

CHEMISTRY

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Consider the following sequence of reactions:

Product 'P'

The product 'P' is

2. Following compounds are given

Compare pKa values

(1) I > IV > II > III	(2) $I > IV > III > II$
(3) III > II > IV > I	(4) IV > I > III > II

Answer (3)

Sol. Acidic Strength $\infty - I$, – M Groups

$$\infty = \frac{1}{+I_{1} + M}$$
 groups

Acidic strength order

 $\mathsf{I} > \mathsf{IV} > \mathsf{II} > \mathsf{III}$

pKa order

Which of the following molecules has the highest bond dissociation energy?

(1) l ₂	(2) F	2
(3) Cl ₂	(4) B	r ₂

Answer (3)

3.

- **Sol.** Cl₂ has the highest bond dissociation energy among the halogens.
- 4. Select the correct statement among the following.
 - (1) Photochemical smog has high concentration of oxidising agent
 - (2) Classical smog has high concentration of oxidising agent
 - (3) Classical smog contains NO2
 - (4) None of these

Answer (1)

Sol. Photochemical smog has high concentration of oxidising agent.

JEE (Main)-2023 : Phase-1 (29-01-2023)-Morning

- following compound(s) is/are 5. Which of the paramagnetic?
 - (a) NO₂
 - (b) NO
 - (c) K₂O
 - (d) Na₂O₂
 - (1) a & b only(2) a, b, c only
 - (4) a, b, d only (3) a, b, c, d

Answer (1)

Sol. NO₂

NO $(N_e = 15)$

1 unpaired electron as per MOT

- Find out the magnetic character of Li₂O, KO₂ and 6. MgO in that order.
 - (1) Diamagnetic, Paramagnetic and Diamagnetic
 - (2) Paramagnetic, Paramagnetic and Diamagnetic
 - (3) Diamagnetic, Paramagnetic and Paramagnetic
 - (4) Diamagnetic, Diamagnetic and Diamagnetic

Answer (1)

Sol. Li₂O has Li⁺ and O²⁻. Both the cation and anion have all their electrons paired. So, it is diamagnetic KO₂ has K⁺ and O₂⁻. It is paramagnetic as O₂⁻ has one unpaired electron.

 O_2^- : $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2p_2}^2 \pi_{2p_2}^2 = \pi_{2p_2}^2 \pi_{2p_2}^{*2} = \pi_{2p_2}^{*1}$

MgO has Mg2+ and O2-. It is diamagnetic as Mg2+ and O²⁻ have all their electrons paired.

Which of the following option contains the correct 7. decreasing order of hydration energy of the following ions?

K⁺, Mg²⁺, Cs⁺, Ca²⁺, Rb⁺

- (1) Mg²⁺ > Ca²⁺ > K⁺ > Rb⁺ > Cs⁺
- (2) Ca²⁺ > Mg²⁺ > Cs⁺ > Rb⁺ > K⁺
- (3) Mg²⁺ > Ca²⁺ > Cs⁺ > Rb⁺ > K⁺

(4)
$$Cs^+ > Rb^+ > K^+ > Ca^{2+} > Mg^{2+}$$

Answer (1)

Sol. Hydration energy ∞ charge density

∴ correct order is : - Mg²⁺ > Ca²⁺ > K⁺ > Rb⁺ > Cs⁺

How many of the following compounds are odd 8. electron species?

 NO_2 , NO_2^+ , ICI_4^- , BrF_3 , NO

- (1) 3 (2) 2
- (4) 4 (3) 5

Answer (2)

Sol. NO and NO₂ are the odd electron species.

- 9. Which of the following reaction corresponds to Mond process?
 - (1) $Zrl_4 \xrightarrow{1800 \text{ K}} Zr + 2l_2$
 - (2) $Ni(CO)_{4} \xrightarrow{450-470 \text{ K}} Ni + 4CO$
 - (3) $2[Au(CN)_2]^{-}(aq) + Zn(s) \longrightarrow$ $2Au(s) + \left[Zn(CN)4\right]^{2+}(aq)$

(4)
$$2AI_2O_3 + 3C \rightarrow 4AI + 3CO_2$$

Answer (2)

Sol. Mond process for refining Nickel.

