1. (a) Draw the graph of $f(x)=x^{3}-3 x$.
(b) From the graph in (a), or otherwise, find the set of real numbers q such that the equation $x^{3}-3 x+q=0$ has three distinct real roots.
2. Let \mathbf{A} and \mathbf{B} be $n \times n$ real matrices. Let \mathbf{I}_{n} denote the identity matrix of order n. Show that the matrix $\left[\begin{array}{cc}\mathbf{A} & \mathbf{I}_{n} \\ \mathbf{I}_{n} & \mathbf{B}\end{array}\right]$ has rank n if and only if \mathbf{A} is nonsingular and $\mathbf{B}=\mathbf{A}^{-1}$.
3. Let $x_{1}, x_{2}, \ldots, x_{10}$ be non-negative real numbers such that $x_{1}^{2}+x_{2}^{2}+$ $\cdots+x_{10}^{2}=10$. Find the maximum value of the product $x_{1}^{3} x_{2}^{3} \cdots x_{10}^{3}$.
4. The joint probability density function of the bivariate random vector (X, Y) is

$$
f(x, y)=\frac{1}{2 \pi} e^{-\sqrt{x^{2}+y^{2}}}, x, y \in \mathbb{R} .
$$

Calculate $P(X<2 Y)$.
5. Consider a random variable X having probability density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{k(p)}{x^{p}} & \text { for } x \geq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $p>0$ and $k(p)$ is a suitable positive constant. Find the set of possible values of p for which $\operatorname{Var}(X)$ exists but the fourth moment of X does not exist.
6. A box contains N balls numbered $1, \ldots, N$, where N is unknown. From this box, n balls are drawn using simple random sampling with replacement and their numbers recorded. Let X_{i} denote the number recorded at the $i^{\text {th }}$ draw, $i=1, \ldots, n$.
(a) Find a statistic which is complete and sufficient for N.
(b) Find the maximum likelihood estimator of N.
7. Let $X_{1}, X_{2}, \ldots, X_{n}(n>2)$ be independent and identically distributed random variables having the uniform distribution over $\left(\theta_{1}-\theta_{2}, \theta_{1}+\theta_{2}\right)$, where $\theta_{1} \in \mathbb{R}$ and $\theta_{2}>0$. Find the uniformly minimum variance unbiased estimator of $\frac{\theta_{1}}{\theta_{2}}$.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables with probability density function given by

$$
f(x \mid \theta)=\left\{\begin{array}{cl}
3 \theta^{-3} x^{2} \exp \left(-(x / \theta)^{3}\right) & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\theta>0$ is unknown. We wish to test the hypothesis $\mathrm{H}_{0}: \theta \leq 1$ against $\mathrm{H}_{1}: \theta>1$. Let $0<\alpha<1$. Find a uniformly most powerful test of size α for testing H_{0} against H_{1}.
9. Consider the linear model

$$
\begin{aligned}
& \mathrm{E}\left(Y_{1}\right)=\theta_{1}+\theta_{2}+\theta_{3}, \\
& \mathrm{E}\left(Y_{2}\right)=\theta_{1}+\theta_{2}-\theta_{3}, \\
& \mathrm{E}\left(Y_{3}\right)=\theta_{1}+\theta_{2}-2 \theta_{3},
\end{aligned}
$$

where Y_{1}, Y_{2}, Y_{3} are uncorrelated, each with unknown variance σ^{2} and $\theta_{1}, \theta_{2}, \theta_{3}$ are three unknown parameters.
(a) Is θ_{1} estimable? Give reasons.
(b) Is $\theta_{1}+\theta_{2}-4 \theta_{3}$ estimable? Give reasons.
10. Let $X_{i}, i \geq 1$, be independent and identically distributed random variables having the uniform distribution over $(0,1)$. Let X be defined as $X=\sum_{i=1}^{N} X_{i}$, where N is an unknown integer.
(a) Find an unbiased estimator $T(X)$ of N.
(b) Decide, with adequate reasons, if $\frac{T(X)}{N}$ converges to 1 almost surely, as N goes to infinity.

