Prepp

Practice, Learn and Achieve Your Goal with Prepp

UP PGT Recruitment

Mathematics

Simplifying **Government Exams**

MATHEMATICS

CODE :- 12

Time Allowed: Two Hours		Marks: 100
Name:	Roll No	

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

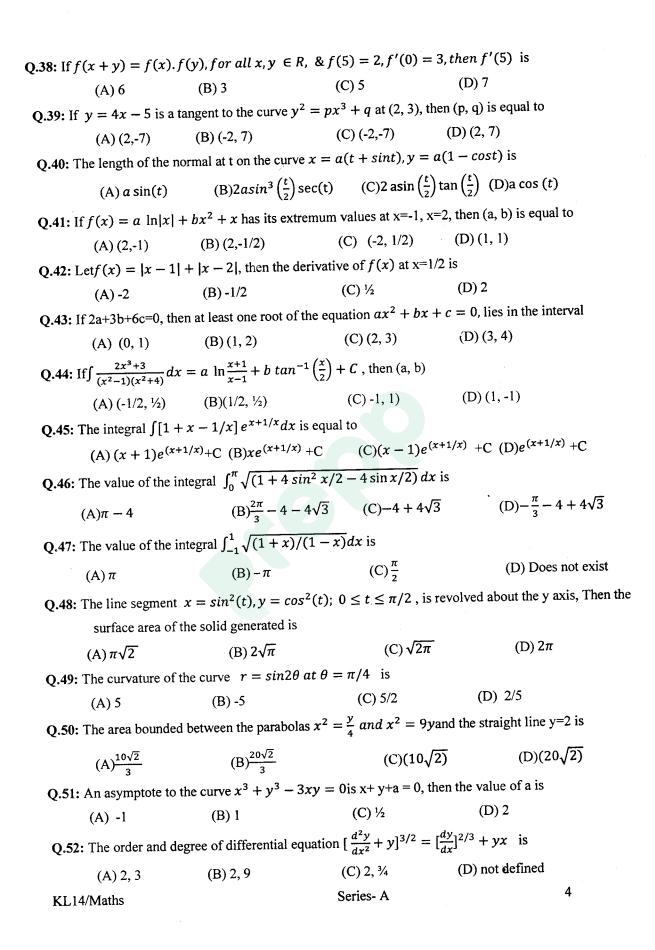
Series-A

		•	
Q.1: If A is a (3x3) non-s	singular matrix such the	at $AA^T = A^TA$ and $B = A^T$	$^{-1}A^{T}$, then BB^{T} is
(A) I + B	(B) I	(C) A+B	(D) AB
Q.2: If A is a (2x2) non-s	ingular matrix, then th	e value of adj(adj A) is	
(A) A	(B) I	(C) A^2	(D) –A
Q.3: Let P and Q be (3x3)) matrices with P≠ Q.	If $P^3=Q^3$ and $P^2Q=Q^2P$, the	in the determinant of (P^2+Q^2) is
(A) 1	(B) 0	(C) 2	(D) •2
Q.4: If A & B are (nxn) r	natrices, then which of	the following statements is	s generally invalid
(A) If A ⁴ has an i	nverse, so has A	(B) If AB has an inv	erse, so has B
$(C) \alpha A =\alpha A ,$	for any positive value	of α (D) $ A^{-1}BA^2 =$	A B
Q.5: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$. If $u_1 \& u_2$ are column	matrices such that $Au_1 =$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} & Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$
then $(u_1 + u_2)$ is			
(A) $[-1, 1, 0]^T$	(B) $[-1,1,-1]^T$	$(C)[-1,-1,0]^{T}$	(D) $[1,-1,-1]^T$
Q.6: If A is the singular n	matrix then $A(adj A)$ is	S	
(A) Identity mate	rix (B) null matri	x (C) scalar matrix	(D) symmetric matrix
Q.7: If A is skew symmetry	tric matrix of order (n	x n), then the trace of A is	
(A) n	(B) –n	(C) 0	(D) n^2
$\mathbf{Q.8:} \text{ If } A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \& A^{-1}$			
(A) 1		(C) ½	(D) -2
Q.9: If $\begin{vmatrix} \sin\alpha & \cos\beta \\ \cos\alpha & \sin\beta \end{vmatrix} = \frac{1}{2}$	$\frac{1}{2}$, where $\alpha \& \beta$ are act	ute angels, then the value o	$f(\alpha + \beta)$ is
(A) $2\pi/3$	(B) $\pi/3$	(C) $\pi/6$	(D) $-\pi/6$
Q.10: If A is a non-singular	lar matrix of order 3 su	adj A = 225, the	$\ln A' $ is
(A) 225	(B) 25	(C) 15	(D) 20
Q.11: The largest value o	f a third order determin	nant, whose elements are 0	or 1 is
(A) 1	(B) 0	(C) 2	(D) 3
Q.12: If P(1,2), Q(4,6), R	(5,7) and $S(a,b)$ are th	e vertices of a parallelogran	m PQRS, then (a, b) is
(A) (2, 4)	(B)(3,4)	(C)(2,3)	(D) (3, 5)
Q.13: The distance between	een the parallel lines y	= 2x + 4 and $6x = 3y +$	5 is
$(A)\frac{17}{\sqrt{3}}$	(B) 1	(C) 3	$(D)\frac{17\sqrt{5}}{15}$
Q.14: If the line $y = mx$	$+\frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a co	ommon tangent to the paral	$y^2 = 16\sqrt{3} x \text{ and the}$
ellipse $2x^2 + y^2$	= 4, then the value of	m^2 is	
	(B) 16	(C) 2	(D) -2
KL14/Maths		Series- A	1
			· ·

