	(To be fil	led up by th	e candi	date by hi	ue/black	ball-po	int pen)	
Roll No.								,
Serial No.	of OMR A	nawer Shee	ta.,,,	.ovii.li				
Day and I)ate	**********			******	- 6	(Signature of I	nviollator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given, It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Auswer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Rall Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Buoklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in this cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at 110 and of the Test.
- 13. You are not permitted to leave the Examination Half until the end of the fact.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 48

ROUGH WORK रफ़ कार्य

No. of Questions: 180

Time : 2 Hours

Pull Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect
answer. Zero mark will be awarded for each unattempted
question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This Question Booklet comprises two Sections viz. Section-A and Section-B:

Section-A: This is compulsory. This contains two sub-sections having questions of two disciplines viz.


- (i) Busic Environmental Science
- (ii) Chemistry

A candidate is required to attempt above both all sub-sections are compulsory.

Section-B: This contains three Sub-sections having questions of three disciplines viz.,

- (i) Life Science
- (ii) Physics
- (iii) Geology

A candidate is required to attempt only one from above three Sub-sections.

SECTION - A

(i) BASIC ENVIRONMENTAL SCIENCES (Compulsory for all)

- 01. Among the following ecosystems which have the least net primary productivity:
 - Swamp and marsh (1)
 - Tropical rain Forest (2)
 - Savanna (3)
 - Cultivated land (4)
- 02. Which of the following statement is incorrect?
 - R-selected population have small size of individuals
 - K-selected population have long life span (2)
 - R-selected population have short seed life span (3)
 - Development time of k-selected population are slow (4)
- 03. Largest biogeographical zone in India is:
 - (1) Himalayan
 - Desert (2)
 - (3) Gangetic Plain
 - Deccan Peninsula (4)
- 04. Which of the following is not correct? An ecological niche may be said to be:
 - How an organism lives (1)
 - Where an organism lives (2)
 - An n-dimensional hyper-volume $\{3\}$
 - A summary of an organism's tolerances and requirements

05.	The formula	for exponential	population	growth is:
-----	-------------	-----------------	------------	------------

- (1) dN/dT = rN
- (2) dT/dN = rN
- (3) dN/rN = dT
 - (4) rN/dN = dT

06. In a population unrestricted reproductive capacity is called as:

- (1) Carrying capacity
- (2) Biotic potential
- (3) Birth rate
- (4) Fertility are

07. Human population growth curve is:

- (1) S-shaped curve
- (2) Parabola curve
- (3) J-shaped curve
- (4) Zigzag curve

08. In a food chain of grassland ecosystem the top consumers are :

- (1) Herbivorous
- Carnivorous
- (3) Bacteria
- Either carnivorous or herbivorous

09. Ecotype is a type of species in which environmentally induced variations are:

- Temporally
- Genetically fixed
- Genetically not related
- None of the above

P.T.O.

- 10. Energy flow in a ecosystem is:
 - (1) Unidirectional
 - (2) Bidirectional
 - (3) Multidirectional
 - (4) None of the above
- 11. The realized niche of an organism is:
 - (1) the area a species can occupy in the face of exploitive competition
 - (2) the habitat of a species within a community resulting from clumping
 - (3) the habitat that exists in nature as opposed to the ideal
 - (4) the life pattern that the organism actually assumes
- 12. A barnacle grows on a whale, doing it no harm. This is an example of:
 - (1) Vitalism
 - (2) Mutualism
 - (3) Parasitism
 - (4) Commensalism
- 13. Which of the following is not an example of symbiosis?
 - (1) Monarch butterflies
 - (2) Lichens
 - (3) Mycorrhizae
 - (4) Tapeworms and humans

- 14. Which of the following statement is true?
 - (1) Oligotrophic lakes contain more nutrients than eutrophic lakes
 - (2) Xerarch succession is primary succession that occurs in saltwater environments
 - (3) Most ecologists believe that most communities achieve a stable, unchanging climax vegetation
 - (4) A mature ecosystem has greater species richness, greater biomass and less net productivity than a younger stage of succession
- 15. Which of the following pairs mismatched?
 - (1) Tundra-permafrost
 - (2) Coniferous forest-evergreen trees
 - (3) Savanna-acacia tree
 - (4) Prairie-epiphytes
- 16. Which of the following are important biotic factors that can affect the structure and organization of biological communities?
 - (1) nutrient availability, soil pH, light intensity
 - (2) precipitation, wind, temperature
 - (3) predation, competition, disease
 - (4) 1 and 2 only

P.T.O.

