} < 0, (dG)_{\rm TP} < 0$	
-,	1,1 1,1		L ⁻¹ . Its solubility product number will be	
(a) 4×10^{-10}	(b) 1×10^{-15}	(c) 1×10^{-10}	(d) 4×10^{-15}	
		_	re will be consumed in obtaining 21.6 g of pron trichloride by hydrogen?	
(a) 67.2 L	(b) 44.8 L		(d) 89.6 L	
4.8×10^{-2} and	10. For the reaction equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ the concentrations of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol L ⁻¹ respectively. The value of K _c for the reaction is			
(a) 3×10^{-1} mc	ol L ⁻¹ (b) 3×10^{-3} mol L ⁻¹	(c) 3×10^3 mol L ⁻¹	(d) 3.3×10^2 mol L ⁻¹	
	eaction equilibrium 2SO ₂ condition favourable for	- 5	Δ H ⁰ = -198 kJ. On the basis of Le Chatelier's	
	temperature as well as p		the temperature and increasing the pressure	
· · ·	of temperature and press		of temperature as well as pressure	
	r mar pross	(r	

collegedunia

Őð

112. Which one of the following is an ampho		
(a) Na_2O (b) SO_2	2 5	(d) ZnO
113. A red solid is insoluble in water. However, solid in a test tube results in liberation of cooler parts of the test tube. The red solid	f some violet coloured f	some KI is added to water. Heating the red umes and droplets of a metal appear on the
(a) HgI ₂ (b) HgO	(c) $Pb_{3}O_{4}$	(d) $(NH_4)_2 Cr_2 O_7$
114. Standard reduction electrode potentials reducing, powers of these metals are	of three metals A,B&C a	re respectively $+0.5$ V, -3.0 V & -1.2 V. The
$(a) A > B > C \qquad (c) C > B > A$	(c) $A > C > B$	(d) B > C > A
115. Which one of the following substances h	as the highest proton aff	inity?
(a) H_2S (b) NH_3	(c) PH ₃	(d) H ₂ O
116. In a 0.2 molal aqueous solution of a weal the freezing point of the solution will be		onization is 0.3. Taking k _f for water as 1.85,
(a) -0.360° C (b) -0.260° C	$(c) + 0.480^{\circ}C$	(d) -0.480°C
117. When during electrolysis of a solution of bath, the mass of silver deposited on the		s of charge pass through the electroplating
(a) 10.8 g (b) 21.6 g	(c) 108 g	(d) 1.08 g
118. For the redox reaction $Zn(s) + Cu^{2+}(0.1)$	$M) \rightarrow Zn^{2+}(1M) + Cu(s)$	taking place in a cell, E_{cell}^0 is 1.10 volt. E_{cell}
for the cell will be $\left(2.303 \frac{\text{RT}}{\text{F}} = 0.0591\right)$		
(a) 1.80 volt (b) 1.07 volt	(c) 0.82 volt	(d) 2.14 volt
119. In respect of the equation $k = Ae^{-E_a/RT}$ in	n chemical kinetics, which	h one of the following statements is correct?
(a) A is adsorption factor	(b) E_a is energy of acti	_
(c) R is Rydberg's constant	(d) k is equilibrium co	
120. A reduction in atomic size with increase		
(A) d-block (b) f-block		(d) high atomic masses
121. The IUPAC name of $CH_3COCH(CH_3)_2$. ,	
5 5 2		hyl-2-butanone (d) Isopropylmethyl ketone
122. When $CH_2 = CH - COOH$ is reduced with		
(a) $CH_2 = CH - CH_2OH$	(b) $CH_3 - CH_2 - CH_2C$	
	(d) $CH_3 - CH_2 - COO$	
123. According to the kinetic theory of gases travels	5 2	
(a) in a wavy path (b) in a straight line	e path (c) with an acceler	rated velocity (d) in a circular path
124. The general formula $C_n H_{2n} O_2$ could be f	for open chain	
(a) carboxylic acids	(b) diols	(c) dialdehydes (d) deketones
125. Among the following four structures I to	o IV.	
$\begin{array}{cccc} CH_3 & O & CH_3 & H & -C_3 \\ I & I & I & I & -C_4 \\ C_2H_5-CH - C_3H_7 & CH_3-C & -CH-C_2H_5 & \\ (i) & (ii) & (ii) & (iii) \end{array}$. It is true that
(a) only I and II are chiral compounds	(b) only III i a chiral c	ompound
(c) only II and IV are chiral compounds	(d) all four are chiral c	compounds
		· · · · · · · · · · · · · · · · · · ·

126. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?				
	(b) CrO^{2-}_{4} is reduced t			
(c) $\operatorname{CrO}_{4}^{2}$ is oxidized to +7 state of Cr				
127. For making good quality mirrors, plates of	27. For making good quality mirrors, plates of float glass are used. These are obtained by floating molten glass over a liquid metal which does not solidify before glass. The metal used can be			
(a) tin (b) sodium	(c) magnesium	(d) mercury		
128. The substance not likely to contain CaCO	D_3 is			
(a) calcined gypsum (b) sea shells	(c) dolomite	(d) a marble statue		
129. Complete hydrolysis of cellulose gives				
(a) D-ribose (b) D-glucose	(c) L-glucose	(d) D-fructose		
130. Which one of the following nitrates will l	eave behind a metal on	strong heating?		
(a) Copper nitrate (b) Manganese nitrate	(c) Silver nitrate	(d) Ferric nitrate		
131. During dehydration of alcohols to alkene	s by heating with conc.	H_2SO_4 the initiation step is		
(a) formation of carbocation	(b) elimination of wate			
(c) formation of an ester	(d) protonation of alco	hol molecule		
132. The solubilities of carbonates decrease de	own the magnesium gro	up due to a decrease in		
(a) hydration energies of cations	(b) inter-ionic attractio	-		
(c) entropy of solution formation	(d) lattice energies of s	solids		
133. When rain is accompanied by a thunderst	torm, the collected rain	water will have a pH value		
(a) slightly higher than that when the thur		-		
(b) uninfluenced by occurence of thunder	storm			
	(c) which depends on the amount of dust in air			
(d) slightly lower than that of rain water without thunderstorm				
134. The reason for double helical structure of DNA is operation of				
(a) dipole-dipole interaction (b) hydrogen bonding (c) electrostatic attractions (d) van der Waals' forces				
135. 25 ml of a solution of barrium hydroxide on titration with a 0.1 molar solution of hydrochloric acid gave a litre value of 35 ml. The molarity of barium hydroxide solution was				
(a) 0.14 (b) 0.28	(c) 0.35	(d) 0.07		
136. The correct relationship between free end stant K_c is	ergy change in a reaction	n and the corresponding equilibrium con-		
(a) $-\Delta G = RT ln K$ (b) $\Delta G^0 = RT ln K$	(c) - $\Delta G^0 = RT In I$	K (d) $\Delta G = RT ln K$		
137. The rate law for a reaction between the s	(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G^0 = RT \ln K_c$ (c) $-\Delta G^0 = RT \ln K_c$ (d) $\Delta G = RT \ln K_c$ 137. The rate law for a reaction between the substances A and B is given by Rate = k[A] ⁿ [B] ^m On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as			
(a) $(m + n)$ (b) $(n - m)$	(c) $2^{(n-m)}$	(d) $\frac{1}{2^{(m+n)}}$		
138. Ethyl isocyanide on hydrolysis in acidic r	nedium generates			
(a) propanoic acid and ammonium salt	(b) ethanoic acid and a	ammonium salt		
(c) methylamine salt and ethanoic acid	(d) ethylamine salt and	l methanoic acid		
139. The enthalpy change for a reaction does	· · · •			
(a) use of different reactants for the same	1 1	ne nature of intermediate reaction steps		
(c) the differences in initial or final tempe	-	tances		
(d) the physical states of reactants and pro				
· · · ·				