Q.15: An equation of	a plane parallel to the	plane $x - 2y + 2z$	= 5 and at a unit distance from origin is
(A) x - 2y +	2z = 3	(B)x-2y+2	z = -1
(C) $x - 2y +$	2z = 1	(D)x - 2y + 2	z = -5
Q.16: The length of th	e diameter of the circl	e which touches the	x axis at the point (1,0) and passes
through the poi	nt (2,3) is		
(A) 10/3	(B) 3/5	(C) 6/5	(D) 5/3
Q.17: An ellipse is dra	wn by taking a diamet	er of the circle($x - \frac{1}{2}$	$(1)^2 + y^2 = 1$, as its semi minor axis
and a diameter of	of the circle $x^2 + (y -$	$(2)^2 = 4$, as semi m	ajor axis. If the centre of the ellipse is
the origin and its	axis are the coordinate	e axis, then the equat	tion of the ellipse is
$(A)4x^2 + y^2 =$	4	$(B)x^2 + 4y^2 =$	= 8
$(C)4x^2 + y^2 =$	8	$(D)x^2 + 4y^2 =$	= 16
Q.18: The equation o	f the tangent to the cur	eve $y = x + \frac{4}{x^2}$, that	is parallel to x axis is
(A) y=1	(B) $y=2$	(C) y=3	(D) $y=0$
Q.19: If two tangents	are drawnfrom a poin	t P to the parabola y	² =4x are at right angles, then the locus
of P is			
(A) $2x+1=0$	(B) $x=-1$	(C) $2x-1=0$	(D) $x=1$
Q.20: If the vectors \vec{a}	$\bar{b} = i - j + 2k, \bar{b} = 2i$	$+4j+k, \bar{c}=\lambda i+$	$j + \mu k$ are mutually orthogonal,
then (λ, μ) is			•
(A)(2,-3)	(B) (-2,3)	(C) (3,-2)	(D) (-3,2)
Q.21:The line L is given	$ven by \frac{x}{5} + \frac{y}{b} = 1, pa$	asses through the poi	int (13,32). The K is parallel to L and
has the equation	$ \sin\frac{x}{c} + \frac{y}{3} = 1, then then then then then then then then$	he distance between	L and K is
$(A)\sqrt{17}$	(B) $\sqrt{17}/12$	(C)23/ $\sqrt{17}$	$(D)\sqrt{17}/\sqrt{15}$
Q.22: The circle x^2 +	$y^2 = 4x + 8y + 5$, in	tersect the line $3x -$	4y = m at two distinct points if
			35 < m < 85 (D) $-85 < m < -35$
Q.23: Let \hat{a} and \hat{b} are	two unit vectors. If the	e vectors $\hat{c} = \hat{a} + 2\hat{b}$	and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to
each other, then	the angles between \hat{a}	and \hat{b} is	
$(A) \pi/6$	$(B)\pi/2$	(C) $\pi/3$	$(D)\pi/4$
Q.24: Let the line $\frac{x-2}{3}$	$\frac{y-1}{-5} = \frac{y-1}{2}$ lies	in the plane $x + 3y$	$-\alpha z + \beta = 0$, then (α, β) is
(A) (6,-17)	(B) (-6,7)	(C) (5,-15)	(D) (5,-15)