- 17. Which of the following is the formula for determining the rate of growth of a population?
 - (1) (birth rate-death rate) + immigration rate + emigration rate
 - (2) (immigration rate + emigration rate) (death rate + birth rate)
 - (3) birth rate + death rate + immigration rate + emigration rate
 - (4) (birth rate + immigration rate)- (death rate + emigration rate)
- 18. Most people have pesticides and other environmental contaminants in their body. This is an example of:
 - (1) healthy cating
 - (2) bioamplification
 - (3) biomagnification
 - (4) bioaccumulation
- 19. After a forest fire, the first signs of ecological recovery occur with the appearance of:
 - (1) large herbivores
 - (2) grasses and small shrubs
 - (3) predators
 - (4) trees
- 20. Food webs differ from food chains in that they:
 - (1) show the actual movement of energy within the ecosystem
 - (2) show more of the available feeding relationships in an ecosystem
 - (3) show the distribution of biomass within an ecosystem
 - (4) identify the keystone speies within an ecosystem

21.	In the nitrogen	cycle, the term	"denitrification"	refers to
-----	-----------------	-----------------	-------------------	-----------

- (1) The conversion of ammonia into nitrogen
- (2) The conversion of nitrogen into ammonia
- (3) The conversion of nitrates into nitrogen gas
- (4) The conversion of nitrogen gas into nitrates
- 22. The amount of energy that is passed from one organism to the next in a food chain is:
 - (1) 5%

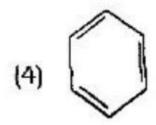
(2) 10%

(3) 15%

- (4) 20%
- 23. Which among the following is the most abundant Green-House-Gas (GHG) in the earth's atmosphere?
 - (1) Carbon dioxide
 - (2) Water vapour
 - (3) Sulphur dioxide
 - (4) Tropospheric Ozone
- 24. The 'thickness' of stratospheric Ozone layer is measured in/on:
 - (1) Sieverts
 - (2) Dobson units
 - (3) Melson units
 - (4) Beaufort Scale
- 25. Which of the following is an example of secondary succession?
 - (1) reforestation of the cedar forest of the northwest
 - (2) landscaping at a golf course
 - (3) sedimentation of the bottom of drained lake
 - (4) scrub grasses growing on a newly exposed dune

P.T.O.

- 26. In a terrestrial ecosystem, the trophic level that would contain the largest biomass would be the:
 - (1) Producers.
 - (2) Primary consumers
 - (3) Secondary consumers
 - (4) Highest order consumers
- 27. Chloroluorocarbons (CFCs) in the atmosphere
 - (1) Cause ozone to be broken down
 - (2) Change oxygen into ozone
 - (3) Convert sunlight into ozone
 - (4) Convert ozone into methane
- 28. As a population reaches its carrying capacity, there may be an increase in competition for :
 - (1) Food
 - (2) Mates
 - (3) Shelter
 - (4) All of the above
- 29. Largest share of soil type in India is:
 - (I) Black soil
 - (2) Laterite
 - (3) Alluvial
 - (4) Red Soil



- 30. What does the population change of lichen indicate?
 - (1) Air pollution
 - (2) Soil politation
 - (3) Water pollution
 - (4) None of the above

(ii) CHEMISTRY (Compulsory for all)

- 31. Which of the following hydrocarbons has the shortest C-C bond length?
 - (1) CH₂ = CH₂
 - (2) CH₃CH₃
 - (3) CH = CH

- 32. Which of the following carbonium ions will be most stable?
 - (1) CH, CH,
 - (2) [⊕]CH,
 - (3) (CH₃)₂ CH
 - (4) $CH_2 = CHCH_2$
- 33. The combustion of Pentane produces:
 - (1) Pentene
 - (2) HC1 + H2O
 - (3) Pentyne
 - (4) CO₂ + H₂O

34. The	monomer	for	Nec	prene	is	1
---------	---------	-----	-----	-------	----	---

- (1) Acrylonitrile
- (2) 1, 3 Butadiene
- (3) Isoprene
- (4) Chloroprene

35. 1, 3 - Butadiene reacts with bromine to mainly give :

- (1) 3, 4 Dibromo 1 butene
- (2) 4 Bromo 1 butene
- (3) 1, 4 Dibroma 2 butene
- (4) 1 Bromo 2 butene

36. Ozonolysis of 2- butyne gives:

- (1) Formic acid
- (2) Propanoic acid
- (3) Acetic acid
- (4) Butanoic acid

37. When glycerol is heated with potassium hydrogen sulfate (KHSO₄), it forms:

- (1) Acrolein
- (2) Acetic acid
- (3) Allyl alcohol
- (4) Propionic acid

P.T.O.

38.	Acetaldehyde	on	treatment	with	Fehling's	solution	gives	a
	precipitate of:				***		3	

(1) Cu

(2) Ag

(3) CuO

(4) Cu₂O

39. Calcium acetate on strong heating gives:

- (1) Methane + CaCO₃
- (2) Ethane + CaCO₃
- (3) Acetone + CaCO₃
- (4) Ethane + CaO

