#### REGULATION 2015 B.TECH – CIVIL ENGINEERING CURRICULUM AND SYLLABUS

| SEMESTER I |  |
|------------|--|

| Code No.  | Course Title                                                   | L | Т | Р | C |
|-----------|----------------------------------------------------------------|---|---|---|---|
| Theory    |                                                                |   |   |   |   |
| BEN101    | English – I                                                    | 3 | 1 | 0 | 3 |
| BMA101    | Mathematics – I                                                | 3 | 1 | 0 | 3 |
| BPH101    | Engineering Physics - I                                        | 3 | 0 | 0 | 3 |
| BCH101    | Engineering Chemistry – I                                      | 3 | 0 | 0 | 3 |
| BCS101    | Fundamentals of Computing and Programming                      | 3 | 0 | 0 | 3 |
| BBA101    | Personality Development                                        | 1 | 1 | 0 | 2 |
| BBT 102   | Biology for Engineers                                          | 2 | 0 | 0 | 2 |
| BME101    | Engineering Graphics – E                                       | 2 | 3 | 0 | 4 |
| BME103    | Basic Mechanical Engineering                                   | 2 | 0 | 0 | 2 |
| Practical | ·                                                              |   |   |   |   |
| BCM1L1    | Basic Civil and Mechanical<br>Engineering Practices Laboratory | 0 | 0 | 3 | 1 |
| BPC1L1    | Physics and Chemistry Laboratory                               | 0 | 0 | 3 | 0 |
|           | NCC/NSS/ Yoga (Optional) to be<br>conducted during week ends   |   |   |   |   |

**Total No. of Contact Hours: 34** 

**Total No. of Credits: 26** 

# Laboratory Classes on alternate weeks for Physics and Chemistry. The Lab examinations will be held only in the second semester (including the first semester experiments also)

#### SEMESTER II

| Code No.  | Course Title                                                          | L | Т | Р   | С |
|-----------|-----------------------------------------------------------------------|---|---|-----|---|
| Theory    | -                                                                     |   |   |     |   |
| BEN201    | English – II                                                          | 0 | 3 |     |   |
| BMA201    | Engineering Mathematics – II                                          | 3 | 1 | 0   | 3 |
| BPH201    | Engineering physics – II                                              | 3 | 0 | 0   | 3 |
| BCH201    | Engineering Chemistry – II                                            | 3 | 0 | 0   | 3 |
| BFI 201*  | Foreign / Indian Language                                             | 3 | 0 | 0   | 3 |
| BME202    | Engineering Mechanics                                                 | 3 | 1 | 0   | 3 |
| BEE201*   | Basics Electrical and Electronics<br>Engineering                      | 2 | 0 | 0   | 2 |
| Practical |                                                                       |   |   |     |   |
| BCS2L2    | Computer Practices Lab                                                | 0 | 0 | 3   | 1 |
| BEE2L1*   | Basics Electrical and Electronics<br>Engineering Practices Laboratory | 0 | 0 | 3   | 1 |
| BPC2L1    | Physics and Chemistry Laboratory                                      | 0 | 0 | 3/3 | 1 |

#### **Total No. of Contact Hours: 32**

#### Total No. of Credits: 23

\*Any one of the following courses: BFR201 – French, BGM201-German, BJP201 – Japanese, BKR201 – Korean, BCN201 – Chinese, BTM201 – Tamil

#### **SEMESTER III**

| Code No.  | Course Title              | L | Т | Р | С |
|-----------|---------------------------|---|---|---|---|
| Theory    |                           |   |   |   |   |
| BMA301    | Mathematics III           | 3 | 1 | 0 | 4 |
| BME301    | Applied Mechanics         | 3 | 1 | 0 | 4 |
| BME302    | Surveying I               | 3 | 0 | 0 | 3 |
| BME303    | Building Construction     | 3 | 0 | 0 | 3 |
| BME304    | Fluid Mechanics           | 3 | 0 | 0 | 3 |
| BME305    | Engineering Earth Science | 3 | 0 | 0 | 3 |
| Practical |                           |   |   |   |   |
| BME3L1    | Surveying Practical - I   | 0 | 0 | 4 | 2 |
| BCE3L3    | Strength Of Materials Lab | 0 | 0 | 4 | 2 |

**Total No. of Contact Hours: 28** 

**Total No. of Credits: 24** 

#### SEMESTER IV

| Code No.  | Course Title               | L | Т | Р | С |  |  |
|-----------|----------------------------|---|---|---|---|--|--|
| Theory    |                            |   |   |   |   |  |  |
| BMA402    | Numerical Methods          | 3 | 1 | 0 | 4 |  |  |
| BCE401    | Theory Of Structures       | 3 | 1 | 0 | 4 |  |  |
| BCE402    | Surveying II               | 3 | 0 | 0 | 3 |  |  |
| BCE403    | Soil Mechanics             | 3 | 0 | 0 | 3 |  |  |
| BCE404    | Basic Structural Design    | 3 | 1 | 0 | 4 |  |  |
| BCE405    | Transportation Engineering | 3 | 0 | 0 | 3 |  |  |
| BCE406    | Environmental Studies      | 3 | 0 | 0 | 3 |  |  |
| Practical |                            |   |   |   |   |  |  |
| BCE4L1    | Surveying Practical II     | 0 | 0 | 4 | 2 |  |  |
| BCE4L2    | Soil Mechanics Lab         | 0 | 0 | 4 | 2 |  |  |

**Total No. of Contact Hours: 32** 

**Total No. of Credits: 28** 

#### SEMESTER V

| Code No.  | Course Title                       | L                            | Т | Р | С |  |  |  |  |  |
|-----------|------------------------------------|------------------------------|---|---|---|--|--|--|--|--|
| Theory    | ·                                  |                              |   |   |   |  |  |  |  |  |
| BCE501    | Structural Analysis - I            | tructural Analysis - I 3 1 0 |   |   |   |  |  |  |  |  |
| BCE502    | Applied Hydraulic Engineering      | 3                            | 0 | 0 | 3 |  |  |  |  |  |
| BCE503    | Foundation Engineering             | 3                            | 0 | 0 | 3 |  |  |  |  |  |
| BCE504    | Reinforced Concrete Structures - I | 3                            | 1 | 0 | 4 |  |  |  |  |  |
| BCE505    | Environmental Engineering - I      | 3                            | 0 | 0 | 3 |  |  |  |  |  |
| BCE507    | Construction Technology            | 3                            | 0 | 0 | 3 |  |  |  |  |  |
| BCE5E1    | Elective - I                       | 3                            | 0 | 0 | 3 |  |  |  |  |  |
| Practical | ·                                  | •                            |   |   |   |  |  |  |  |  |
| BCE5L1    | Construction Engineering Lab       | 0                            | 0 | 4 | 2 |  |  |  |  |  |
| BCE5L2    | Fluid Mechanics and Machinery Lab  | 0                            | 0 | 4 | 2 |  |  |  |  |  |

**Total No. of Contact Hours: 31** 

**Total No. of Credits: 27** 

#### **SEMESTER VI**

| Code No.  | Course Title                        | L | Т | Р | С |
|-----------|-------------------------------------|---|---|---|---|
| Theory    |                                     |   |   |   |   |
| BCE601    | Structural Analysis – II            | 3 | 1 | 0 | 4 |
| BCE602    | Reinforced Concrete Structures - II | 3 | 1 | 0 | 4 |
| BCE603    | Environmental Engineering - II      | 3 | 0 | 0 | 3 |
| BCE604    | Irrigation Engineering              | 3 | 0 | 0 | 3 |
| BCE605    | Remote Sensing and GIS              | 3 | 0 | 0 | 3 |
| BCE6E1    | Elective -II                        | 3 | 0 | 0 | 3 |
| Practical |                                     |   |   |   |   |
| BCE6L1    | Computer Aided Building Drawing     | 0 | 0 | 4 | 2 |
| BCE6L2    | Environmental Engineering Lab       | 0 | 0 | 4 | 2 |
| Project   |                                     |   |   |   |   |
| BCE6P1    | Mini Project                        | 0 | 0 | 8 | 4 |