 $Ni + 4CO \xrightarrow{300 - 350 \text{ K}} Ni(CO)_{4}$ $Ni(CO)_{4} \xrightarrow{450-470 \text{ K}} Ni + 4CO$

- 10. Cannizzaro reaction is example of an disproportionation reaction. What is the catalyst used in Cannizzaro reaction?
 - (1) FeCl₃
 - (2) NaOH/H₂O
 - (3) ZnCl₂/H⁺
 - (4) H₂/Pd/BaSO4

Answer (2)

11. Arrange the following in increasing pKa value

 NO_2

(IV)

(1) |V > ||| > || > |

(III)

- (2) | > ||| > |V > ||
- (3) IV > III > I > II
- (4) IV > II > III > I

Answer (2)

Sol. Acidity $\propto \frac{1}{pK_a}$

The order of acidity is : II > IV > III > I

 \therefore Their value of pKa will be : II < IV < III < I

12. Which of the following option contains the correct match

List-II

List-I

- (A) Clemmensen (i) Con. KOH reduction
- (B) Reimer tiemann (ii) Br₂/NaOH Reaction
- (C) Cannizzaro reaction (iii) CHCl₃/KOH
- (D) Hoffmann bromamide (iv) Zn-Hg/HCl degradation reaction
- (1) $A \rightarrow$ (i); $B \rightarrow$ (ii); $C \rightarrow$ (iii); $D \rightarrow$ (iv)
- (2) $A \rightarrow (iv); B \rightarrow (iii); C \rightarrow (i); D \rightarrow (ii)$
- (3) $A \rightarrow$ (ii); $B \rightarrow$ (iii); $C \rightarrow$ (iv); $D \rightarrow$ (i)

(4)
$$A \rightarrow (iii); B \rightarrow (iv); C \rightarrow (i); D \rightarrow (ii)$$

Answer (2)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Morning

Sol.	Clemmensen reduction	\rightarrow	Zn-Hg/HCI
	Reimer tiemann reaction	\rightarrow	CHCl ₃ /KOH
	Cannizzaro reaction	\rightarrow	Con. KOH/ Δ
	Hoffmann bromamide	\rightarrow	Br ₂ /KOH, Δ
	degradation reaction		

- 13. Assertion : First law of thermodynamics has equation : $\Delta U = q + w$
 - **Reason :** First law of thermodynamics is based on the law of conservation of energy
 - 'A' is correct and 'R' is correct and 'R' is the correct explanation of 'A'
 - (2) 'A' and 'R' both are correct and 'R' is not the correct explanation of 'A'
 - (3) 'A' is correct while 'R' is incorrect
 - (4) 'A' is incorrect while 'R' is correct

Answer (1)

- **Sol.** First law of thermodynamics is based on the law of conservation of energy and it has equation as $\Delta U = q + w$
- 14. Match the column

	(A)	Siderite	(i)	ZnCO₃
5	(B)	Galena	(ii)	FeCO ₃
	(C)	Calamine	(iii)	PbS
	(1)	A(i), B(ii), C(iii)	(2)	A(ii), B(iii), C(i)
	(3)	A(iii), B(ii), C(i)	(4)	A(ii), B(i), C(iii)

Answer (2)

Sol. Siderite — FeCO3

Galena — PbS

Calamine — ZnCO₃

- 15. Number of cyclic tripeptides are formed with two amino acids A and B are
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 5

Answer (2)

JEE (Main)-2023 : Phase-1 (29-01-2023)-Morning

Sol. Cyclic tripeptide contains 2 amino acids.

AA	
BB	
AB	

- 16. Which of the following complex is optically active?
 - (1) Cis-[Pt(NH₃)₂Cl₂] (2) Trans-[Pt(NH₃)₂Cl₂]
 - (3) $Cis-[Pt(en)_2Cl_2]$ (4) $Trans-[Pt(en)_2Cl_2]$

Answer (3)

It does not have POS and COS, so it is optically active.