40. Which of the following is a thermosetting polymer?

- (1) Nylon 6.10
- (2) Polypropene
- (3) Teflon
- (4) Bakelite

41. Ethyl acetoacetate reacts with phenylhydrazine to give:

- (1) Antipyrine
- (2) 4- Methyl uracil
- (3) Barbituric acid
- (4) Hydantoin

42.	Phenol	on distillati	on with	Zinc	dust	gives
-----	--------	---------------	---------	------	------	-------

- (1) Phenylzine
- (2) Benzene
- (3) Cyclohexanone
- (4) Benzoic acid

43. Hydrolysis of benzal chloride gives:

- (1) Phenol
- (2) Benzyl alcohol
- (3) Benzaldchyde
- (4) Benzoyl chloride

44. Benzamide reacts with Br2 and KOH to give:

- (1) Benzene
- (2) Benzylamine
- (3) Benzonitrite
- (4) Aniline

45. Phenylmagnesium bromide reacts with CO₂ followed by acid hydrolysis to form:

- (1) Phenol
- (2) Benzoic acid
- (3) Bromobenzene
- (4) Acetophenone

	(1)	Ethanol	(2)	Phenol
	(3)	Acetic acid	(4)	Formic acid
47.	Whi	ch of the following carbohy	drate	s is not a reducing sugar?
	(1)	Glucose		
	(2)	Sucrose		
	(3)	Fructose		
	(4)	Lactose		
48.	Who	en aniline is heated with g	lycer quin	ol in the presence of sulfuric oline. This reaction is called :
	(1)	Fischer Synthesis		
	(2)	Corey-House Synthesis		
	(3)	Diazotization		
	(4)	Skraup Synthesis		•
49	. Ber		n the	presence of H ₂ SO ₄ catalyst to
	(1)	n-Propylbenzene		
	(2)	Benzophenone		
	(3)	Cumene		•
	(4)	Acetophenone		

46. Which of the following compounds is most acidic?

- 50. Octane number of gasoline is a measure of its:
 - (1) Knocking tendency
 - (2) Ignition delay
 - (3) Ignition temperature.
 - (4) Smoke point
- 51. For an isothermal free expansion of an ideal gas into vacuum, which of the following represents the correct set of values?
 - (1) $\Delta U = 0, q > 0, w < 0$
 - (2) $\Delta U > 0$, q > 0, w = 0
 - (3) $\Delta U = 0$, q = 0, w = 0
 - (4) $\Delta U < 0, q = 0, w < 0$
- 52. If a sol. is saturated with silver acetate ($K_{\infty} = 1.9 \times 10^{-3}$), which of the following reagent will increase the solubility of silver acetate:
 - (1) sodium acetate
 - (2) ammonia
 - (3) silver nitrate
 - (4) sodium chloride
- 53. The equilibrium constant of a gaseous reversible reaction is expressed in terms of K, K, and K, respectively if the concentration of species involved are expressed in terms of partial pressure, activity and mole fraction. Which one of these equilibrium constants will vary with the change in total pressure of the reaction mixture?
 - (1) K
 - (2) K
 - (3) K
 - (4) all the three

·

P.T.O.

- 54. The maximum external work that can be obtained from a system is represented by :
 - (1) AU
 - (2) △ H
 - (3) AS
 - (4) 4 G
- 55. An aqueous solution of gold (III) nitrate, Au(NO₃)₃ is electrolysed with a current of 0.025 A until 1.2g of Au (atomic weight 197) has been deposited at the cathode. The quantity of electricity passed is:
 - (1) 2.76×10^3 C
 - (2) 1.76 × 10³ C
 - (3) 2.58×10^3 C
 - (4) 0.58 × 103 C
- 56. The kinetics of a reaction 2X → 4Y + Z was measured independently for three different initial concentrations of X : 0. 10, 0.08 and 0.06 mol L⁻¹. The half-life of the reaction was found to be 120 minutes for all these concentrations. The order of the reaction is :
 - (1) 0
- (2) 1
- (3) 2
- (4) 3
- 57. For a solution showing negative deviation from Roult's law, the false statement is:
 - (1) $\Delta H_{\text{mixing}} < 0$
 - (2) $\Delta V_{\text{mixing}} < 0$
 - (3) $P_{total} > x_A P_A^0 + x_B P_B^0$
 - (4) $\Delta S_{\text{mixing}} > 0$

- 58. The extent to which a real gas departs from ideal behaviour may be depicted in terms of a function called compressibility factor (z), which is defined as:
 - (1) RT/M
- (2)
- pV/nRT (3) V/RT
- 59. At 25°C the solubility product of CaF in water is 3.2 × 10⁻¹¹. The solubility (in mole kg of water) of the salt at the same temperature is:
 - (1) 4.0×10°

(3) 2.5×104

- 60. Which of the following thermodynamic equation is NOT correct?
 - $(1) \quad \left(\frac{\partial G}{\partial P}\right)_{r} = V$
 - $(2) \quad \left(\frac{\partial G}{\partial T}\right)_{P} = -S$

 - (3) $\left(\frac{\partial A}{\partial T}\right)_{V} = S$ (4) $\left(\frac{\partial A}{\partial V}\right)_{T} = -P$
- 61. What will be the E value at the equivalence point of titration of Fe against KMnO ? (E° = 0.77V and E
 - (1) Much less than 0.77 V
 - Between 0.77 V and 1.52 V
 - 0.77 V
 - 1.52 V (4)