**Total No. of Contact Hours: 35** 

**Total No. of Credits: 27** 

| Code No.  | Course Title                                                                                | L | Т | Р | С |
|-----------|---------------------------------------------------------------------------------------------|---|---|---|---|
| Theory    |                                                                                             |   |   |   |   |
| BCE701    | Estimation & Costing                                                                        | 3 | 0 | 0 | 3 |
| BCE702    | Computer Aided Design Of Structures                                                         | 3 | 1 | 0 | 4 |
| BCE703    | Design of Steel Structures                                                                  | 3 | 1 | 0 | 4 |
| BCE704    | Management Concepts For Civil<br>Engineers                                                  | 3 | 0 | 0 | 3 |
| BCE7E1    | Elective – III                                                                              | 3 | 0 | 0 | 3 |
| BCE7E2    | Elective – IV                                                                               | 3 | 0 | 0 | 3 |
| Practical |                                                                                             |   |   |   |   |
| BCE7L1    | Computer Aided Design Of Structures<br>Laboratory                                           | 0 | 0 | 4 | 2 |
| BCE7L1    | Computer Aided Design and Drafting<br>Laboratory(R.C.C, Steel, Irrigation &<br>Environment) | 0 | 0 | 4 | 2 |
| BCE7V1    | In-plant Training (End of 6th Semester<br>-30days)                                          | 0 | 0 | 0 | 1 |

**Total No. of Contact Hours: 28** 

**Total No. of Credits: 25** 

#### **SEMESTER VIII**

| Code No. | Course Title               | L | Т | Р  | С |  |  |  |  |
|----------|----------------------------|---|---|----|---|--|--|--|--|
| Theory   |                            |   |   |    |   |  |  |  |  |
| BCE8E3   | Elective - V               | 3 | 0 | 0  | 3 |  |  |  |  |
| BCE8E4   | Elective - VI              | 3 | 0 | 0  | 3 |  |  |  |  |
| BCE8E5   | Elective - VII             | 3 | 0 | 0  | 3 |  |  |  |  |
| Project  |                            |   |   |    |   |  |  |  |  |
| BCE8P1   | Project Work and Viva Voce | 0 | 0 | 12 | 6 |  |  |  |  |

**Total No. of Contact Hours: 21** 

**Total No. of Credits: 15** 

#### TOTAL NO. OF CREDITS FOR THE PROGRAMME : 195

#### LIST OF ELECTIVES

| Code No. | Course Title                                      | L | Т | Р | С |
|----------|---------------------------------------------------|---|---|---|---|
| Theory   |                                                   | • |   |   |   |
| BCE051   | Matrix Methods of Structural Analysis             | 3 | 0 | 0 | 3 |
| BCE052   | Industrial Structures                             | 3 | 0 | 0 | 3 |
| BCE053   | Design of R.C. Framed Structures                  | 3 | 0 | 0 | 3 |
| BCE054   | Concrete Bridges                                  | 3 | 0 | 0 | 3 |
| BCE055   | Tall Structures                                   | 3 | 0 | 0 | 3 |
| BCE056   | Advanced Concrete Design                          | 3 | 0 | 0 | 3 |
| BCE057   | Industrial Waste Treatment and<br>Disposal        | 3 | 0 | 0 | 3 |
| BCE058   | Air and Noise Pollution                           | 3 | 0 | 0 | 3 |
| BCE059   | Environmental Health Engineering                  | 3 | 0 | 0 | 3 |
| BCE060   | Renewable Sources of Energy                       | 3 | 0 | 0 | 3 |
| BCE061   | Structures on Expansive Soil                      | 3 | 0 | 0 | 3 |
| BCE062   | Soil Dynamics and Machine<br>Foundation           | 3 | 0 | 0 | 3 |
| BCE063   | Hydrology                                         | 3 | 0 | 0 | 3 |
| BCE064   | Ground Water Engineering                          | 3 | 0 | 0 | 3 |
| BCE065   | Coastal Engineering                               | 3 | 0 | 0 | 3 |
| BCE066   | Geographic Information System                     | 3 | 0 | 0 | 3 |
| BCE067   | Operation and Management of<br>Irrigation Systems | 3 | 0 | 0 | 3 |
| BCE068   | Transportation Structures                         | 3 | 0 | 0 | 3 |
| BCE069   | Optimization Techniques                           | 3 | 0 | 0 | 3 |
| BCE070   | Pre stressed Concrete Structures                  | 3 | 0 | 0 | 3 |
| BBA071   | Professional Ethics                               | 3 | 0 | 0 | 3 |
| BCE071   | Engineering Economics                             | 3 | 0 | 0 | 3 |

#### ENGLISH I

#### BEN101 OBJECTIVE

• To make the students learn the basics of communication in order to talk fluently, confidently and vividly.

#### COURSE OUTCOMES (COs)

- CO1- To make them master the techniques of professional communication
- CO2- To know about E-mail communication
- CO3- To understand about comparison studies
- **CO4-** To improve presentation skill
- **CO5-** To know about marking the stress Connectives

#### **CO/PO Mapping**

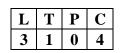
#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | amme | Outco | mes (P     | Os) |            |            |            |            |      |      |      |
|------------|------------|------|-------|------------|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b> | PO2  | PO3   | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| C01        | М          |      |       |            |     |            |            |            |            |      |      |      |
| CO2        |            |      | S     |            | М   |            |            |            |            |      |      |      |
| CO3        |            | М    |       | S          |     |            |            |            |            |      |      |      |
| <b>CO4</b> |            |      |       | W          |     |            |            |            |            |      |      |      |
| CO5        | S          | М    |       |            |     | S          |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |
| 5   | Online test               |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I


Parts of speech - Active and passive voices - Subject verb agreement - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord -Summarizing - Note-making

#### UNIT II

Cause and effect relations – Punctuations –Differences between verbal and nonverbal communication -E - mail communication – Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart

#### UNIT III

Degrees of comparison – Positive, Comparative, Superlative - wh questions - SI units -Lab reports- Physics, chemistry, workshop and Survey report for introducing new product in the



#### 12

#### 12

market.

#### UNIT IV

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

#### UNIT V

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives, prepositional relatives.

#### L=45, T=15, Total No. of Periods: 60

#### **Text Book:**

1. Department of humanities and social sciences division, Anna university, oxford university press, 2013.

#### **Reference Books:**

- 2. S.P.Danavel, English and Communication for Students of Science and engineering, Orient Blackswan, Chennai, 2011.
- 3. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007. MuraliKrishna and SunithaMoishra, Communication Skills for Engineers, Pearson, New Delhi, 2011.

#### BMA101 ENGINEERING MATHEMATICS-I OBJECTIVE:

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 1 | 0 | 3 |  |

• To equip students with adequate knowledge of Mathematics to formulate problems in engineering environment and solve them analytically

#### **COURSE OUTCOME:**

- **CO1-** To apply matrix operations to solve the relevant real life problems in engineering.
- **CO2-** To formulate a mathematical model for three dimensional objects and solve the concerning problems.
- **CO3-** To find area and volume based on a function with one or more variables.
- **CO4-** To know about Cartesian and Polar coordinates
- **CO5-** To get knowledge about Partial derivatives

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|--|
| COS | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 | S          |                          |     |     |     |            |            |            |            |      |      |      |  |  |
| CO2 |            |                          | S   |     | М   |            |            |            |            |      |      |      |  |  |
| CO3 |            |                          |     | М   |     |            |            |            |            |      |      |      |  |  |

| <b>CO4</b> | S |   | W |   |  |  |  |
|------------|---|---|---|---|--|--|--|
| CO5        |   | М |   | S |  |  |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |
| 5   | Online test               |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### **UNIT-1 MATRICES**

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

#### UNIT-II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

#### **UNIT-III DIFFERENTIAL CALCULUS**

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature-Evolutes- Envelopes- Evolutes as envelope of normals.