- 17. Which of the following will give positive Lassaigne test
 - (1) NH₄OH (2) NH₄Cl
 - (3) N_2H_4 (4) CH_3-NH_2

Answer (4)

- **Sol.** Only 4th compound has C and N. So, it gives positive Lassaigne's test.
- 18. Following compounds are given

Sol. BP \propto Molecular mass

R - I > R - Br > R - CI > R - F

```
19.
```

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

- 21. X : Number of Bridge bonds present in compound Mn₂(CO)₁₀
 - Y : Number of Bridge bonds present in compound $W(CO)_6$

Find out (X + Y)

Answer (00.00)

Sol. Mn₂(CO)₁₀

22. For a Hypothetical reaction

 $A \equiv B; K_{eq} = 10^2$

(Use T = 27° C, R = 8.3 JK⁻¹mol⁻¹ log 10 = 2.3)

If the value of ΔG° for the above reaction is – x kJ, the value of 2x will be (Round off to the nearest integer)

Answer (23)

Sol. $\Delta G^{\circ} = -RT \ln K_{eq}$

$$= -8.3 \times 300 \times 2.3 \log(10^2)$$

∆G° = – 11454 J

- $2\Delta G^{\circ} = -22908 \text{ J}$
- 23. A radioactive substance decays into products with half life of 30 min. The fraction left after 90 min. is

given by $\left(\frac{1}{2t}\right)$. Find out 't'.

Answer (04.00)

Sol.
$$N_0 \xrightarrow{30 \text{ min.}} \frac{N_0}{2} \xrightarrow{30 \text{ min.}} \frac{N_0}{4} \xrightarrow{30 \text{ min.}} \frac{N_0}{8}$$

 $\Rightarrow \frac{1}{8} = \frac{1}{2t}$
 $[t = 4]$

24. An element $^{239}_{92}X$ decays as

$$^{239}_{92}X \rightarrow ^{231}_{Z}Y + 2\alpha + 1\beta$$

Then find the value of Z in the above reactions.

Answer (89)

- **Sol.** $^{239}_{92}X \rightarrow ^{231}_{89}Y + 2^{4}_{2}He^{2+} + ^{0}_{-1}e$ ∴ Value of Z = 89
- 25. The shortest wavelength in Lyman series of H-atom is λ . The longest wavelength in Balmer series of

He⁺ is $\frac{x\lambda}{5}$. Find the value of x.

Answer (9)

Sol. The shortest wavelength in Lyman series of H-atom is given by

JEE (Main)-2023 : Phase-1 (29-01-2023)-Morning

$$\frac{1}{\lambda} = R_{H} \left[\frac{1}{(1)^{2}} - \frac{1}{(\infty)^{2}} \right] = R_{H}$$
$$\Rightarrow \quad \lambda = \frac{1}{R_{H}}$$

The longest wavelength in Balmer series of He⁺ ion is given by

$$\frac{1}{\lambda'} = (2)^2 R_H \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = \frac{5R_H}{9}$$
$$\lambda' = \frac{9}{5R_H} = \frac{9\lambda}{5}$$
$$\therefore x = 9$$

26. How many elements can liberate H₂ from dilute acids?

V, Cr, Mn, Fe, Co, Ni, Cu

Answer (6)

Sol. Except Cu, all other elements have negative $E^{\circ}_{M^{+2}/M}$ Hence, they can liberate H_2 from dilute acids.

Number of elements = 6

27. Consider the following reaction

$$H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$$

If $K_{eq} = 2 \times 10^{-3}$ at 2300 K and initial pressure of H₂O(g) is 1 atm, then degree of dissociation of above reaction will be $x \times 10^{-2}$, the value of x is

Answer (2)

Sol.
$$K_{eq} = \frac{(P_{H_2})(P_{O_2})^{\frac{1}{2}}}{(P_{H_2O})} = \frac{(\alpha)(\frac{2}{2})^{\frac{1}{2}}}{(1-\alpha)} = 2 \times 10^{-3}$$

 $\Rightarrow \alpha^{\frac{3}{2}} = 2^{\frac{3}{2}} \times (10^{-2})^{\frac{3}{2}}$
 $\Rightarrow \alpha = 2 \times 10^{-2}$
 $\therefore x = 2$
28.
29.

30.