- 140. A pressure cooker reduces cooking time for food because
 - (a) boiling point of water involved in cooking is increased
 - (b) the higher pressure inside the cooker crushes the food material
 - (c) cooking involves chemical changes helped by a rise in temperature
 - (d) heat is more evenly distributed in the cooking space
- 141. For the reaction system: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ volume is suddenly reduce to half its value by increasing the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to NO, the rate of reaction will
 - (a) diminish to one-eighth of its initial value
 - (b) increase to eight times of its initial value
 - (c) increase to four times of its initial value
 - (d) diminish to one-fourth of its initial value
- 142. Several blocks of magnesium are fixed to the bottom of a ship to
 - (a) make the ship lighter
 - (b) prevent action of water and salt
 - (c) prevent puncturing by under-sea rocks
 - (d) keep away the sharks
- 143. Which one of the following pairs of molecules will have permanent dipole moments for both members? (a) NO₂ and CO₂ (b) NO₂ and O₃ (c) SiF₄ and CO₂ (d) SiF₄ and NO₂
- 144. Which one of the following groupings represents a collection of isoelectronic species? (At. nos,: 55, Br:35) (a) N³⁻, F⁻, Na⁺ (b) Be, Al³⁺, Cl⁻ (c) Ca²⁺, Cs⁺, Br (d) Na⁺, Ca²⁺, Mg²⁺
- 145. Which one of the following processes will produce hard water?
 - (a) Saturation of water with $MgCO_3$
 - (b) Saturation of water with $CaSO_4$
 - (c) Addition of Na_2SO_4 to water
 - (d) Saturation of water with $CaCO_3$
- 146. Which one of the following compounds has the smallest bond angle in its molecule?
 - (a) OH_2 (b) SH_2 (c) NH_3 (d) SO_2
- 147. The pair of species having identical shapes for molecules of both species is
 - (a) XeF_2 , CO_2 (b) BF_3 , PCl_3
 - (c) PF_5 , IF_5 (d) CF_4 , SF_4
- 148. The atomic numbers of vanadium (V), Chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26. Which one of these may be expected to have the highest second ionization enthalpy?
 (a) Cr
 (b) Mn
 (c) Fe
 (d) V
- 149. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen
 - (a) $5 \rightarrow 2$ (b) $4 \rightarrow 1$ (c) $2 \rightarrow 5$ (d) $3 \rightarrow 2$
- 150. The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately
 - (a) 10⁻³¹ metres
 - (b) 10⁻¹⁶ metres
 - (c) 10⁻²⁵ metres
 - (d) 10^{-33} metres Planck's constant, $h = 6.63 \times 10^{-34}$ Js.