#### UNIT-1V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives-Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima-Method of Lagrangian multipliers.

#### **UNIT-V MULTIPLE INTEGRALS**

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates- Area as double integral- Volume as triple integral.

#### L=45, T=15, TOTL NO.OF PERIODS: 60

#### Text book:

1. Ravish R.Singh and Mukkul Bhatt, " Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.

#### **References:**

#### 12

12

12

12

- 2. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 3. Glyn James, "Advanced Engineering Mathematics", 7<sup>th</sup> Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wi;ey and Sons,New York, 2003.
- 5. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, , 1981.
- 6. Grewal.B.S, "Higher Engineering Mathematics", 40<sup>th</sup> Edition, Khanna Publications, Delhi. 2007.

#### BPH 101 ENGINEERING PHYSICS – I OBJECTIVES

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 0 | 0 | 3 |  |

- To make a bridge between the physics in school and engineering courses.
- To impart a sound knowledge on the basic concepts of modern sciences like engineering applications of ultrasonic, lasers, fundamentals of crystal physics.

#### **COURSE OUTCOMES**

CO1 - To know about Ultrasonic and its application in NDT.

- **CO2** To know the principle of Laser and its application in Engineering and medicine.
- CO3 Acquire Knowledge on Quantum Physics.
- CO4 Properties of Electro Magnetic Theory.
- **CO5** To understand the impact of Crystal Physics.

#### CO/PO Mapping

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | Programme Outcomes (POs) |     |     |            |            |            |            |            |      |      |      |  |  |
|-----|------------|--------------------------|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|--|
| COS | <b>PO1</b> | PO2                      | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 |            | S                        |     |     |            |            |            |            |            | М    |      |      |  |  |
| CO2 |            |                          | S   |     | М          |            |            |            |            |      |      |      |  |  |
| CO3 |            | М                        |     | S   |            | М          |            |            |            |      |      | М    |  |  |
| CO4 |            |                          |     | W   |            |            |            |            | S          |      |      |      |  |  |
| CO5 |            | М                        |     |     |            | S          |            |            |            |      |      |      |  |  |

#### **Course Assessment Methods:**

| Dir | ect            | Indirect |                   |  |  |  |  |
|-----|----------------|----------|-------------------|--|--|--|--|
| 1   | Internal Tests | 1        | Course and Survey |  |  |  |  |

| 2 | Assignments               | 2 | Faculty Survey |
|---|---------------------------|---|----------------|
| 3 | Seminar                   | 3 | Industry       |
| 4 | Quiz                      | 4 | Alumni         |
| 5 | Online test               |   |                |
| 6 | End Semester Examinations |   |                |

#### **UNIT I - ULTRASONICS**

Introduction – Production- Magnetostriction Effect- Magnetostriction Generator- Piezoelectric Effect- Piezo Electric Generator- Detection Of Ultrasonic Waves- Properties- Cavitation-Acoustic Grating -Industrial Applications- Drilling, Welding, Soldering, Cleaning And Sonar-Velocity Measurement- - Non Destructive Testing(NDT)- Pulse Echo System Through Transmission And Reflection modes- A,B And C- Scan Display- Important Medical Applications- Sonogram--problem.

#### UNIT II – LASER

Introduction- Principle of Spontaneous Emission and Stimulated Emission- Einstien's A &B Coefficients- Derivation-Condition For Producing Laser Beam- Population Inversion- Pumping-Resonance Cavity- Types Of Lasers- ND-YAG- He-Ne- Co<sub>2</sub> Lasers-Industrial Applications-Heat Treatment- Welding-Cutting-Medical Applications-Laser Surgery- Advantages & Disadvantages-problem.

#### **UNIT III - QUANTUM PHYSICS**

Drawbacks with classical physics- Blackbody radiation: Max Planck theory and concept of energy quantization, deduction of Wien's displacement law, Raleigh-Jeans law – Matter wavesde Broglie wave length-photoelectric effect – Schrödinger equation (time-independent, and timedependent equations)- wave functions and energy spectrum- application to particle in boxproblem.

#### **UNIT IV - ELECTROMAGNETIC THEORY**

Electric charges-coulombs law of inverse squares- Electric field and its calculations-field lines-Gauss's law-applications of Gauss law. Magnetism - Magnetic field- Magnetic field lines-Magnetic flux- Motion of charged particles in magnetic field- Magnetic field of a moving charge. Electromagnetic wave- speed of and electromagnetic wave and its quantitative deduction-group velocity- energy in electromagnetic wave- electromagnetic waves in matterproblem.

#### **UNIT V - CRYSTAL PHYSICS**

Lattice- Unit Cell- Bravais Lattice- Lattice Plane- Miller Indices- D-Spacing In Cubic Lattice-Calculation of Number of Atoms Per Unit Cell- Atomic Radius- Coordination Number- Packing

9

9

9

9

Factor- SC,BCC, FCC, HCP Structures- Polymorphism And Allotropy- Crystal Defects- Point, Line And Surface Defects- Burgers Vector-problem.

#### **Text Books:**

- 1. Marikani, A. 'Engineering Physics' Second Edition PHI Learning Pvt Ltd 2013
- 2. Sears.F.W., Zemansky.M.W., Young.H.D,; 'University Physics; Narosa Publishing House.
- 3. Avadhanulu. M.N.; Engineering Physics-Vol-1; S.Chand And Company Ltd, 2010.

#### **Reference Books**:

- 4. Sears., Zemansky.,, Young.; 'College Physics; Addison Wesley Publishing Company.
- 5. Resnick, R., and Halliday, D. and Walker, J.; Fundamental of Physics; John Wiley and Sons.
- 6. Senthil Kumar, G. 'Engineering Physics I' VRB publishers Pvt Ltd. 2010.

#### **Total No. of Periods: 45**

#### BCH 101 ENGINEERING CHEMISTRY – I

### OBJECTIVES

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 0 | 0 | 3 |  |

- To impart knowledge to the Students about the principles, water characterization and treatment of portable and industrial purposes.
- To make them understand the Principles of polymer chemistry and engineering applications of polymers
- To impart a sound knowledge about the Principles of electrochemistry, electrochemical cells, emf and applications of emf measurements
- To make the students to have a deep knowledge of the Principles of corrosion and corrosion control and
- To make the students to be well versed with the Conventional and non-conventional energy sources and energy storage devices

#### **COURSE OUTCOMES:**

- CO1 Having a knowledge of Water characterization and treatment of portable and Industrial purposes.
- **CO2** Having the thinking of Principles of polymer chemistry and engineering applications of polymers
- CO3 Having a deep knowledge about the Principles of electrochemistry
- CO4 With a true wisdom about Corrosion
- **CO5** Having a sound knowledge in the Field of the Conventional and nonconventional energy .

#### **CO/PO** Mapping

| COs        | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |  |
|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|
| COS        | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| C01        |                          |     |     | S   |            |            |            |            |            |      |      |      |  |
| CO2        | S                        |     | М   |     | М          |            |            |            |            |      |      |      |  |
| CO3        |                          | М   |     | S   |            |            |            |            |            |      |      |      |  |
| <b>CO4</b> |                          |     |     |     |            |            |            |            |            |      |      |      |  |
| CO5        | S                        | М   |     |     |            | W          |            |            |            |      |      |      |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |
| 5   | Online test               |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I INTRODUCTION

#### WATER TECHNOLOGY

9

9

#### Characteristics :

Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination – Domestic water treatment – disinfection methods (Chlorination, ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers (caustic embritlement , boiler corrosion , priming and foaming ) – Prevention of scale formation – softening of hard water - Internal treatment (Calgon treatment method) – External treatment – Demineralization process – Desalination and Reverse osmosis.