KL14/Maths

Series- A


2

Q.25: If	$\bar{a}, \bar{b}, \bar{c}$ are three	mutually perpendic	ular vectors each of mag	nitude unity, then $ \bar{a} + \bar{b} + \bar{c} $ is
	equal to			·
	(A) 3	(B) 1	(C)√3	(D) 2
Q.26: If	θ is the angle θ	between $ar{a}$ and $ar{b}$ su	ch that $\bar{a} \cdot \bar{b} > 0$, then	
				$(D)0 \le \theta \le 2\pi$
Q.27: T	he point of inte	rsection of the curve	$s r^2 = 4 \cos\theta$ and $r =$	$1 - \cos\theta$ is
				(D) $(-2\sqrt{2}, 80^{\circ})$
Q.28: If	$f : R \to R \text{ is given}$	$ext{ven by } f(x) = 3x - $	5, then $f^{-1}(x)$ is	
. ($(A)\frac{1}{3x-5}$		$(B)\frac{x+1}{3}$	5
((C) Does not ex	ist because $f(x)$ is r	not one-one (D) Do	es not exist because $f(x)$ is not on to
Q.29: If	$f(x) = \sin^2 x$	$c + \sin^2\left(x + \frac{\pi}{3}\right) + c$	$\cos x.\cos\left(x+\frac{\pi}{3}\right)$ and g	$\left(\frac{5}{4}\right) = 1$, then $gof(x)$ is
		(B) 0	(C) $\sin x$	(D) $\cos x$
Q.30: I	f the non-zero i	numbers x, y, z are ii	n A.P. and $tan^{-1}(x)$, tan	$t^{-1}(y)$, $tan^{-1}(z)$ are also in A.P., then
			$(C)x^2 = yz$	
Q.31: If	$f a^x = b^y = c^z$	and a, b, c are in G	P., then x, y, z are in	
	(A) AP	(B) GP	(C) HP	(D) $x=y=z$
Q.32: T	he HM of two n	numbers is 4. If the a	rithmetic mean A and geo	ometric mean G satisfy the
re	lation $2A+G^2=2$	27, then the numbers	are	
	(A) 6, 3	(B) 5, 4	(C) 5,-5/2	(D) -3,1
Q.33: 1	If $\lim_{n\to\infty} \left(\frac{x^2}{x+1}\right)$	(-ax-b)=0, the	n the value of (a, b) is eq	ual to
	(A)(1,-1)	(B) (2,-1)	(C) (-1,2)	(D)(2,2)
Q.34: ⁷	The value of lin	$n_{x\to 0} \{ \tan\left(\frac{\pi}{4} + x\right) \}^{1}$	/x is	
		(B) -1	$(C)e^2$	(D) <i>e</i>
Q.35: 1	If $f(x) = a \sin x$	$ x + be^{ x } + c x ^3 a$	and if $f(x)$ is differentiable	le at x=0, then
	(A) $a = b =$	c = 0 (B) $a=b=0$,	$c \in R$ (C) $b=c=0$	$0, a \in R$ (D) $a=c=0, b \in R$
Q.36: I	Let $f(x) = \begin{cases} \frac{1}{ x } \\ ax \end{cases}$	$ x \ge 1$; if $f^2 + b$, $ x < 1$	f(x) is continuous and differential $f(x)$	fferentiable at any point, then
			b=3/2 (C) $a=1,b=-1$	
Q.37: L	et $f(x)$ be a tw	ice differentiable fur	action such that $f''(x) =$	-f(x) and $f'(x) = g(x)$,
	$h(x) = \{f(x)\}$	$(2 + \{g(x)\}^2)$, If h (5)	5) = 11, then h (10) is equ	al to
	(A) 22	(B) 11	(C) 0	(D) -22
		,		
	•			