AIEEE 2003 MATHEMATICS

1.	Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right)$	$\left(-\frac{1}{2} \right), x > 0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} dx =$	= F(k) - F(1) then one of the	he possible values of k,	is
	(a) 64	(b) 15	(c) 16	(d) 63	
2.			ations is 20.5. If each o	of the largest 4 observat	tions of the set is
	increased by 2, then median of the new set				
		ame as that of the origina	ll set	(b) is increased by 2	
	(c) is decreased b	-		(d) is two times the ori	ginal median
3.	$\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots 1}{n^5}$	$\frac{n^4}{n} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{n^5}$			
	(a) $\frac{1}{5}$	(b) $\frac{1}{30}$	(c) Zero	(d) $\frac{1}{4}$	
4.	The normal at the	e point $(bt_1^2, 2bt_1)$ on a p	arabola meets the parab	ola again in the point (b	t_2^2 , 2bt ₂), then
	(a) $t_2 = t_1 + \frac{2}{t_1}$	(b) $t_2 = -t_1 - \frac{2}{t_1}$	(c) $t_2 = -t_1 + \frac{2}{t_1}$	(d) $t_2 = t_1 - \frac{2}{t_1}$	
5.	If the two circles	$(x-1)^2 + (y-3)^2 = r^2$ and x	$x^2 + y^2 - 8x + 2y + 8 = 0$	intersect in two distinct	point, then
	(a) $r > 2$	(b) 2 < r < 8	(c) r < 2	(d) $r = 2$.	
6.	The degree and or respectively.	order of the differential	equation of the family of	of all parabolas whose a	axis is X-axis, are
	(a) 2, 3	(b) 2, 1	(c) 1, 2	(d) 3, 2	
7.	The foci of the el	lipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the	e hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{2}$	$\frac{1}{5}$ coincide. Then the va	llue of b ² is
	(a) 9	(b) 1	(c) 5	(d) 7	
8.	If $f(y) = e^y$, $g(y) =$	$= y; y > 0 \text{ and } F(t) = \int_{0}^{t} f(t - t) dt$	-y)g(y), then		
	(a) $F(t) = te^{-t}$	(b) $F(t) = 1 - te^{-t} (1 + t)$	(c) $F(t) = e^t - (1 + t)$	(d) $F(t) = te^{t}$.	
9.	The function $f(x)$	$=\log\left(x+\sqrt{x^2+1}\right),$ is			
	(a) neither an eve	en nor an odd function		(b) an even function	
	(c) an odd functio			(d) a periodic function	
10.		_	$ax^2 + bx + c = 0$	is equal to the sum of th	e squares of their
	reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in				
		eometric Progression	(b) Arithmetic Progress		
	(c) Geometric Pro	-	(d) Harmonic Progress	sion	
11.	If the system of li	near equations			
	x + 2ay + az = 0	Jution than a b	x + 3by + bz = 0	$\mathbf{x} + 4\mathbf{c}\mathbf{y} + \mathbf{c}\mathbf{z} = 0$)
	(a) satisfy a + 2b	blution, then a, b, c + $3c = 0$	(b) are in A.P.	(c) are in G.P.	(d) are in H.P.