## UNIT II POLYMERS

#### INTRODUCTION

#### **Polymers:**

Definition – polymerization – degree of polymerization - types of polymerisation – Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only

#### **Plastics:**

Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET **Rubber :** 

Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

| UNIT III                             | ELECTROCHEMISTRY                             | 9                  |
|--------------------------------------|----------------------------------------------|--------------------|
| INTRODUCTION                         |                                              |                    |
| CELLS :                              |                                              |                    |
| Types of Cells :                     |                                              |                    |
| Electrochemical cells, Electrolyt    | ic cells – Reversible and Irreversible cells | SEMF – measurement |
| of emf - Single electrode potential  | l – Nernst equation                          |                    |
| Reference electrodes:                |                                              |                    |
| Standard Hydrogen electrode -Cal     | omel electrode                               |                    |
| Ion selective electrode:             |                                              |                    |
| Glass electrode and measurement      | of pH using Glass electrode                  |                    |
| Electrochemical series - significant | nce                                          |                    |
| Titrations:                          |                                              |                    |
| Potentiometer titrations (redox - F  | e <sup>2+</sup> vs dichromate titrations)    |                    |
| Conductometric titrations (acid-ba   | se – HCI vs. NaOH titrations)                |                    |

# UNIT IVCORROSION AND CORROSION CONTROL9INTRODUCTION

Chemical corrosion

Definition - Chemical Corrosion - Electrochemical corrosion – different types (Galvanic corrosion – differential aeration corrosion) – mechanism of Chemical and Electrochemical corrosion factors influencing corrosion

Corrosion control - sacrificial anode and impressed cathodic current methods

Protective coatings :

Paints – constituents of the paint and their functions

Metallic coatings – electroplating of Gold and electroless plating of Nickel.

#### **UNIT V. Non-Conventional Energy Sources And Storage Devices INTRODUCTION :**

9

Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries

Secondary batteries :

Lead-acid storage battery -working -uses

Nickel-cadmium battery - working -uses

Solid – state battery : Lithium battery

#### **Text books:**

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

#### **References:**

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001)
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008)

# BCS101 FUNDAMENTALS OF COMPUTING AND PROGRAMMING OBJECTIVE:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

**Total: 45 Periods** 

• To provide a basic understanding of computing

#### COURSE OUTCOMES

**CO1-** To enable the student to learn the major components of a computer system.

CO2- To know the correct and efficient way of solving problem.

**CO3-** To learn to use office automation tools.

CO4- To learn and write program in "C".

CO5- To learn about C++

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 |                          |     |     |            |     |            |            | W          |            |      |      |      |  |
| CO2 | S                        |     |     |            | М   |            |            |            |            |      |      |      |  |
| CO3 |                          |     | М   |            |     |            |            |            |            | М    |      |      |  |
| CO4 |                          |     |     | W          |     |            |            |            |            |      | Μ    |      |  |
| CO5 | S                        | М   |     |            |     | S          |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | ect            | Indirect       1     Course and Survey |                   |  |  |
|-----|----------------|----------------------------------------|-------------------|--|--|
| 1   | Internal Tests | 1                                      | Course and Survey |  |  |
| 2   | Assignments    | 2                                      | Faculty Survey    |  |  |

| 3 | Seminar                   | 3 | Industry |
|---|---------------------------|---|----------|
| 4 | Quiz                      | 4 | Alumni   |
| 5 | Online test               |   |          |
| 6 | End Semester Examinations |   |          |

#### **UNIT I: Introduction to Computer**

Introduction-Characteristics of computer-Evolution of Computers-Computer Generations -Classification of Computers-Basic Computer Organization-Number system. Computer Software: Types of Software—System software-Application software-Software Development Steps

#### UNIT II: Problem Solving and Office Automation

Planning the Computer Program – OBJECTIVE – Algorithm – Flowcharts– Pseudo code Introduction to Office Packages: MS Word , Spread Sheet, Power Point, MS Access, Outlook.

#### **UNIT III: Introduction to C**

Overview of C-Constants-Variables-Keywords-Data types-Operators and Expressions - Managing Input and Output statements-Decision making-Branching and Looping statements.

#### **UNIT IV:** Arrays and Structures

Overview of C-Constants, Variables and Data types-Operators and Expressions -Managing Input and Output operators-Decision making-Branching and Looping.

#### **UNIT V: Introduction to C++**

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

#### **Total No. of Periods: 45**

#### **Text books:**

- 1. Ashok, N.Kamthane,"Computer Programming", Pearson Education (2012).
- 2. Anita Goel and Ajay Mittal,"Computer Fundamentals and Programming in C", Dorling Kindersley, (India Pvt Ltd).,Pearson Education in South Asia,(2011).
- 3. Yashavant P. Kanetkar, "Let us C",13th Edition,BPB Publications(2013).
- 4. Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013).

#### **Reference books:**

- 5. Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013).
- 6. Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH publication.
- 7. PradipDey,ManasGhosh,Fundamentals of Computing and Programming in 'C' First Edition ,Oxford University Press(2009).
- 8. The C++ Programming Language ,4thEdition,BjarneStroustrop,Addison-Wesley Publishing Company(2013)

9

9

9

9

#### BBA101/BBA102 PERSONALITY DEVELOPMENT OBJECTIVE:

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 1 | 0 | 2 |

• The students should be able to act with confidence, be clear about their own personality, character and future goals.

#### **COURSE OUTCOMES:**

- **CO1-** To make students understand the concept and components of personality and thereby to apply the acquired knowledge to themselves and mould their personality.
- **CO2-** To impart training for positive thinking, this will keep the students in a good stead to face the challenges.
- **CO3-** To bring out creativity and other latent talents with proper goal setting so that self-esteem gets enhanced.
- **CO4-** To develop an individual style and sharpen the skills in the area of leadership, decision making, time management and conflict management.
- **CO5-** To sharpen the employability skills of the professional undergraduate students and aid them in landing in the desired job.

#### **CO/PO Mapping**

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| C01 |                          |     | М   |     |     |            |            |            |            |      |      |      |  |
| CO2 |                          | S   |     |     | W   |            |            |            |            |      |      |      |  |
| CO3 |                          |     |     |     |     |            | М          |            |            |      |      |      |  |
| CO4 |                          |     | М   |     |     |            | S          |            |            |      |      |      |  |
| CO5 |                          | S   |     |     |     |            |            |            | М          |      |      |      |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | ect                       | Ind | lirect            |
|-----|---------------------------|-----|-------------------|
| 1   | Internal Tests            | 1   | Course and Survey |
| 2   | Assignments               | 2   | Faculty Survey    |
| 3   | Seminar                   | 3   | Industry          |
| 4   | Quiz                      | 4   | Alumni            |
| 5   | Online test               |     |                   |
| 6   | End Semester Examinations |     |                   |

#### **UNIT I Introduction to Personality Development**

9

The concept personality - Dimensions of personality –Theories of Freud & Erickson-Significance of personality development. The concept of success and failure: What is success? -Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

#### **UNIT II Attitude & Motivation**

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

#### UNIT III Self-esteem

Term self-esteem - Symptoms - Advantages - Do's **and Don'ts to develop positive self**-esteem – Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviors - Lateral thinking.

#### **UNIT IV Other Aspects of Personality Development**

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics –Good manners and etiquette.

