CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Consider the following sequence of reactions:

Product ' P '
The product ' P ' is
(1)

(2)

(3)

(4)

Answer (4)

Sol.

2. Following compounds are given
(I)

(II)

(III)

(IV)

Compare pK_{a} values
(1) I $>$ IV $>$ II $>$ III
(2) I $>$ IV $>$ III $>$ II
(3) III $>$ II $>$ IV $>$ I
(4) IV $>$ I $>$ III $>$ II

Answer (3)
Sol. Acidic Strength $\propto-1,-M$ Groups

$$
\propto=\frac{1}{+\mathrm{I},+\mathrm{M}} \text { groups }
$$

Acidic strength order
I $>$ IV $>$ II $>$ III
pKa order
III $>$ II $>$ IV $>$ I
3. Which of the following molecules has the highest bond dissociation energy?
(1) I_{2}
(2) F_{2}
(3) Cl_{2}
(4) Br_{2}

Answer (3)
Sol. Cl_{2} has the highest bond dissociation energy among the halogens.
4. Select the correct statement among the following.
(1) Photochemical smog has high concentration of oxidising agent
(2) Classical smog has high concentration of oxidising agent
(3) Classical smog contains NO_{2}
(4) None of these

Answer (1)
Sol. Photochemical smog has high concentration of oxidising agent.
5. Which of the following compound(s) is/are paramagnetic?
(a) NO_{2}
(b) NO
(c) $\mathrm{K}_{2} \mathrm{O}$
(d) $\mathrm{Na}_{2} \mathrm{O}_{2}$
(1) a \& b only
(2) a, b, c only
(3) a, b, c, d
(4) a, b, d only

Answer (1)

Sol. NO_{2}

$\mathrm{NO}\left(\mathrm{N}_{\mathrm{e}}=15\right)$
1 unpaired electron as per MOT
6. Find out the magnetic character of $\mathrm{Li}_{2} \mathrm{O}, \mathrm{KO}_{2}$ and MgO in that order.
(1) Diamagnetic, Paramagnetic and Diamagnetic
(2) Paramagnetic, Paramagnetic and Diamagnetic
(3) Diamagnetic, Paramagnetic and Paramagnetic
(4) Diamagnetic, Diamagnetic and Diamagnetic

Answer (1)

Sol. $\mathrm{Li}_{2} \mathrm{O}$ has Li^{+}and O^{2-}. Both the cation and anion have all their electrons paired. So, it is diamagnetic KO_{2} has K^{+}and O_{2}^{-}. It is paramagnetic as O_{2}^{-}has one unpaired electron.
$\mathrm{O}_{2}^{-}: \sigma_{1 \mathrm{~s}}^{2} \sigma_{1 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 p_{z}}^{2} \pi_{2 p_{x}}^{2}=\pi_{2 p_{y}}^{2} \pi_{2 p_{x}}^{2}=\pi_{2 p_{y}}^{* 1}$
MgO has Mg^{2+} and O^{2-}. It is diamagnetic as Mg^{2+} and O^{2-} have all their electrons paired.
7. Which of the following option contains the correct decreasing order of hydration energy of the following ions?

$$
\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cs}^{+}, \mathrm{Ca}^{2+}, \mathrm{Rb}^{+}
$$

(1) $\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(2) $\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}$
(3) $\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}$
(4) $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$

Answer (1)

Sol. Hydration energy \propto charge density
\therefore correct order is: $-\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
8. How many of the following compounds are odd electron species?
$\mathrm{NO}_{2}, \mathrm{NO}_{2}^{+}, \mathrm{ICl}_{4}^{-}, \mathrm{BrF}_{3}, \mathrm{NO}$
(1) 3
(2) 2
(3) 5
(4) 4

Answer (2)
Sol. NO and NO_{2} are the odd electron species.
9. Which of the following reaction corresponds to Mond process?
(1) $\mathrm{ZrI}_{4} \xrightarrow{1800 \mathrm{~K}} \mathrm{Zr}+2 \mathrm{I}_{2}$
(2) $\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{~K}} \mathrm{Ni}+4 \mathrm{CO}$
(3) $2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \longrightarrow$

$$
2 \mathrm{Au}(\mathrm{~s})+[\mathrm{Zn}(\mathrm{CN}) 4]^{2+}(\mathrm{aq})
$$

(4) $2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{AI}+3 \mathrm{CO}_{2}$

Answer (2)