12.	A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin			
	makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4} \right)$ with the positive direction of x-axis. The equation of its diagonal not passing			
	through the origi			
	· · · •	$\alpha) + x(\cos\alpha - \sin\alpha) = a$	· · · • · · · · · · · · · · · · · · · ·	
12		$\alpha) + x(\sin \alpha - \cos \alpha) = a$		
13.	between the othe		$= 0$ and $x^2 - 2pxy - y^2 =$	= 0 be such that each pair bisects the angle
	(a) pq = -1	(b) p = q	(c) $p = -q$	(d) pq = 1
14.	Locus of a centri- parameter, is	od of the triangle whose	vertices are (a cos t, a s	in t), (b sin t, -b cost) and $(1, 0)$, where t is a
	-	$(3y)^2 = a^2 - b^2$ $(y)^2 = a^2 + b^2$	(b) $(3x - 1)^2 + (3y)^2 =$	$a^2 - b^2$
	(c) $(3x - 1)^2 + (3x - 1)^2$	$\mathbf{y})^2 = \mathbf{a}^2 + \mathbf{b}^2$	(d) $(3x + 1)^2 + (3y)^2 =$	$=a^2+b^2$
15.	If $\lim_{x \to 0} \frac{\log(3+x) - 1}{x}$	$\log(3-x) = k$, the value of	f k is	
	(a) $-\frac{2}{3}$	(b) 0	(c) $-\frac{1}{3}$	(d) $\frac{2}{3}$
16.		ouple thus formed is \vec{H}		\vec{P} . If \vec{P} is turned through a right angle the \vec{p} are turned through an angle α , then the
	(a) $\vec{H}\sin\alpha - \vec{G}\cos\alpha$	α (b) $\vec{G}\sin\alpha - \vec{H}\cos\alpha$	(c) $\vec{H}\sin\alpha + \vec{G}\cos\alpha$	(d) $\vec{G}\sin\alpha + \vec{H}\cos\alpha$
17.	The resultant of f	Forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q}	is doubled then \vec{R} is doubled	ubled. If the direction of \vec{Q} is reversed, then
	\vec{R} is again doub	led. Then $P^2 : Q^2 : R^2$ is		
	(a) 2 : 3 : 1		(c) 2 : 3 : 2	
18.	The mean and va $(X = 1)$ is	riance of a random varia	ble X having binomial	distribution are 4 and 2 respectively, then P
	(a) $\frac{1}{4}$	(b) $\frac{1}{32}$	(c) $\frac{1}{16}$	(d) $\frac{1}{8}$
19.	If $f(x) = x^n$, then	the value of $f(1) - \frac{f'(1)}{1!} +$	$\frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots$	$\frac{(-1)^n f^n(1)}{n!}$ is
	(a) 1	(b) 2 ⁿ	(c) 2 ⁿ - 1	(d) 0
20.	Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} + \hat{j}$	$-\hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n}	is a unit vector such th	at $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, then $ \vec{w} \cdot \hat{n} $ is equal to
	(a) 3	(b) 0	(c) 1	(d) 2
21.	A particle acted of the forces is	on by constant forces $4\hat{i}$	$+\hat{j}-3\hat{k}$ and $3\hat{i}+\hat{j}-\hat{k}$ to the	ne point $5\hat{i} + 4\hat{j} - \hat{k}$. The total work done by
	(a) 50 units	(b) 20 units	(c) 30 units	(d) 40 units
22.	The vectors $\overrightarrow{AB} =$ A is	$3\hat{i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$	are the sides of a triang	gle ABC. The length of the median through
	(a) $\sqrt{288}$	(b) $\sqrt{18}$	(c) $\sqrt{72}$	(d) $\sqrt{33}$
23.		egion bounded by the cu	irves $y = x - 1 $ and $y = 3 - 1$	
	(a) 6 sq. units	(b) 2 sq. units	(c) 3 sq. units	(d) 4 sq. units

24. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere x² + y² + z² + 4x - 2y - 6z = 155 is
(a) 39 (b) 26 (c) 11
$$\frac{4}{13}$$
 (d) 13
25. The two lines x = ay + b, z = cy + d and x = a'y + b'z = c'y + d' will be perpendicular, if and only if
(a) a8' + cc' + 1 = 0 (b) a8' + bb' + cc' + 1 = 0
(c) a8' + bb' + cc' = 0 (d) (a + 4') (b + b') + (c + c') = 0
26. The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{1} = \frac{z-5}{1}$ are coplanar if
(a) k = 3 or -2 (b) k = 0 or -1 (c) k = 1 or -1 (d) k = 0 or -3
27. If f (a + b - x) = f(x) then $\int_{a}^{b} xf(x)dx$ is equal to
(a) $\frac{a+b}{2}\int_{a}^{b} f(a+b-x)dx$ (b) $\frac{a+b}{2}\int_{a}^{b} f(b-x)dx$ (c) $\frac{a+b}{2}\int_{a}^{b} f(x)dx$ (d) $\frac{b-a}{2}\int_{a}^{b} f(x)dx$
28. A body travels a distance s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. The value of t is given by
(a) $\sqrt{2^2(\frac{1}{t}+\frac{1}{r})}$ (b) $2\left(\frac{1}{t}+\frac{1}{r}\right)$ (c) $\frac{2s}{\frac{1}{t}+\frac{1}{r}}$ (d) $\sqrt{2s(t+r)}$
29. Two stones are projected from the top of a cliff h metres high, with the same speed u, so as to hit the ground at the same spoi. If one of the stones is projected at an angle Θ to the horizontal then the Θ equals
(a) $u\sqrt{\frac{2}{gh}}$ (b) $\sqrt{\frac{2u}{gh}}$ (c) $2g\sqrt{\frac{u}{h}}$ (d) $2h\sqrt{\frac{u}{g}}$
30. If 1, $\omega \omega^2$ are the cube roots of unity, then $\Delta = \begin{bmatrix} 1 & \omega^a & \omega^{a'} \\ \omega^{2'a} & 1 & \omega^2 \end{bmatrix}$ is equal to
(a) ω^2 (b) 0 (c) 1 (d) ω
31. The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is
(a) $\frac{a}{4} cot(\frac{\pi}{2n})$ (b) $acot(\frac{\pi}{n})$ (c) $\frac{a}{2} cot(\frac{\pi}{2n})$ (d) $acot(\frac{\pi}{2n})$
32. If $x_1, x_2, x_3, and y_1, y_2, y_3$ are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and $(x_1, y_2), (x_3, y_4)$ and $(x_1, y_2), (x_2, y_2)$ and $(x_1, y_2), (x_2, y_3)$ and $(x_1, y_2), (x_2, y_3)$ and $(x_1, y_2), (x_2, y_3)$ and (x_2, y_3) are two no