#### **UNIT V Employability Quotient**

Resume building- The art of participating in Group Discussion – Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

#### **Total No. of Periods: 45**

# Text Books: 1. Hurlock, E.B (2006). Personality Development, 28<sup>th</sup> Reprint. New Delhi: Tata Mc Graw Hill.

2. Stephen P. Robbins and Timothy A. Judge(2014), Organizational Behavior 16<sup>th</sup> Edition: Prentice Hall.

#### **Reference Books:**

- 3. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi.Tata McGraw-Hill 1988.
- 4. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002
- 5. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 6. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 7. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).
- 8. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 9. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

9

9

9

#### **BIOLOGY FOR ENGINEERS**

#### OBJECTIVE

**BBT101** 

• To provide a basic understanding of cell, its structure, function, types and about its culture

#### **COURSE OUTCOMES:**

CO1- To understand the fundamentals of the structure of cells

CO2- To study the types and functions of cell organelles

CO3- To comprehend the methods involved in the cellular transport

**CO4-** To know the cause, and methods of cell signaling

CO5- To Finally to give a basic knowledge of cell culture and its applications

#### **CO/PO Mapping**

#### S-Strong, M-Medium, W-Weak

| COs        | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |
|------------|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS        | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1        | S                        |     |     |     |     |            |            |            |            |      | S    |      |  |
| CO2        |                          |     | S   |     | М   |            |            |            |            |      |      |      |  |
| CO3        |                          | М   |     | S   |     |            | S          |            |            |      |      |      |  |
| <b>CO4</b> |                          |     |     | W   |     |            |            |            |            |      |      |      |  |
| CO5        | S                        | М   |     |     |     | S          |            |            |            |      | Μ    |      |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Ind | lirect            |
|-----|---------------------------|-----|-------------------|
| 1   | Internal Tests            | 1   | Course and Survey |
| 2   | Assignments               | 2   | Faculty Survey    |
| 3   | Seminar                   | 3   | Industry          |
| 4   | Quiz                      | 4   | Alumni            |
| 5   | Online test               |     |                   |
| 6   | End Semester Examinations |     |                   |

#### **UNIT I Cell Structure**

Cells-definition, Eukaryotic cell and prokaryotic cell – differences and key organelles, Relationship and evolution of Eukaryotic cell and prokaryotic cell, plant cells and animal cells– differences and general structure- Cellular environment, tissues, various types of cell, Extra cellular matrix, cytoskeletal proteins, Cell cycle-Mitosis and meiosis

#### UNITII Cell Organelles

Cell Organelles and function – Nucleus, Cytoplasm, Endoplasmic reticulum, Golgi complex, lysosomes, cell membranes, chloroplast, mitochondria – structure, importance and function



6

 L
 T
 P
 C

 2
 0
 0
 2

#### UNIT III Cellular Transport

Transport across cell membranes – importance, classification – Active and passive, passive transport – movement of water, small lipid across membrane. Active – Na+ K+ ATPase Pump, Lysosomal and Vacuolar pumps. Cotransport – Symport, antiport – examples, Endocytosis and Exocytosis transport across prokaryotic membrance, entry of viruses and toxins

#### **UNITIV Cell Signaling And Signal Transduction**

Cell signaling – process importance, various kinds of Receptors and ligands – Examples, Different modes of action of ligands, Qualification and characterization of receptors, different modes of signal transduction and amplification with examples, signaling through G-Proteins (Monomeric and trimeric), signaling for growth factors, second messengers, protein kinases, Ca ions and cAMP molecule in signaling.

#### **UNIT V Cell Culture**

Definition, Media preparation, Propagation of eukaryotic and prokaryotic cell, cell lines, primary cultures, stock cell cultures, maintenance of cell lines in cell culture, explants cultures, differentiation and contamination

#### **Total No.of Periods: 30**

#### Text books:

- 1. P.K. Gupta, "Cell and Molecular Biology", Rastogi Publication, 2003
- 2. Molecular Biology of the Cell, Bruce Albert et al., Taylor and Francis, 2002

#### **Reference books:**

- 3. Molecular Biology of the Cell, Baltimore, Damell J., Lodish, H. Baltimore, D., Freeman Publications, 2003
- 4. The Cell, T. Coopper, John Wiley and Sons, 2005
- 5. Cytology, Vermaand Aggarval, S. Chand Publications, 2003

#### BME101 ENGINEERING GRAPHICS- E

#### **OBJECTIVES**

- To visualize and produce two dimensional graphic representation of three dimensional objects and buildings.
- To comprehend and visualize 3D views of objects.
- To understand and generate the different curves used in engineering applications.
- To introduce the fundamental of CAD Graphics used in design.

|         | L | Т | Ρ | С |
|---------|---|---|---|---|
| 2 3 0 3 | 2 | 3 | 0 | 3 |

6

6

• To visualize interior portions of object and also to draw the surfaces necessary for producing prisms, pyramids, cone, tray, duct etc.,

#### **COURSE OUTCOMES:**

**CO1:** Student Ability of visualization will increase.

**CO2:** Student will understand and develop different engineering curves.

**CO3:** Student will understand the application of computer in graphics.

**CO4:** Will understand the surface necessary for producing different solids

CO5: Understand the importance of graphical representations of engineering components .

CO5: They will get a clear idea abt LSRW( Listening, Speaking , Reading , Writing)

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|
|     | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | S                        |     |     |     |            |            |            |            | W          |      |      |      |  |
| CO2 |                          | W   | S   |     | М          |            |            |            |            | W    |      |      |  |
| CO3 |                          | М   |     | S   |            |            |            |            |            |      |      |      |  |
| CO4 | S                        |     | М   | W   |            |            |            |            |            |      |      |      |  |
| CO5 |                          | W   | W   |     |            |            |            |            |            |      |      |      |  |

#### **Course Assessment Method**

| Direct                   | Indirect            |
|--------------------------|---------------------|
| Internal Test            | Student Exit Survey |
| Assignments              | Faculty Survey      |
| Seminar                  | Industry            |
| Quiz                     | Alumni              |
| Online Test              |                     |
| End Semester Examination |                     |

#### UNIT-I Basic Curves, Projection of points and Straight lines 6+6

Conics-construction of ellipse, parabola and hyperbola by eccentricity method-construction of cycloids- construction of involutes of square and circle-Drawing of tangent and normal to the above curves-Scales-Basic drawing conventions and standards-Orthographic projection principles- Principal planes-First angle projection- Projection of points. Projection of straight lines (only first angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces.

#### UNIT-II Projections of Planes and solids 6+6

Projection of planes (Polygonal and circular surfaces) inclined to both the principal planes. Projection of simple solids like prisms, pyramids, cylinder, cone, tetrahedran and truncated solids when the axis is inclined to one of the principal planes/ both principal planes by rotating object method and auxiliary plane method.

#### UNIT-III Orthographic Projections, Isometric projections & Free hand sketching 6+6

Orthographic projection of Simple parts from 3D diagram-Principles of isometric projection and isometric view-isometric scale- Isometric projections of simple solids and truncated solids-Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems Free hand sketching of orthographic & Isometric projection

#### UNIT-IV Projection of Sectioned solids and development of surfaces 6+6

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other-obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids- Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes.

#### UNIT-V Perspective projection, building drawing and Computer aided drafting 6+6

Perspective projection of simple solids-Prisms, Pyramids and cylinders by visual ray method. Introduction- components of simple residential or office building-specifications-plan and elevation of different types of Residential buildings and office buildings. Introduction to drafting packages and basic commands used in AUTO CAD. Demonstration of drafting packages.

#### **Total: 60 Periods**

#### **Text Books:**

- 1. N.D.Bhatt and V.M.Panchal, "Engineering drawing", charotar publishing house, 50th edition, 2010.
- 2. K.V.Natarajan "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.