Sol. Mond process for refining Nickel.
$\mathrm{Ni}+4 \mathrm{CO} \xrightarrow{300-350 \mathrm{~K}} \mathrm{Ni}(\mathrm{CO})_{4}$
$\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{~K}} \mathrm{Ni}+4 \mathrm{CO}$
10. Cannizzaro reaction is an example of disproportionation reaction. What is the catalyst used in Cannizzaro reaction?
(1) FeCl_{3}
(2) $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{ZnCl}_{2} / \mathrm{H}^{+}$
(4) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{BaSO} 4$

Answer (2)

11. Arrange the following in increasing pK_{a} value

(I)

(II)

(III)

(IV)
(1) IV $>$ III $>$ II $>$ I
(2) I $>$ III $>$ IV $>$ II
(3) IV $>$ III $>$ I $>$ II
(4) IV $>$ II $>$ III $>$ I

Answer (2)

Sol. Acidity $\propto \frac{1}{\mathrm{pK}_{\mathrm{a}}}$
The order of acidity is : II $>\mathrm{IV}>\mathrm{III}>\mathrm{I}$
\therefore Their value of pK_{a} will be: $\mathrm{II}<\mathrm{IV}<\mathrm{III}<\mathrm{I}$
12. Which of the following option contains the correct match

List-I

(A) Clemmensen reduction
(B) Reimer tiemann Reaction
(C) Cannizzaro reaction
(D) Hoffmann bromamide (iv) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ degradation reaction
(1) $\mathrm{A} \rightarrow$ (i); B \rightarrow (ii); C \rightarrow (iii); $\mathrm{D} \rightarrow$ (iv)
(2) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); C \rightarrow (i); D \rightarrow (ii)
(3) $\mathrm{A} \rightarrow$ (ii); B \rightarrow (iii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(4) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (iv); C \rightarrow (i); D \rightarrow (ii)

Answer (2)

Sol. Clemmensen reduction $\rightarrow \quad \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
Reimer tiemann reaction $\quad \rightarrow \quad \mathrm{CHCl}_{3} / \mathrm{KOH}$
Cannizzaro reaction $\quad \rightarrow \quad$ Con. KOH/ Δ
Hoffmann bromamide $\quad \rightarrow \quad \mathrm{Br}_{2} / \mathrm{KOH}, \Delta$ degradation reaction
13. Assertion : First law of thermodynamics has equation : $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$

Reason : First law of thermodynamics is based on the law of conservation of energy
(1) ' A ' is correct and ' R ' is correct and ' R ' is the correct explanation of ' A '
(2) 'A' and 'R' both are correct and 'R' is not the correct explanation of ' A '
(3) ' A ' is correct while ' R ' is incorrect
(4) ' A ' is incorrect while ' R ' is correct

Answer (1)
Sol. First law of thermodynamics is based on the law of conservation of energy and it has equation as $\Delta U=q+w$
14. Match the column
(A) Siderite
(i) ZnCO_{3}
(B) Galena
(ii) FeCO_{3}
(C) Calamine
(iii) PbS
(1) $A(i), B(i i), C(i i i)$
(2) A (ii), B (iii), $C(i)$
(3) A (iii), B (ii), C (i)
(4) A (ii), $B(i), C(i i i)$

Answer (2)
Sol. Siderite - FeCO_{3}
Galena - PbS
Calamine - ZnCO_{3}
15. Number of cyclic tripeptides are formed with two amino acids A and B are
(1) 2
(2) 3
(3) 4
(4) 5

Answer (2)

Sol. Cyclic tripeptide contains 2 amino acids.

AA
BB
AB

16. Which of the following complex is optically active?
(1) $\mathrm{Cis}-\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(2) Trans-[Pt($\left.\left.\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(3) $\mathrm{Cis}-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
(4) Trans-[Pt(en) $\left.)_{2} \mathrm{Cl}_{2}\right]$

Answer (3)

Sol.