35. The solution of the differential equation $(1+y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$, is

(a) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ (b) $(x-2) = ke^{2\tan^{-1}y}$ (c) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (d) $xe^{\tan^{-1}y} = \tan^{-1}y + k$

36. Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies $f(x) + g(x) = x^2$.

Then the value of the integral $\int_{a}^{b} f(x)g(x)dx$, is

(a)
$$e + \frac{e^2}{2} + \frac{5}{2}$$
 (b) $e - \frac{e^2}{2} - \frac{5}{2}$ (c) $e + \frac{e^2}{2} - \frac{3}{2}$ (d) $e - \frac{e^2}{2} - \frac{3}{2}$

The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq. units. Then the equation 37. of the circle is

(a)
$$x^2 + y^2 - 2x + 2y = 62$$

(b) $x^2 + y^2 + 2x - 2y = 62$
(c) $x^2 + y^2 + 2x - 2y = 47$
(d) $x^2 + y^2 - 2x + 2y = 47$

38. Events A, B, C are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$, $P(B) = \frac{x-1}{4}$ and $P(C) = \frac{1-2x}{4}$. The set of possible values of x are in the interval.

- (b) $\left[\frac{1}{3}, \frac{1}{2}\right]$ (c) $\left[\frac{1}{3}, \frac{2}{3}\right]$ (d) $\left[\frac{1}{3}, \frac{13}{3}\right]$ (a) [0, 1]
- 39. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is
 - (a) $\frac{2}{5}$ (d) $\frac{1}{5}$ (c) $\frac{3}{5}$ (b) $\frac{4}{5}$
- The value of 'a' for which one root of the quadratic equation $(a^2 5a + 3)x^3 + (3a 1)x + 2 = 0$ is twice as large 40. as the other is
 - (a) $-\frac{1}{2}$ (b) $\frac{2}{2}$ (c) $-\frac{2}{2}$ (d) $\frac{1}{2}$

41. If x is positive, the first negative term in the expansion of $(1 + x)^{27/5}$ is (a) 6th term (b) 7th term (c) 5th term (d) 8th term

The number of integral terms in the expansion of $\left(\sqrt{3} + 8\sqrt{5}\right)^{256}$ is 42. (b) 32 (c) 33 (d) 34

43. If ⁿC_r denotes the number of combination of n things taken r at a time, then the expression ⁿC_{r+1} + ⁿC_{r-1} + 2xⁿC_r equals