#### **References:**

- 1. K.R.Gopalakrishna, "Engineering drawing",(Vol-I & II combined)Subhas stores, Bangalore,2007.
- 2. K.Venugopal and V. PrabhuRaja, "Engineering Graphics", New age International Private limited, 2008.
- 3. Luzzader, Warren.J., and Duff, John.M.,, "Fundamentals of Engineering Drawing with an introduction to Interactive computer graphics for design and production", Eastern economy edition,Prentice Hall of India Pvt Ltd,New Delhi,2005.
- 1. Special points applicable to University Examinations on Engineering Graphics
  - a) There will be five questions, each of either or type covering all units of the syllabus.
  - b) All questions will carry equal marks of 20 each making a total of 100.

#### BME 103 BASIC MECHANICAL ENGINEERING

| L | Т | Ρ | С |
|---|---|---|---|
| 2 | 0 | 0 | 2 |

6

6

#### **OBJECTIVE:**

• To impart basic knowledge on mechanical engineering required for all branches of engineering students.

#### **COURSE OUTCOMES:**

**CO1-** To provide basic knowledge regarding various power plants.

CO2- To provide basic knowledge of I.C engines, Refrigeration and Air- Conditioning.

CO3- To provide basic Knowledge of basic manufacturing process.

**CO4-** To provide basic knowledge of mechanical design required for engineering.

**CO5-** To know about design soft wares

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| C01 |                          | S   |     |     |            | М          |            |            |            |      |      |      |
| CO2 |                          |     |     |     |            |            |            |            | W          |      |      |      |
| CO3 |                          | М   |     |     | S          |            |            |            |            |      |      | М    |
| CO4 | S                        |     |     |     |            |            |            | М          |            |      |      |      |
| CO5 |                          |     |     | М   |            |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |  |
| 5   | Online test               |          |                   |  |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |  |

#### **UNIT-I** Energy Resources and Power Generation

Renewable and Non-renewable resources- solar, wind, geothermal, steam, nuclear and hydel power plants- Layout, major components and working. Importance of Energy storage, Environmental constraints of power generation using fossil fuels and nuclear energy.

#### UNIT-II IC Engines

Classification, Working principles of petrol and diesel engines- two stroke and four stroke

#### cycles, functions of main components of I.C engine. Alternate fuels and emission control.

#### UNIT-III Refrigeration and Air-Conditioning System

Terminology of Refrigeration and Air-Conditioning, Principle of Vapour Compression & Absorption system-Layout of typical domestic refrigerator- window & Split type room air conditioner.

#### **UNIT-IV Manufacturing Processes**

Brief description of Mould making and casting process, Metal forming, Classification types of forging, forging operations, Brief description of extrusion, rolling, sheet forging, and drawing. Brief description of welding, brazing and soldering. Principal metal cutting processes and cutting tools, Brief description of Centre lathe and radial drilling machine.

#### **UNIT-V Mechanical Design**

Mechanical properties of material-Yield strength, ultimate strength, endurance limit etc., Stress-Strain curves of materials. Stresses induced in simple elements. Factor of safety - Design of Shafts and belts. Types of bearings and its applications. Introduction to CAD/CAM/CIM & Mechatronics.

#### **Total No. of Periods: 30**

6

6

6

#### Text books:

1. T.J.Prabhu et al , "Basic Mechanical Engineering", Scitech Publications(p) Ltd, 2000

#### **References :**

- 2. NAGPAL, G.R, "Power plant Engineering", Khanna Publishers, 2004.
- 3. RAO.P.N, "Manufacturing Technology", Tata McGraw-Hill Education, 2000.
- 4. Kalpakjian, "Manufacturing Engineering and Technology", Adisso Wesley publishers, 1995.
- 5. Ganesan. V, "Internal combustion engines", Tata McGraw-Hill Education, 2000.
- 6. C.P.Arora, "Refrigeration and Air Conditioning", Tata McGraw-Hill Education, 2001.
- 7. V.B.Bhandari, "Design of Machine elements", Tata McGraw-Hill Education, 2010.

#### BCM1L1 BASIC CIVIL & MECHANICAL ENGINEERING PRACTICES LABORATORY

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

#### **OBJECTIVE**

• To provide exposure to the students with hands on experience on various basic Civil & Mechanical Engineering practices.

#### **COURSE OUTCOMES**

- **CO1-** To provide hands on exercises in common plumbing and carpentry works associated with residential and industrial buildings.
- **CO2-** To expose the students regarding pipe connection for pumps & turbines and to study the joint used in roofs, doors, windows and furnitures.
- CO3- To provide hands on exercise on basic welding, machining and sheet metal works.
- **CO4-** To provide exposure regarding smithy, foundry operations and in latest welding operations such as TIG, MIG, CO2, spot welding etc.,
- **CO5-** To expose the students regarding the construction and working of centrifugal pump, air-conditioner and lathe.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        |     | М   |     |            | М          |            |            |            |      | М    |      |
| CO2 |                          |     |     |     |            |            |            |            |            |      |      |      |
| CO3 |                          | S   |     | W   |            |            |            | М          |            |      | S    |      |
| CO4 | М                        |     |     |     |            |            |            |            |            |      |      |      |
| CO5 |                          |     | М   |     |            |            | W          |            |            | S    |      |      |

#### **Course Assessment Methods:**

| Direct                    |   | Indirect          |  |  |  |  |
|---------------------------|---|-------------------|--|--|--|--|
| Observation Book          | 1 | Course and Survey |  |  |  |  |
| Record Book               | 2 | Faculty Survey    |  |  |  |  |
| Model Examination         | 3 | Industry          |  |  |  |  |
|                           | 4 | Alumni            |  |  |  |  |
| End Semester Examinations |   |                   |  |  |  |  |

#### I. CIVIL ENGINEERING PRACTICE

#### **Buildings:**

Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

#### **Plumbing Works:**

- a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- b) Study of pipe connections requirements for pumps and turbines.
- c) Preparation of plumbing line sketches for water supply and sewage works.
- d) Hands-on-exercise: Basic pipe connection of PVC pipes &G.I. Pipes Mixed pipe material connection Pipe connections with different joining components.
- e) Demonstration of plumbing requirements of high-rise buildings.

#### **Carpentry using Hand tools and Power tools:**

- a) Study of the joints in roofs, doors, windows and furniture.
- b) Hands-on-exercise:Wood work, joints by sawing, planning and cutting.
- c) Preparation of half joints, Mortise and Tenon joints.

#### **II MECHANICAL ENGINEERING PRACTICE**

#### Welding:

Preparation of butt joints, lap joints and tee joints by arc welding.

#### **Basic Machining:**

- a) Simple Turning and Taper turning
- b) Drilling Practice

#### **Sheet Metal Work:**

- a) Forming & Bending:
- b) Model making Trays, funnels, etc.
- c) Different type of joints.
- d) Preparation of air-conditioning ducts.

#### Machine assembly practice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Study of air conditioner
- c) Assembling, dismantling and Study of lathe.

#### Moulding:

Moulding operations like mould preparation for gear and step cone pulley etc.,

#### **Fitting:**

FittingExercises – Preparation of square fitting and vee – fitting models.

#### **Demonstration:**

- a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- b) Gas welding.

#### Total No. of Periods: 45

#### **References:**

- 1. Jeyachandran, S. Nararajan & S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian & S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)
- 3. H. S. Bawa, "Workshop Practice", Tata McGraw Hill Publishing Company Limited, (2007).
- 4. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", Sree Sai Publication, (2002).
- 5. P. Kannaiah & K.L. Narayana, "Manual on Workshop Practice", Scitech Publication, (1999).

#### BPC1L1 PHYSICS AND CHEMISTRY LABORATORY OBJECTIVE:

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 0 |

• To give basic knowledge on physics and chemistry experiments

#### **COURSE OUTCOMES:**

CO1 - To Know about Ultrasonics and its application in NDT.

CO2 - To Know the principle of Laser and its application in Engineering and medicine.