KL14/Maths

Series- A

3

(A) $3/2 + \frac{c}{x^2}$	(B) $-3/2 + \frac{c}{x^2}$	(C) cx^2 –	1/x	$(D) cx^2 + 1/x$
Q.54: The particular in	stegral of $y'' + y = ta$	an (x) is		
$(A) - \cos(x) \ln x$	(secx + tanx)	(B) cos (<i>x</i>) ln(secx	+ tanx)
$(C)-\sin(x)\ln(x)$	(secx + tanx)	(D) $\sin(x)$) ln(secx	+ tanx)
Q.55: The singular solu	ution of the differenti	al equation $y = xy' + y'$	$-y'^2$ is	
$(A)x^2 + 4y = 0$	$(B)x^2 - 4y =$	0 (C) $-x^2$ -	4y = 0	$(D)-x^2+4xy=0$
Q.56: The curve in w	hich the slope of the t	tangent at any point e	qual to the	ratio of abscissa to the
ordinate of the p	oint is an			
(A) Ellipse		(C) Rectangular l	hyperbola	(D) Circle
Q.57: If $f'(x) = f(x)$		B) is equal to		
()	$(B)2e^2$	$(C)3e^2$	`	(D) $3e^3$
Q. 58: The value of i^{14}		(where $i = \sqrt{-1}$) i	s	
(A) 1	(B)-1	(C) 0		
Q. 59: The number of re				
(A) 4	(B) 3	(C) 2	(D) 0	. 2
Q. 60: If the ratio of the	roots of the equation	$ax^2 + bx + c = 0 is$	r then $\frac{(r+1)^{-1}}{r}$	$\frac{r^{-1}}{r}$ is equal to
$(A)\frac{a^2}{bc}$	$(B)\frac{b^2}{ca}$	$(C)\frac{c^2}{ab}$	(D	$\frac{1}{abc}$
Q. 61: If Z is a complex	number, then the grea	ntest and lowest value	of $ Z+1 $,	if $ Z+1 \leq 3$ are
(A) 5, 0	(B) 8, 0	(C) 6, 0	(D) 9, 0	
Q. 62: The smallest posit	ive integral value of	<i>n</i> for which $\left(\frac{1+i}{1-i}\right)^n =$	1 is	
(A)8	(B) 12	(C) 16	(D) 4	
Q.63: If 1, ω , ω^2 ,	ω^{n-1} ar	e the n, n th roots of ur	nity, then tl	he value of
$(1-\omega)(1-\omega)$	$(1 - \omega^{n-1})$) is		
(A) 0	(B) 1	(C)n	$(D)n^2$	
Q. 64: The complex number		and Cos x - ; Sin2x ar	e conjugat	e to each other for
(A) x = (n+1)	• •	(C) x = 0		(D) no value of x
Q. 65: Let $f(x) = \sqrt{2}x^{2}$	$x^2 + 3x - \sqrt{3}$ and $g(x)$	$(x) = x - \sqrt{2}$ are two	polynomia	Is in x with real
coefficients, when	n f(x) is divided by $g($	(x) the remainder is $5\sqrt{x}$	$\sqrt{2} - \sqrt{3}$. 1	The quotient is given by
$(A) \sqrt{2}x -$	- 5 (B) √	$\overline{2}x + 5$ (C) $\sqrt{2}$	2x-3	(D) $\sqrt{2}x + 3$
Q. 66: Let $(a^*(B)^2 = a^2 * b^2)$	for 'a' and 'b' are in	a group G, then a*b	equals	
(A) b*a	(B) e	(C) a*e		(D) b*c
KL14/Maths		Series- A		£
IZD I T/ (VIGUE)		Delies- W		5