- 62. According to Nernst distribution law for the distribution of benzoic acid between water and benzene, the correct form for K_D is [C_w is concentration in aqueous layer & C_b is the concentration in benzene layer respectively].
 - (1) $K_D = C_b/C_w$
 - (2) $K_D = C_w/n \sqrt{C_b}$
 - (3) $K_D = C_w^2/C_b$
 - (4) $K_D = n \sqrt{C_w/C_b}$
- 63. What is the pH of a buffer solution containing 0.01 M acetic acid (pka = 4.74) and 0.1 M sodium acetate?
 - (1) 2.74
- (2) 3.74
- (3) 4.74
- (4) 5.74
- 64. At 300 K one mole of an ideal gas expands reversibly and isothermally from 1 litre to 10 litres. What is the entropy change for the process?
 - (1) 9.2 calK 1 mol 1
 - (2) 6.9 calK mol 1
 - (3) 4.6 calK 1 mol 1
 - (4) 2.3 calK mol 1
- 65. Which one of the following does not express the condition for a spontaneous process?
 - (1) $(\Delta U)_{s,v} \leq 0$
 - (2) $(\Delta S)_{U,V} \leq 0$
 - (3) $(\Delta A)_{r,v} \leq 0$
 - (4) $(\Delta G)_{\gamma,p} \leq 0$

	(1)	F-cent	re ·						
	(2)	Interis	titial defe	ct			100		
	(3)	Frenke	defect	j.					
	(4)	Schott	ky defect						
67.	as :	1.0 × 10- solution	5, when 0.	2 M sol	ution of kide the	his aci	OOH at 25 d is titrated he equival	with a ence p	0.2
	(+)	7	(2)	6	(3)		(4)	2	
68.			nstant of	a reacti	on is ex	pressed	as:		
		Ac-E_/RT	n mill occ		olowby	ir chang	is an incr		
	(1)		(2)	E.	(3)	10	(4)	k k	n :
	(-)		(2)		(0)	А	(1)	T.	
69,	In t	he react	ion 3N ₂ H idant and	+ 3Br($0_3 \rightarrow 3N$	l ₂ + 3Br	+ 6H ₂ O, t	he spe	cies
	(1)	Br and							
	(2)	N ₂ and	BrO ₃						
	(3)	NaH, at	nd BrO ₃						
	(4)	BrO ₃ a	nd N ₂ H ₄						
70.	In v	vhich of	the follow	ing dec	ays n/p	ratio re	mains con	stant?	is
	(1)		mission						
	(2)	positro	n emissio	n					
	(3)		emission						
	(4)	electro	n capture						
				:	31			D4	r.o.
								•••	
					37%				

66. When a crystal site is rendered vacant by removal of an anion and a cation from their regular lattice positions, the defect

produced is known as:

- 71. If hydrogen sulphide gas is passed through an acidified solution containing a mixture of the sulphates of cadmium, nickel and zinc which sulphides will be precipitated?
 - (1) CdS and NiS
 - (2) NiS and ZnS
 - (3) NiS
 - (4) CdS
- 72. Which among the following compounds/ions are diamagnetic?

- (1) CoCl₄² and PdCl₄²
- (2) CuCl₆⁴⁻, Cu(SCN) and Ni(CO)₄
- (3) Cu(SCN) and Ni(CO)4
- (4) Cu(SCN), Ni(CO), and PdCl,2-
- 73. Complete the following sentence: A teraheron has six
 - (1) vertices and edges
 - (2) edges
 - (3) faces
 - (4) faces and vertices
- 74. Identify the missing product in the following nuclear reaction:

$${}^{14}_{7}N + \alpha \rightarrow ? + {}^{1}_{1}H$$

(1) ¹⁷₈O

(2) B

(3) β⁺

(4) 16₈O

75.	Wh	ich of	the fol	lowin	g is a dis	propor	tionatio	n reaction	. 3	
	(1)	2H20	$D_2 \rightarrow 2$	H ₂ O	+ O ₂		. "			
	(2)	CO32	+ 2H	* → H	0 + CO	· 2				
	(3)	Cr ₂ C),2-+ H	20 →	2CrO,2	+ 2H+				
	(4)	2Cu	2+ +41	- → 2	Cul + I ₂	• • •		528		
76.			ny iso OH ₂) ₃ ?		are pos	sible f	or the	octahedra	l complex,	
	(1)	2		(2)	3	(3)	4	(4)	5	
77.	Wh	at is t	he oxi	dation	a state of	Mn in	Mn (oxa	late)3 ?		
	(1)	-3		(2)	2	(3)	3	(4)	4	
78.	pre	cipitia	ppens ite co ydroxi	ntain	n sodium ing a mi	hydro xture o	oxide so f alumi	lution is a nium hyd	added to a roxide and	
	(1)	the p	precipi	tate o	complete	y disso	lves			
	(2)	part	of the	preci	pitate di	ssolves	leaving	a blue re	sidue	
	(3)	part	of the	preci	pitate di	ssolves	leaving	a white re	esidue	
•	(4)	the p	recipt	iate i	s unchar	iged				
79.	witl aga	n exce inst 0	ss pot	assiv I sodi	ım iodide	. The	resultin	g solution	e is treated is titrated titre value	0
	at t	THE CENT	- Lame	7/10/1						
	(1)	5.0 m	-			(2)	10.0 m	1		

	cent	re of a trigor	ıal pr	ism formed	d by	the ligand ato	ms	>
	(1)	3	(2)	4	(3)	6	(4)	8
81.						10g of water		
	(1)	32%	(2)	67%	(3)	87%	(4)	100%
82.		v many unp cygen molect		electorns	are	there in the	НО	MO of the
	(1)		(2)	1	(3)	2 ,	(4)	3
83.	Wha	at is the rang	e for l	bond energ	y (k c	cal mol ⁻¹) of a t	ypica	al hydrogen
	bon	d ?				2 2		
	(1)	1 - 4			(2)	5 - 40		
	(3)	100 - 200			(4)	200-250		
84.	Wh	ich one, am	ong t	he given a	toms	, has the hig	hest	number of
	ung	paired electr	ons i	n its groun	d sta	ite?		
	(1)	C	(2)	N	(3)	0	(4)	F
85.	Ho	w many mole	es of	P ₄ O ₁₀ will re	eact	with one mol	e of v	vater?
	(1)	2 moles			(2)	6 moles		
	(3)	1/3 moles	,		(4)	1/6 moles		
				. 24	4			