CO3 – Having a deep knowledge about the Principles of electrochemistry

 $\mathbf{CO4}-\mathbf{With}\ a\ true\ wisdom\ about\ Corrosion$ 

**CO5** - Having a sound knowledge in the Field of the Conventional and non- conventional energy

#### CO/PO Mapping

#### S-Strong, M-Medium, W-Weak

| COs | Progr      | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
|     | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | S          |                          |     |     |     |            |            |            |            |      |      |      |  |
| CO2 |            |                          | S   |     | М   |            |            |            |            |      |      |      |  |
| CO3 |            | М                        |     | S   |     |            |            |            |            |      |      |      |  |
| CO4 | S          |                          | М   | W   |     |            |            |            |            |      |      |      |  |
| CO5 |            |                          |     |     | W   |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |  |  |
|--------|---------------------------|----------|-------------------|--|--|--|
| 1      | Observation Book          | 1        | Course and Survey |  |  |  |
| 2      | Record Book               | 2        | Faculty Survey    |  |  |  |
| 3      | Model Examination         | 3        | Industry          |  |  |  |
| 4      | End Semester Examinations | 4        | Alumni            |  |  |  |

#### I - LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of particle size using laser
- 2. Determination of wavelength of laser light
- 3. Determination of numerical aperture and acceptance angle of an optical fiber
- 4. Study of photo electric effect
- 5. Determination of velocity of sound and compressibility of liquid-ultrasonic interferometer
- 6. Determination of wave lengths of mercury spectrum spectrometer grating

#### II - LIST OF EXPERIMENTS – CHEMISTRY

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Determination of DO in water (Winkler's method)
- 4. Estimation of Chloride in Water sample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determination of molecular weight and degree of polymerization using Viscometer.

#### BEN 201 OBJECTIVE

#### **ENGLISH II**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 3 |

- To make the students learn the basics of communication in order to talk fluently , confidently and vividly.
- To make them master the techniques of professional communication so that they become employable after completing the course

#### **COURSE OUTCOMES**

CO1- To make them master the techniques of professional communication

CO2- To know about E-mail communication

CO3- To understand about comparison studies

CO4- To improve presentation skill

CO5- To know about marking the stress Connectives

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | М                        |     |     |     |     |            |            |            |            |      |      |      |  |
| CO2 |                          |     | S   |     | М   |            |            |            |            |      |      |      |  |
| CO3 |                          | М   |     | S   |     |            |            |            |            |      |      |      |  |
| CO4 |                          |     |     | W   |     |            |            |            |            |      |      |      |  |
| CO5 | S                        | М   |     |     |     | S          |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | ect            | Indirect |                   |  |  |  |
|-----|----------------|----------|-------------------|--|--|--|
| 1   | Internal Tests | 1        | Course and Survey |  |  |  |
| 2   | Assignments    | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar        | 3        | Industry          |  |  |  |
| 4   | Quiz           | 4        | Alumni            |  |  |  |
| 5   | Online test    |          |                   |  |  |  |

#### 6 End Semester Examinations

#### UNIT I Orientation

Numerical adjectives - Meanings in context - Same words used as different parts of speech - Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

#### UNIT II Oral Skill

Listening to audio cassettes - C.Ds , News bulletin - Special Lectures, Discourse - Note taking Sentence patterns - SV, SVO, SVC, SVOC, SVOCA- Giving Instructions- Reading Comprehension- and answering questions. Inferring meaning.

#### UNIT III Thinking Skill

Self- introduction - Describing things- Group Discussion – Debate - Role play – Telephone etiquette – Recommendations and suggestions- Sequencing jumbled sentences to make a paragraph advertisement and notices, designing or drafting posters, writing formal and informal invitations and replies.

#### UNIT IV Writing Skill

Definitions - Compound nouns - Abbreviations and acronyms - business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) letters to the editor(giving suggestions on an issue).

#### UNIT V Formal Information

Editing – Prepositions - Articles - Permission letter for undergoing practical training, Essay writing - Application for a job, letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

#### **Total No. Of Periods: 60**

#### Text book:

1. Meenakshi Raman, SangeethaSharma, Technical English for Communication: Principle and Practice, OUP, 2009.

#### **Reference books:**

- 2. Sumanth , English for engineers, Vijay Nicole , Imprints pvt ltd.2013.
- 3. Meenakshi Raman and SangeethaSharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 4. Sangeetha Sharma, Binodmishra, Communication skills for engineers and scientists, PHI Learning Pvt Ltd, New Delhi, 2010.

#### 12

12

#### 12

#### 12

## BMA 201 ENGINEERING MATHEMATICS – II

#### **OBJECTIVE:**

• To impart adequate knowledge of Mathematics to the students so as to

formulate problems in engineering environment and solve them using mathematical tools.

#### **COURSE OUTCOMES:**

- **CO1-** To solve differential equations, simultaneous linear equations, and some special types of linear equations related to engineering.
- **CO2-** To deal with applications in a variety of fields namely fluid flow, heat flow, solid mechanics, electrostatics, etc.
- **CO3-** To find intensity of degree of relationship between two variables and also bring out regression equations.
- CO4- To know the applications integral theorem
- CO5- To get basic idea about statistics

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | М                        |     |     |     |     |            |            |            |            | М    |      |      |
| CO2 |                          |     | S   |     | М   |            |            | W          |            |      |      |      |
| CO3 |                          | М   |     | S   |     |            |            | W          |            |      |      |      |
| CO4 |                          |     |     | W   |     |            |            |            |            | Μ    |      |      |
| CO5 | S                        | М   |     |     |     | S          |            |            |            | Μ    |      | Μ    |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Quiz                      | 4 | Alumni            |
| 5   | Online test               |   |                   |
| 6   | End Semester Examinations |   |                   |

#### UNIT I ORDINARY DIFFERENTIAL EQUATION

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Cauchy's and Legendre's linear equations - simultaneous first order linear equations with constant coefficients.

#### UNIT II VECTOR CALCULUS

12

L|T|P|C

3 1 0 3

**ENGINEERING PHYSICS – II** 

**B.Tech - Department of Civil Engineering** 

#### Gradient, divergence and curl –Directional derivatives – Irrational and solenoidal vector fields – vector integration – Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

#### UNIT III ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) - Harmonic and orthogonal properties of analytic functions – Harmonic conjugate – construction of analytic functions – conformal mapping : W = Z + C, CZ, 1/Z and bilinear transformation.

#### UNIT IV COMPLEX INTEGRATION

Complex integration – Statement and application of Cauchy's integral theorem and Cauchy's integral formula - Taylor and Laurent expansions - Singular points - Residues - Residue theorem -Application of Residue theorem to evaluate real integrals - Unit circle and semicircular contour (excluding ploes on boundaries).

#### UNIT V STATISTICS

Mean, Median, Mode - Moments - Skewness and Kurtosis - correlation - Rank Correlation -Regression - Chi Square Test - 2 X 2, M X N.

#### **Text book :**

- 1. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11th edition, Sultan Chand Sons, , New Delhi, 2014.[Unit V]
- 2. Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rd Edition, Laxmi Publications (p) ltd, 2008 .[Units I to IV]

#### **References :**

**BPH 201** 

**OBJECTIVES** 

- 1. Ramana.B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. George B. Thomas and Ross L.Finney. "Calculus and Analytical Geometry" 9<sup>th</sup> Edn. Narosa Indian Student Edition, New Delhi.
- 3. Grewal .B.S "Higher Engineering Mathematics", 40th Editon, Khanna Publications , New Delhi , 2007 .
- 4. Douglas C.Montgomory, George C.Runger and Norma F.Hubele. "Engineering Statistics" 4th Edn. Wiley India Pvt Ltd. New Delhi-2. 2007.