Q.53: The general solution of the first order equation $x^2y' - 2xy = 3$ is

Q. 67: The sum of 23 and 31 m	nodulo 45 is				
(A) 5	(B) 6	(C)	7	(D) 9	
Q. 68: If 'a' is a generator of a	finite cyclic gr	oup G of order	n, then the	e other generators of	f G are the
elements of the form ar,	where r is a				
(A) Prime numbe	er (B) Comp	oosite number	(C) Rela	tively prime to n	(D) Zero
Q. 69: What is the order of the	cyclic (1, 4, 5,	7)			
(A) 4	(B) 1	(C)		(D) 2	
Q. 70: How many different sign	gnals can be giv	en with 5 differ	ent flags b	by hosting any num	ber of them at
a time					
(A) 325	(B) 626	` '	253	(D) 352	
Q. 71: What is the chance of g	etting multiple	of 2 on one and	multiple o	of 3 on the other in	a single throw
of dice					
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36	
Q. 72: A person draws two car	rds with replace	ment from a pa	ck of 52 ca	ards. What is the pro	obability that
he gets both the cards of	f same suit.				
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16	
Q. 73: The value of $P(x=2)$ in a	a binomial distr	ibution when p=	= 1/6 and r		
$(A)^{\frac{3125}{7776}}$			$(C)^{\frac{12}{77}}$	70	$0)\frac{25}{7776}$
Q.74: A purse contains 4 cop	per coins and 3	silver coins; the	e second p	ourse contains 6 cop	per coins
and 2 silver coins. A coir	n is taken out of	any purse, the p	probability	that it is a copper of	coin is
(A) 4/7	(B) 3/4	(C) 3/7		(D) 37/56	
Q.75: If the probability of a c	lefective bolt is	$\frac{1}{10}$, then the m	oment of		wness is
(=)	(B) 0.178	(C) 1.78		(D) 0.00178	
Q.76: A car hire firm has 2 c	ars, which hires	out day by day	. The num	ber of demands for	a car on each
Day is distributed as a	a poisson distrib	oution with mean	n 1.5. The	value of the propor	tion of days on
which neither car is use	ed.				
(A) 0.2231	(B) 0.2131	(C) 0.2		(D) 0.223	
Q.77: Area of the normal cur	ve between me	an ordinate and	ordinates	at 3 sigma distances	s from the
mean percentage of the	e total area is				
(A) 48.865	(B) 49.865	(C) 4'		(D) 46.865	
Q.78: The numbers 3.2, 5.8,	7.9, and 4.5 hav	e the frequenci	es x , $(x+2)$), $(x-3)$ and $(x+6)$ re	espectively. If
the arithmetic mean is	4.876, then the	volume of x is			
(A) 4	(B) 3	(C)	0	(D) 5	
KL14/Maths		Series- A	L		6

Q.79: If the mean and r	nedian of moderately as	Symmetrical series are 26 9	8 and 27.9 respectively what
would be its most	probable mode	y are 20.8	and 27.9 respectively what
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33.1
Q.80: If mean 30, $S.D =$	8, Karl Pearson's coeff	Ficient of skewness = $+0.4$	O the value of Mode:
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8
Q.81: In a frequency dis	stribution the coefficien	ts of skewness based on a	uartiles is 0.6. If the sum of
the upper and lower	quartiles is 100 and me	edian is 38, then the value	of upper questile:
(A) 50	(B) 70	(C) 60	(D) 80
Q.82: Given $\mu_1 = 0$, $\mu_2 = 0$	$=40, \mu_3=-100, \mu_4=$	= 200 then the value of the	ne skewness in the distribution
is	7,14	- value of the	ie skewness in the distribution
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64
Q.83: If the value of coeff	ficient of correlation bet	tween two series is + 0.9 a	nd its probable amount
0.0128, what would b	e the value of n	Joines 15 1 0.9 a	nd its probable errors is
(A) 100	(B) 10	(C) 105	(D) 95
Q.84: The coefficient of co	orrelation between the o	lebenture prices and share	prices of a company was
+ 0.8. If the sum of the	squares of the differen	ces in ranks was 33, then t	he value of n is
(A) 10	(B) 11	(6) 6	(D) 8
Q.85: Given that the regres	sion equations of 'Y' or	n 'X' and 'X' on 'Y' are re	espectively V=V and
4X = 3+Y, and that th	e second moment of x a	about the origin is 2. Then	the SD of Vis
(A) 0	(B) 1		(D) -2
Q.86: The angle between tw	o forces each equal to '		also equal to D :
(A) 60°	(B) 180°	(C) 120°	(D) 90°
Q.87: The components of a fe	orce of magnitude 10 N	in the direction making as	(D) 90
on its sides are		and the state of t	igics of 50° and 60°
$(A) 5\sqrt{3} N,$	(B) 5 N,	(C) $5\sqrt{2} N, 5N$	(D) = (E ₁ ,
Q.88: Three coplanar forces		in equilibrium. The angle 1	(D) $5\sqrt{5}N$,5N
second is 60° and that	between the second and	the third is 150° then the	ratio of the magnitudes of
forces is		and is 150, then the	ratio of the magnitudes of
(A) 1: 2: $\sqrt{3}$	(B)1: $3:\sqrt{3}$	(C) 1:1 : √3	_
Q.89: The resultant of two unl		ος 1:1: γ3	(D) $2:1:\sqrt{3}$
distance of 12 cm. from	the line of action of the	smaller forces, then the di	s along a line at a
lines of actions of the tw	o forces is.	smarter forces, then the di	istance between the
(A) $\frac{16}{3}$ cm	$(B)\frac{17}{3}cm$	$(C)^{\frac{14}{3}}$ cm	$(D)\frac{13}{3}cm$
KL14/Maths		Series- A	7