80. What is the coordination number of a metal ion situated at the

								111	149	0/23(1)
86.		ich one ar one mole		The state of the s	The state of the s					of HCl
	(1)	H-Cl Br-H								
	(2)	H-Cl H-Br								
	(3)	H-CI B	r - H							
	(4)	H - Br F	I - Cl	(4)		4				
87.		formatio		*	•					
	iodi	ne molec	ule and	iodide id	n. Ho	w ma	y one	class	ify t	he two
		ctents?		•						
	(1)	Iodine (L	ewis ba	se) ; Iodić	ie (Le	vis aci	d)			- 1
	(2)	lodine (o	xidizing	(agent); I	odide	(reduc	ing ag	gent)		
	(3)	Iodine (re	educing	agent); I	odide	(oxidiz	ing ag	gent)		
	(4)	lodine (L	ewis ac	id); lodide	(Lew	is base	e) .			
88.		many ele plex ?	ectrons	are there	in th	e e _g ler	el of	a low	spin	Fe(III)
	(1)	0	(2)	1	(3)	2	*	. (4)	3	i

89.	The colour of	potassium	permanganate i	is due to	
-----	---------------	-----------	----------------	-----------	--

- (1) d-d transition
- (2) Mn -> K charge transfer
- (3) Mn --> O charge transfer (4) O --> Mn charge transfer

90. The most common oxidation state of lanthanide ions is

- (1) 1
- (2) 2
- (3) 3
- (4) 4

SECTION - B (i) LIFE SCIENCE (Optional)

- 91. Which one of the following is the smallest cellular structure?
 - (1) Mitochondria

(2) Plant vacuole

(3) Chloroplast gramum

(4) Ribosome

- 92. Which of the following organelles digests the old organelles that are no longer required to the cells?
 - (1) Lysosomes
 - (2) Mitochondria
 - (3) Ribosomes
 - (4) Chromatin
- 93. During cell division there are three types of check points; one of them (M checkpoint) is to ensure :
 - (1) Chromosomes are attached to the spindle
 - (2) Complete DNA replication
 - (3) DNA not damaged or broken
 - (4) All of the above
- 94. Which of the following descriptions of chromosomes is not correctly matched?
 - (1) Metacentric-chromosome arms are almost equal in size
 - (2) Submetacentric-chromosome arms are slightly different in
 - (3) Acrocentrie-chromosome arms are identical in size
 - (4) Telocentrie-there is only one chromosome arm

(4) Ecotype

95.	Mut	ations that arise in the absence of known mutagen are
	kno	wn:
	(1)	Induced mutations
	(2)	Fused mutations
	(3)	Spontaneous mutations
	(4)	None of the above
96.		eritable feature is aand may have two or more
	(1)	Trait/characteristics
	(2)	Character/traits
	(3)	Character/factors
	(4)	Trait/factors
97.	. If t	he genotype consists of only one type of allele, it is called:
75.50	(1)	Uniallelic
	(2)	Heterozygous
	(3)	Momoallelic
	(4)	Homozygous
98	3. Th	e physical expression or appearance of a character is called
	as	:
	(1)	Morphology
	(2)	
	· (3	Phenotype

33.	WI	who is regarded as the father of genetics?					
	(1)	Watson	(2)	De vries			
	(3)	Mendel	(4)	Morgan			
100	cal	haracteristics that are p led :	passed to	off springs from parents ar			
	(1)	Phenotype	(2)	Traits			
	(3)	Chromatin design	(4)	Genotype			
101	.Laı	mp brush chromosomes	are seen	in :			
	(1)	Prophase					
	(2)	Meiotic prophase					
	(3)	Mitotic metaphase					
	(4)	Mitosis	in the second				
102	Pro	karyotic genetic system	has:				
	(1)	Both DNA and histone					
	(2)	DNA but no histones					
	(3)	Neither DNA nor histor	nes				
	(4)	Either DNA or histones					
103.	A cl	hromosome aberration	leads to cl	nange in the order of genes			
3.5		genetic map but does n	ot alter ite	s linkage group. This is due			
		1.4		. 8- Pb- 11412 IP CICE			
	(1)	Inversion					
	(2)	Transposition					
((3)	Recombination					
(4)	Translocation					