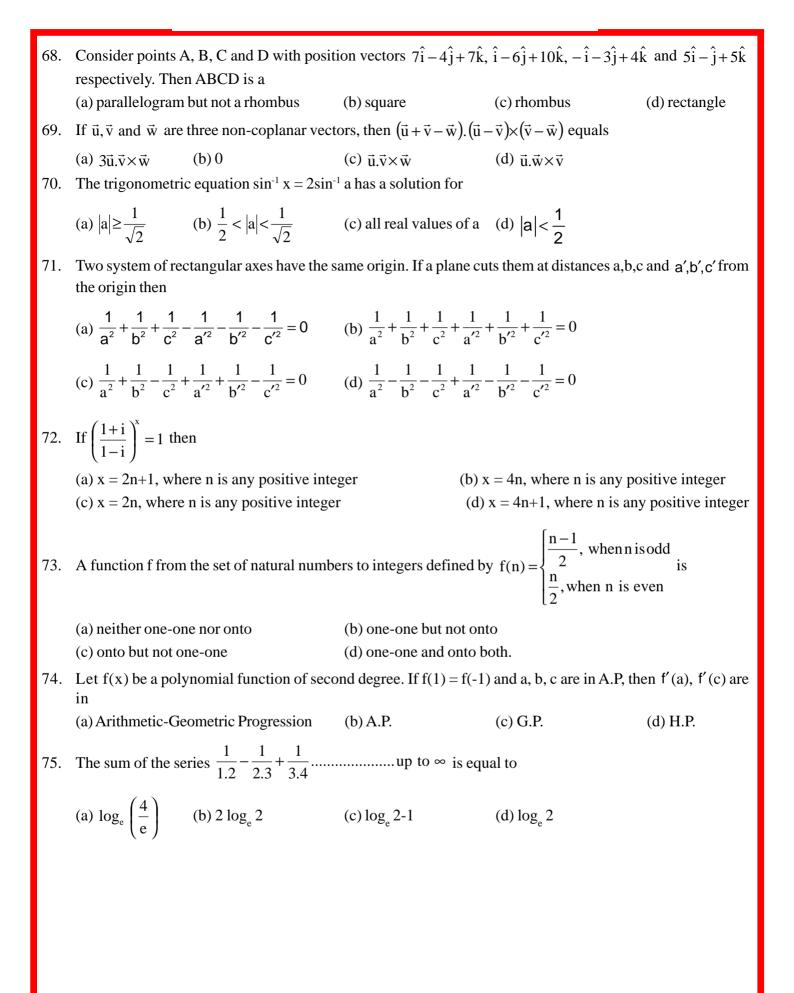
(a) ${}^{n+1}C_{r+1}$ (b) ${}^{n+2}C_{r}$ (c) ${}^{n+2}C_{r+1}$ $(d)^{n+1}C_{...}$

44. Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time.

(a)
$$\frac{u\cos\alpha}{f}$$
 (b) $\frac{u\sin\alpha}{f}$ (c) $\frac{f\cos\alpha}{u}$ (d) $u\sin\alpha$

The upper $\frac{3}{4}$ th portion of a vertical pole subtends an angle $\tan^{-1}\frac{3}{5}$ at a point in the horizontal plane through 45. its foot and at a distance 40 m from the foot.