Q.90: The moment of a force of ma	agnitude 25N acting alor	ig the positive direction of	x-axis about the	
point (-1,3) is			(D) AE I Inite	
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units	
Q.91: A couple of moment -60 unit	s act in the plane of the p	paper. The arm of the coup	le if each force	
is of magnitude 10 units is				
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units	
Q.92: The average speed of a bicy		Km, if it travels the first 10	Km. at 20 km/hr,	
second 12 km in 1 hr and thin	rd 24 km at 8 km/hr. is		(D) 0(1 /l)	
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/hr	
Q.93: A particle starts with a veloc	ity of 30m/s and moves i	in a straight live with const	ant acceleration. If	
its velocity at the end of 6 sec	conds be 18 m/s, then the	distance traveled by the pa	article before	
it comes to rest is				
(A) 224m	(B) 225m	(C) 220m	(D) 215m	
Q.94: A ball is projected vertically	upward with a velocity of	of 112 m/s. How high will i	t rise	
(A) 640m	(B) 630m	(C) 635m	(D) 639m	
Q.95: A man walking at the rate of	f 6 km/h towards east, ra	in appears to fall vertically	downward. Actual	
direction of the rain if its act	ual velocity is 12 km/h is		5.50	
(A) 50°	(B) 60°	(C) 45°	(D) 55°	
Q.96: The path of projectile in vac	uum is a		- · -···	
(A) Circle	(B) Straight line	(C) Parabola	(D) Ellipse	
Q.97: A particle is projected with a	a velocity of 24m/s. at an	angle of elevation of 60°,	then its time of	
flight is				
(A) $(2.4)\sqrt{3}$ Seconds		(B) $(2.3)\sqrt{3}$ Seco	nds	
(C) $(2.2)\sqrt{3}$ Seconds		(D) $(2.1)\sqrt{3}$ Second		
Q.98: A particle is projected up a	smooth inclined plane of	inclination 60° along the li	ne of greatest	
slope. If it comes to instan	taneous nest after 2 seco	nds, then the velocity of pr	ojection is (g=9.8m/s ²)	
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se	
Q.99: Like parallel forces act at the vertices A, B, C of a triangle and are proportional to the lengths				
BC, CA and AB respective				
(A) Centroid		(B) Circum Centre		
(C) In-Centre		(D) None of these		
Q.100: A horizontal rod AB is sus	pended at its ends by two	vertical strings. The rod is	s of length 0.6	
meter and weight 3 units. I	ts centre of gravity is at	a distance 0.4 meter from f	force A, then the	
tension of the string at A in				
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0	
KL14/Maths	Seri	ies- A		

KL14/Maths

Prepp

Latest Sarkari jobs, Govt Exam alerts, Results and Vacancies

- Latest News and Notification
- Exam Paper Analysis
- ► Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy & Subject-wise Books

To know more Click Here