104	.Whi	ch one of the following is no	t req	uired in PCR?		
	(1)	Taq polymerase				
	(2)	Restriction enzymes				
	(3)	Oligonucleotide primers				
	(4)	Deoxynucleoside triphosphates				
105.Gene transfer in plants can be mediated through :						
	(1)	Bacillus sp.	(2)	E. Coli		
	(3)	Thermus aquaticus	(4)	Agrobacterium tumefaciens		
106		ich of the following group of o	orgar	nisms does not have bilateral		
	(1)	Platyhelminthes	(2)	Mollusca		
	12 120	-	(4)	Echinodermata larvae		
107.In coelomates, the body cavity is lined by:						
	(1)	ectoderm	(2)	mesoderm		
	(3)	endoderm	(4)	coelom		
108. Which of the following is not an example of egg laying mammal?						
	(1)	Marsupialia				
	(2)	Monotremata				
	(3)	Prototheria				
	(4)	Echidna				

109.Th	e dorsal-most vegetal cells	of am	phibian blastula, capable of
	lucing the organizer, is calle		
(1)	Dorsal lip	(2)	Nieuwkoop centre
(3)	Dorsal marginal zone		Primary organizer
110.Ac	rosomal vesicle in a mature	sperr	n is derived from :
(1)		(2)	Golgi complex
(3)	lysosomes	(4)	mitochondria
111.NA	DH is exidised by the exequent production of :	lectro	on transport system with
(1)	1 ATP	(2)	2 ATP
(3)	3 ATP	(4)	4 ATP
112.He	xokinase, which catalyzes r	eactio	n between glucose and ATP
form	ning glucose-6-phosphate i	s an e	xample of :
	ligase		
(2)	lyase		
(3)	oxydoreductase		
(4)	transferase		
iau	sample of DNA is found to os) of adenine, 40; thymine, ch of the following conclusion	22: or	the base composition (mole anune, 21; and cytosine 17,
(1)	The given DNA is a double	stran	ded circular malamia
(2)	It is a linear double strand	ed me	olecule
(3)	It is a single stranded mole		
(4)	It has high melting point		

- 114. The fuels for Krebs cycle occurring in mitochondria are:
 - (1) pyruvate and lactate
 - (2) fatty acid and palmitic acid . . .
 - (3) pyruvate and fatty acids
 - (4) succinate and NADH
- 115. Deficiency of which of the following hormone causes wate retention and characteristic puffiness of skin?
 - (1) Thyroid hormone
 - (2) Anti-direutic hormone
 - (3) Calcitonin
 - (4) parathormone
- 116. Cutting of Pituitary stalk causes all of the following except:
 - (1) Dilute urine formation
 - (2) Increased urine formation
 - (3) Diabetes insipdus
 - (4) Diabetes mellitus
- 117. Steroid hormones exert their effect on target cells:
 - (1) by directly binding with the target gene
 - (2) by binding with the specific cell surface receptor
 - (3) through trimeric G-proteins
 - (4) by binding with the cytoplasmic receptor
- 118. All of the following are functions of mammalian kidney except:
 - (1) detoxification of harmful compounds
 - (2) regulation of salt balance in the blood
 - (3) regulation of water balance in the blood
 - (4) filtration of blood

- 119.Most of the glucose that is filtered through the glomerulus undergoes reabsorption in:
 - (1) proximal tubule
 - (2) descending loop of Henle
 - (3) ascending loop of Henle
 - (4) collecting duct .
- 120. The blood group of a couple is as follows: Husband 'O' Rh-ve, wife 'A' Rh ve. Their new born baby got mixed in the hospital. Among the four new born babies present in the hospital, which one would you think was their baby?
 - (1) The baby with blood group 'A' Rh-ve
 - (2) The baby with blood group 'A' Rh+ve
 - (3) The baby with blood group 'O' Rh+ve
 - (4) The baby with blood group 'AB' Rh-ve.

SECTION - B (ii) PHYSICS (Optional)

- 121.If a big drop of water is broken into smaller drops the surface energy:
 - (1) increase
 - (2) decreases
 - (3) remain unchanged
 - (4) can increase as well as decrease
- 122. How much energy is released in nuclear fission of U235?
 - (1) 20 MeV

(2) 200 MeV

(3) 2000 MeV

- (4) 20000 MeV
- 123. Yong modulus 'Y', modulus of rigidity ' η ' and Poission's ratio ' σ ' are related as :
 - (1) $Y = 2\eta(H\sigma)$

(2)
$$\sigma = \frac{2Y}{(1+\eta)}$$

(3)
$$\frac{Y}{\sigma} = 2(1+\eta)$$

$$(4) \quad \eta = \frac{2Y}{(1+\sigma)}$$

- 124. Young's double slit experiment is based on the principle of :
 - (1) division of amplitude
 - (2) devision of ware front
 - (3) addition of amplitude
 - (4) addition of ware front

125.In v	which of the following	configuration	on of a transistor the voltage
gain	n is highest :		50.
(1)	Common Collector (CC)	170
(2)	Common Base (CB)	•	
(3)	Common Emitter (C	E)	•
(4)	Same in all		3 10
126.The	e most important char	acteristics	of Laser light is:
(1)	Polarization	(2)	Coherence
(3)	High intensity	(4)	Directionality
127.The	e base of transistor is	doped:	· 12
(1)	heavily	(2)	lightly
(3)	moderate	(4)	do not doped
	e phenomenon which	produces	colours in a srap bubble is
(1)	Diffraction	(2)	Dispersion
(3)	Interference	(4)	Polarization
129. Fis	sion of nucleus is possible the condition :	ssible only	when its mass number 'A'
(1)	A > 15	(2)	A < 15
(3)	A > 85	(4)	A < 85
130.Be	moulli's principle is b	ased on the	law of conservation of :
(1)	mass	(2)	energy
(3)	linear momentum	(4)	Angular momentum
ş1		35 *	27.0
			P.T.O.