It does not have POS and COS, so it is optically active.
17. Which of the following will give positive Lassaigne test
(1) $\mathrm{NH}_{4} \mathrm{OH}$
(2) $\mathrm{NH}_{4} \mathrm{Cl}$
(3) $\mathrm{N}_{2} \mathrm{H}_{4}$
(4) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$

Answer (4)

Sol. Only $4^{\text {th }}$ compound has C and N. So, it gives positive Lassaigne's test.
18. Following compounds are given

1 :

II :

III :

IV :

(1) I $>$ II $>$ III $>$ IV
(2) I $>$ II $>$ IV $>$ III
(3) III $>$ IV $>$ II $>$ I
(4) III $>$ IV $>$ I $>$ II

Answer (3)

Sol. BP \propto Molecular mass
$\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{F}$
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. X : Number of Bridge bonds present in compound $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$

Y: Number of Bridge bonds present in compound W(CO) 6
Find out $(X+Y)$
Answer (00.00)
Sol. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$

$X=0$
W(CO) 6

$\mathrm{Y}=0$
$(X+Y)=0$
22. For a Hypothetical reaction
$A \rightleftharpoons B ; K_{e q}=10^{2}$
(Use T $=27^{\circ} \mathrm{C}, \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \log 10=2.3$)
If the value of $\Delta \mathrm{G}$ o for the above reaction is $-x \mathrm{~kJ}$, the value of $2 x$ will be (Round off to the nearest integer)

Answer (23)
Sol. $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\text {eq }}$

$$
=-8.3 \times 300 \times 2.3 \log \left(10^{2}\right)
$$

$\Delta G^{\circ}=-11454 \mathrm{~J}$
$2 \Delta \mathrm{G}^{\circ}=-22908 \mathrm{~J}$
23. A radioactive substance decays into products with half life of 30 min . The fraction left after 90 min . is given by $\left(\frac{1}{2 t}\right)$. Find out ' t '.

Answer (04.00)

Sol. $\mathrm{N}_{0} \xrightarrow{30 \mathrm{~min} .} \frac{\mathrm{N}_{0}}{2} \xrightarrow{30 \mathrm{~min} .} \frac{\mathrm{N}_{0}}{4} \xrightarrow{30 \mathrm{~min} .} \frac{\mathrm{N}_{0}}{8}$

$$
\begin{aligned}
\Rightarrow \quad \frac{1}{8} & =\frac{1}{2 t} \\
t & =4
\end{aligned}
$$

24. An element ${ }_{92}^{239} \mathrm{X}$ decays as

$$
{ }_{92}^{239} \mathrm{X} \rightarrow{ }_{\mathrm{Z}}^{231} \mathrm{Y}+2 \alpha+1 \beta
$$

Then find the value of Z in the above reactions.

Answer (89)

Sol. ${ }_{92}^{239} \mathrm{X} \rightarrow{ }_{89}^{231} \mathrm{Y}+2{ }_{2}^{4} \mathrm{He}^{2+}+{ }_{-1}^{0} \mathrm{e}$
\therefore Value of $Z=89$
25. The shortest wavelength in Lyman series of H -atom is λ. The longest wavelength in Balmer series of He^{+}is $\frac{x \lambda}{5}$. Find the value of x.

Answer (9)

Sol. The shortest wavelength in Lyman series of H -atom is given by
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{(1)^{2}}-\frac{1}{(\infty)^{2}}\right]=R_{H}$
$\Rightarrow \lambda=\frac{1}{\mathrm{R}_{\mathrm{H}}}$
The longest wavelength in Balmer series of He^{+}ion is given by
$\frac{1}{\lambda^{\prime}}=(2)^{2} R_{H}\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]=\frac{5 R_{H}}{9}$
$\lambda^{\prime}=\frac{9}{5 R_{H}}=\frac{9 \lambda}{5}$
$\therefore \mathrm{x}=9$
26. How many elements can liberate H_{2} from dilute acids?

V, Cr, Mn, Fe, Co, Ni, Cu

Answer (6)

Sol. Except Cu , all other elements have negative $\mathrm{E}_{\mathrm{M}^{+2} / \mathrm{M}}^{\circ}$ Hence, they can liberate H_{2} from dilute acids.

Number of elements $=6$
27. Consider the following reaction
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
If $K_{\text {eq }}=2 \times 10^{-3}$ at 2300 K and initial pressure of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is 1 atm, then degree of dissociation of above reaction will be $x \times 10^{-2}$, the value of x is

Answer (2)

Sol. $\mathrm{K}_{\text {eq }}=\frac{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)\left(\mathrm{P}_{\mathrm{O}_{2}}\right)^{1 / 2}}{\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)}=\frac{(\alpha)\left(\frac{2}{2}\right)^{1 / 2}}{(1-\alpha)}=2 \times 10^{-3}$

$$
\begin{aligned}
& \Rightarrow \alpha^{3 / 2}=2^{3 / 2} \times\left(10^{-2}\right)^{3 / 2} \\
& \Rightarrow \alpha=2 \times 10^{-2} \\
& \quad \therefore \mathrm{x}=2
\end{aligned}
$$

28.
29.
30.