(a) 80 m (b) 20 m (c) 40 m (d) 60 m



46. In a triangle ABC, medians AD and BE are drawn. If AD = 4, $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the $\triangle ABC$ is (a) $\frac{64}{3}$ (b) $\frac{8}{3}$ (c) $\frac{16}{3}$ (d) $\frac{32}{2}$ 47. If in a triangle ABC $a\cos^2\left(\frac{C}{2}\right) + \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c (a) satisfy a+b=c (b) are in A.P. (c) are in G.P. (d) are in H.P. $\vec{a}, \vec{b}, \vec{c}$ are 3 vectors, such that $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 1$, $|\vec{b}| = 2|\vec{c}|$ then $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is equal to 48. (b) 0 (c) - 7(d) 7 (a) 1 The value of the integral $I = \int_{0}^{1} x(1-x)^{n} dx$ is 49. (c) $\frac{1}{n+2}$ (d) $\frac{1}{n+1} - \frac{1}{n+2}$ (a) $\frac{1}{n+1} + \frac{1}{n+2}$ (b) $\frac{1}{n+1}$ 50. The value of $\lim_{x \to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x}$ is (b) 3(a) 0(c) 2(d) 1 The radius of the circle in which the sphere 51. $x^{2} + y^{2} + z^{2} + 2x - 2y - 4z - 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is (b) 1 (c) 2(a) 4(d) 352. A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1) B(2, 1, 3) and C(-1, 1, 2). Then the angle between the faces OAB and ABC will be (b) $\cos^{-1}\left(\frac{19}{35}\right)$ (c) $\cos^{-1}\left(\frac{17}{31}\right)$ (a) 90° (d) 30° 53. Let f(a) = g(a) = k and their nth derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n. Further if $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + f(a)}{g(x) - f(x)} = 4$ then the value of k is (b) 4 (a) 0(c) 2(d) 1 54. $\lim_{x \to \frac{\pi}{2}} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1 - \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi - 2x^3\right]} \text{ is }$ (b) $\frac{1}{2}$ (d) $\frac{1}{32}$ (a) ∞ (c)0If the equation of the locus of a point equidistant from the point (a_1, b_1) and 55. (a_2, b_2) is $(a_1 - b_2)x + (a_1 - b_2)y + c = 0$, then the value of 'c' is (b) $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$ (a) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ (d) $\frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 \right)$ (c) $a_1^2 - a_2^2 + b_1^2 - b_2^2$

 $|a a^2 1 + a^3|$ 56. If $|b \ b^2 \ 1+b^3| = 0$ and vectors $(1, a, a^2)$, (a, b, b^2) and (a, c, c^2) are non-coplanar, then the product abc equals $c c^{2} 1+c^{3}$ (c) - 1(d) 1 (a) 0(b) 257. The number of real solutions of the equation $x^2 - 3|x| + 2 = 0$ is (b) 2(a) 3(c) 4(d) 1 58. If the function $f(x) = 2x^2 - 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals (a) $\frac{1}{2}$ (b) 3 (c) 1(d) 259. If $f(x) = \begin{cases} x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is } \\ 0, & x = 0 \end{cases}$ (a) discontinuous every where (b) continuous as well as differentiable for all x (c) continuous for all x but not differentiable at x = 0 (d) neither differentiable nor continuous at x = 060. Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is (a) $(-1, 0) \cup (1, 2) \cup (2, \infty)$ (b) (0, 2)(c) $(-1, 0) \cup (0, 2)$ (d) $(1, 2) \cup (2, \infty)$ 61. If f: R \rightarrow R satisfies f(x + y) = f(x) + f(y), for all x, $y \in R$ and f(1) = 7, then $\sum_{i=1}^{n} f(r)$ is (a) $\frac{7n(n+1)}{2}$ (b) $\frac{7n}{2}$ (c) $\frac{7(n+1)}{2}$ (d) 7n+(n+1)62. The real number x when added to its inverse gives the minimum value of the sum at x equal to (a) - 2(b) 2(c) 1(d) - 163. Let R₁ and R₂ respectively be the maximum ranges up and down an inclined plane and R be the maximum range on the horizontal plane. Then R₁, R, R₂ are in (a) H.P (b) A.G.P (c) A.P(d) G.P. In an experiment with 15 observations on x, the following results were available: $\Sigma x^2 = 2830$, $\Sigma x = 170$ 64. One observation that was 20 was found to be wrong and was replaced by the correct value 30. The corrected variance is (a) 8.33 (b) 78.00 (c) 188.66 (d) 177.33 A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the 65. first five questions. The number of choices available to him is (a) 346 (b) 140 (c) 196 (d) 280 66. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A_2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then (a) $\alpha = 2ab, \beta = a^2 + b^2$ (b) $\alpha = a_2 + b_2, \beta = ab$ (c) $\alpha = a^2 + b^2, \beta = 2ab$ (d) $\alpha = a^2 + b^2, \beta = a^2 - b^2$ The number of ways in which 6 men and 5 women can dine at a found table if no two women are to sit 67. together is given by (c) 30 (a) 7×5 (b) 6×5 (d) 5×4