131. The equation $\nabla \times \bar{B} = \mu_0 J$ represents :

- (1) Faraday's law
- (2) Ampere's law
- (3) Gausses law
- (4) Ohm's law

132. The Planck's radiation formula reduces to Rayleigh Jeans law for:

- (1) Shorter wavelength
- (2) longer wavelenght
- (3) for both shorter & longer wavelenth
- (4) neither of above

133. The direction of propagation of electromagnetic wave is given by :

(1) Vector E

- (2) Vector B
- (3) Poynting Vector
- (4) Vector H

134. The Gibb's potential 'G' is defined as:

- (1) G = U PV + TS
- (2) G = U + PV + TS
- (3) G = U PV TS
- (4) G = U + PV TS

135.Out of isothermal, isobaric and adiabatic for the same volume change, the work done is maximum in the following:

- (1) Isothermal Process
- (2) Isobaric Process
- (3) Adiabatic Process
- (4) Same for all

136. Suppose a magnetic monopole exists; which of the following Maxwell's equation (in free space) will be modified:

(1) $\nabla . \vec{E} = \delta / \epsilon_0$

(2) $\vec{\nabla} \times \vec{E} = -\partial \hat{B} / \partial t$

(3) $\nabla . \hat{\mathbf{B}} = 0$

(4) $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \in_0 \partial \vec{E} / \partial t$

av	iscous liquid is prop	ortional to:	
(1)	r	(2)	r ²
(3)	r3	(4)	r*
ma (1) (3)	ss and radius respendent of inertia about disc Solid sphere er diodes can be us Rectifier	ctively. The it the central (2) (4)	oherical shell have the same body which has the hightest axis is: ring spherical shell Oscillator Transmitter
140.Two	o lenses of power -1.; c focal length of the o	5 and + 2.5 di	opters are placed in contact.
(1)	100 cm		10.0
(3)	80 cm	(2) (4)	90 cm 70 cm
141.In Ger	manufactor of elec manium because :	tronic devic	es Silicon is preferred to
(1)	Silicon is cheaper t	han Germeni	um
(2)	Silicon is more com	pact than Ge	rmenium
(3)	the leakage current	in Silicon is	less than Germenium
(4)	Silicon has better a	ppearance th	an Germenium
		37	P.T.O.

137. The terminal velocity of a spherical ball of radius 't' falling through

142.The	wavelength of microwave	is of the	e order of :
(1)	meter	(2)	millimeter
(3)	micrometer	(4)	Angstrom
143.Zer	oth law of thermodynamic	cs shows	s the existance of :
(1)	Internal energy	(2)	Pressure
(3)	Temperature	(4)	Entropy
144.Wit	h rise of temperature the	resistivi	ity of a semi-conductor:
(1)	remains unchanged		
(2)	increases		
(3)	decreases		
(4)	first increases then deci	reases	
145.Wh	ich wave phenomine is n	ot com	non to both light and sound
	re?		
(1)	reflection	(2)	refraction
(3)	Polarization	(4)	Deffraction
146.W	hich of the following	is inv	ariant under a Galilian
tra	nsformation?		1 ***
(1)	Displacement	(2)	Velocity
(3)	Force	(4)	Momentum
147.Tr	iple point of water is:		
(1)	16 B	(2)	
(3)		(4)	273.16 R

- 148. The phenomenon of rotating the plane of vibration of a polarised light is known as:
 - (1) Polerization
 - (2) Optical activity
 - (3) double refraction
 - (4) Kerr effect
- 149. The photo-electric effect can be understood by :
 - (1) the electromagnetic theory of light
 - (2) the special theory of relativity
 - (3) the quantum theory of light
 - (4) the wave theory of light
- 150. The most energetic electromagnetic radiations are:
 - (1) microwaves
- (2) Ultraviolet waves

(3) X - ray

(4) γ rays

(iii) GEOLOGY (Optional)

151. Which of the following is not part of a fold?

(1) Hinge

(2) Inflexion

(3) Net slip

(4) Axial plane

152. Which of the following is most suitable statement for a fault?

- (1) It is a contact between igneous and sedimentary rocks
- (2) It is a fracture in the rock which has displacement of two blocks along it
- (3) It is a phenomenon due to which the rock arches upward
- (4) It indicates redeposition of the rock sequences after a time gap

153. Which off the following is true for angular unconformity?

- (1) The older sequence is sedimentary but the younger sequence is volcanic
- (2) The older and younger sequences both are sedimentary and mutually parallel
- (3) The older sequence is folded but the younger sequence is not
- (4) The older sequence is sedimentary and the younger igneous rocks intrude it

			1	
154.Aj	oint has its strike perpe	ndicular t	o dip direction of the bedding	
pla	ne. It is :			
(1)	Strike joint	(2)	Dip joint	
(3)	Extension joint	(4)	Radial joint	
155.Th	e diameter of the Earth	is approxi	mately:	
(1)	6371 km	(2)	8410 km	
(3)	10570 km	(4)	12800 km	
156.Hir	nalayan mountain orig	inated due	to:	
(1)	Subduction of Indian	plate und	er Tibetan Plateau	
(2)	Collision of Indian Plate with Eurasian plate			
(3)				
(4)				
157.The	e actual place of origin	of an earth	iquake is the :	
(1)	Focus			
(2)	Epicenter ,			
(3)	Place where disaster	is meximu	m .	
(4)	Subduction zone			
158.Kar	st topography is found i	in areas wh	ere dominantly present rock	
is:			, Frederic rook	
(1)	Shale	(2)	Limestone	
(3)	Granite	(4)	Basalt	

159. Ring of Fire' refers to:

- (1) Circular outline of a volcanic mountain from where lava comes out
- (2) A circular region in Africa where volcanic activity is continuously going on
- (3) The narrow climatic belt near equator which remain hot throughout the year
- (4) The chain of volcanoes present around Pacific Ocean

160. Which of the following statement is not true for dip?

- (1) It is inclination of ground with respect to horizontal
- (2) Its maximum amount is called as true dip
- (3) The apparent dip is always less than the true dip
- (4) Its amount is always zero along the strike of a bedding plane
- 161. Which of the following groups the mineral hornblende belongs to?
 - (1) Pyroxene

Amphibole

Feldspar (3)

Zeolite (4)

162. Which of the following is optically isotropic?

(1) Calcite

Olivine (2)

(3) Almandine

(4) Staurolite

163. Which of the following crystallizes in isometric system?

Albite (1)

Oligoclase (2)

Halite (3)

Quartz (4)

164.Th	e mineral showing two h	ardness v	values is :
(1)	Rutile	(2)	Apatite
(3)	Quartz	(4)	Kyanite
165.Wh	ich of the following is a	plagioclas	e mineral ?
(1)	Enstatite	(2)	labradorite
(3)	Orthoclase	(4)	Chalcedony
	ich of the following m	ineral's c	rystal is used in making a
(1)	Barite	(2)	Dolomite
(3)	Canada Balsam	(4)	Iceland spar
	nich of the following,	minerals	does not have chemical
(1)	Corundum	(2)	Sillimanite
(3)	Kyanite	(4)	Andalusite
168.Flo	wering plants first appe	ared duri	ng:
(1)	Jurassic	(2)	Carboniferous
(3)	Cretaceous	(4)	Eocene
169.Wh	ich of the following wou	ld become	a trace fossil ?
(1)	Bone in coarse sedime	A second second	,
(2)	Calcareous shells in li	mestone	
(3)	Plant leaves in shale		
(4)	Burrowing in alfuvium		

1 70 .W	hich among the following	g is consid	ered as a living fossil?
(1		(2)	Nummulites
(3	Ammonites	(4)	Trilobites
171. T	he fossil having short geol	logical time	span but wide geographica
d	istribution is called:	•	44
(1) Living fossil	(2)	Index fossil
(3	Marker fossil	(4)	Trace fossils
172. T	he volcanic equivalent of	granite is	:
(1) Basalt	(2)	Andesite
(3) Dolerite	(4)	Rhyolite
173.V	hich of the following min	neral asse	mblages generally does not
0	ccur in nature?		
(1) Nepheline-quartz	(2)	Leucite-albite
(3	labradorite - augite	(4)	Olivine-anorthite
174.V	Which of the following min	erals is an	ore of iron?
(1	.) Hematite	(2)	Psilomelane
(3	Biotite	(4)	Pyrite
175.T	he first oil discovery in Ir	ndia was m	ade at:
. (1) Bombay Hi	(2)	Cambay
200	3) Digboi	(4)	Lakhpat

	9. 111	e Mn-ore deposit are	iouna in :	
	(1)	Bomby Hi	(2)	Saucer Group
	(3)	Mahakoshal Group	(4)	Semri Group
17	7.The	Indo-Gangetic plain	is separated	from the Siwalik by:
	(1)	Great Boundary Fau	lt	
	(2)	Main boundary Faul	ť	
	(3)	Himalayan Frontal T	hrust	
	(4)	Main Himalayan Thr	ust	
17		nich among the foll	lowing she	ws the highest grade of
	(1)	Granulite	(2)	Gneiss
	(3)	Schist	(4)	Phyllite
17	9.Wh	ich among the followin	ng is not a c	clastic sedimentary rock?
		Greywacke	(2)	Arkose
٠.	(3)	Shale	(4)	Limestone
18	0.An	igneous rock will be c	onsidered f	under saturated' if it has:
	(1)	Quartz		
	(2)	Nepheline		•
	(3)	Orthoclase feldspar		
	(4)	Plagioclase feldspar		

ROUGH WORK रफ़ कार्य

ROUGH WORK एक कार्य

47

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण यृष्ठ पर तथा उत्तर-पत्र के दोनों यृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृथ्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उज़ित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुर्स्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्ठियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का त्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान् दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल औ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