Bharath Institute of Higher Education and Research

L Т

3 0 0 3

С Ρ

**Total No. Of Periods: 60** 

#### 12

- To make a bridge between the physics in school and engineering courses.
- To expose the students to multiple areas of Science of Engineering materials which have direct relevance to different Engineering applications.

#### **COURSE OUTCOMES**

CO1 - To Know about properties and advancements of conducting materials .

**CO2** - To Know the principle and properties semiconducting materials.

CO3 - Acquire Knowledge on magnetic and dielectric materials

CO4 – To Know about the creation of new materials with novel properties

CO5 – To Understand the impact of light in technical uses

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |
|------------|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | М                        |     |     |            |     |            |            |            |            | М    |      |      |
| CO2        |                          |     | S   |            | М   |            |            | W          |            |      |      |      |
| CO3        |                          | М   |     | S          |     |            |            | W          |            |      |      |      |
| <b>CO4</b> |                          |     |     | W          |     |            |            |            |            | М    |      |      |
| CO5        | S                        | М   |     |            |     | S          |            |            |            | Μ    |      | М    |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |  |
| 4   | Quiz                      | 4 | Alumni            |  |  |  |  |
| 5   | Online test               |   |                   |  |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |  |

#### **UNIT I - CONDUCTING MATERIALS**

Classical Free Electron Theory of Metals- Drawback of Classical Theory – Wiedemann Franz Law- Density of States- Fermi-Dirac Statistics- Calculation of Fermi Energy and Its Importance -High Resistivity Alloys – Super Conductors – Properties and Applications – Magnetic Levitation, SQUIID, Cryotron.

#### **UNIT II - SEMICONDUCTING MATERIALS**

Elemental and Compound Semiconductors and their Properties- Carrier Concentrations (Electrons and Holes) in Intrinsic Semiconductors - Carrier Concentrations in N- Type and P-Type Semiconductors – Variation of Fermi Level with Carrier Concentration and Temperature - Variation of Conductivity with Temperature – Band Gap Determination – Hall Effect – Experimental Arrangement - Application.

9

#### **UNIT III - MAGNETIC AND DIELECTRIC MATERIALS**

Different Type of Magnetic Material And Their Properties – Hard And Soft Magnetic Material – Domain Theory Of Ferromagnetism – Hysteresis – Energy Product of Magnetic Materials – Ferrites and Their Applications – Various Polarization Mechanisms In Dielectric – Frequency and Temperature Dependence – Internal Field and Detection of Classius – Mosotti Equation – Dielectric Loss- Dielectric Breakdown.

#### **UNIT IV - NEW ENGINEERING MATERIAL**

Shape memory Alloys- Types- General Characteristics- Applications – Metallic Glasses-Properties- Applications –transformer as a Core Material – Nano Phase Materials – Properties – Production – Ball Milling Technique – Sol- Gel Method – Chemical Vapour Deposition – Applications.

#### **UNIT V - OPTICAL MATERIALS & OPTIC FIBERS**

Light Interaction With Solids- Classification of Optical Material – Optical Properties of Metals, Insulator And Semiconductors – Traps – Colour Centers – Luminescence – phosphorescence – LED – LCD – Construction and Working – Advantages and Disadvantages – Applications. Principle and Propagation of Light In Optical Fibres- Numerical Aperture And Acceptance Angle- Types Optical Fibre(Material, Refractive Index, Mode)- Double Crucible Technique of Fibre Drawing

#### **Total No. of Periods:45**

#### **Text Books**

BCH 201

**OBJECTIVES** 

- 1. Avadhanulu. M.N.; Engineering Physics II; S.Chand And Company Ltd, 2010.
- 2. Jeyaraman, D. 'Engineering Physics II' Global Publishing House, 2014

#### **Reference Books**

- 3. Rajendran V and Marikani a, 'material science' tata mcgraw hill publications Ltd, 3<sup>rd</sup> edition
- 4. Mukunthan .A., Usha.S.,; science of engineering materials; SciTech publications (india) Pvt Ltd; chennai, (2007).\\
- 5. M.Arumugam, 'material science', anuradha publications, kumbakonam (2006).

#### ENGINEERING CHEMISTRY – II

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To impart a sound knowledge about the industrial applications of surface

9

9

chemistry

- To make them understand the industrial importance of Phase rule and alloys
- The lectures are to be given in such a way as to make the students to be well versed with Analytical techniques and their importance
- To impart knowledge to the Students about the Chemistry of engineering materials and
- To make the students to have a deep knowledge of the Chemistry of Fuels and combustion

#### **COURSE OUTCOMES:**

- **CO1** Having a knowledge of industrial applications of Surface Chemistry
- CO2– Having the thinking of industrial importance of Phase rule and alloys
- CO3 Having a deep knowledge with Analytical techniques and their importance
- CO4 With a true wisdom about Chemistry of Engineering materials
- CO5 Having a well-versed knowledge of the Chemistry of Fuels and Combustion

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | М                        |     |     |     |     |            |            |            |            | Μ    |      |      |
| CO2 |                          |     | S   |     | М   |            |            |            |            |      |      |      |
| CO3 |                          | М   |     | S   |     |            |            |            |            |      |      |      |
| CO4 |                          |     |     | W   |     |            |            |            |            |      |      |      |
| CO5 | S                        | М   |     |     |     | S          |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |
| 5   | Online test               |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I - SURFACE CHEMISTRY

**INTRODUCTION :** 

Adsorption , absorption , desorption , adsorbent , adsorbate and sorption – (definition only) - Differences between adsorption and absorption

Adsorption of gases on solids - factors affecting adsorption of gases on solids -

Adsorption isotherms – Frendlich adsorption isotherm and Langmuir adsorption isotherm

Role of adsorbents in catalysis ( in heterogeneous catalysis , Ion-exchange adsorption and pollution abatement.

#### UNIT II - PHASE RULE AND ALLOYS

**INTRODUCTION :** 

Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [ Definition only ]

Two Component System : Simple eutectic systems ( lead-silver system only ) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead Alloys :

Importance, ferrous alloys – nichrome and stainless steel – 18/8 stainless steel -heat treatment of steel – annealing –hardening – tempering - normalizing – carburizing - nitriding . Non- ferrous alloys: Brass and Bronze

#### UNIT III - ANALYTICAL TECHNIQUES

INTRODUCTION:

Types of spectroscopy - Atomic spectroscopy - molecular spectroscopy - Explanation - differences between Atomic spectra - molecular spectra

Absorption spectrum and Emission spectrum

Photo physical laws - Lambert's law - Beer-Lambert's law –applications (determination of unknown concentration)

IR spectroscopy

Principle – instrumentation (block diagram only) – working - finger print region

UV-visible spectroscopy

Principle – instrumentation (block diagram only) – working – estimation of iron by colorimetry Beer-Lambert's law

Flame photometry– principles – instrumentation (block diagram only) – working - estimation of sodium ion by Flame photometry

#### UNIT IV - FUELS

**INTRODUCTION :** 

Calorific value – types of Calorific value - gross calorific value – net calorific value

Analysis of Coal -- Proximate and ultimate analysis - hydrogenation of coal - Metallurgical coke - manufacture by Otto-Hoffmann method

Petroleum processing and fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number ( definition only )

Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG ( definition and composition only )

Flue gas analysis – importance - Orsat apparatus

#### **UNIT V - ENGINEERING MATERIALS**

INTRODUCTION :

Refractories ;

Definition - characteristics - classification – acidic, basic and neutral Refractories – properties - refractoriness- measurement of refractoriness (Segar Cone Test) ,refractoriness under load measurement of refractoriness under load , dimensional stability- reversible and irreversible dimension stability - porosity, thermal spalling – definition – reason for spalling – points to decrease the spalling )

Manufacture of Refractories : alumina bricks and Magnesite bricks,

Lubricants :

Characteristics - Classification - Liquid lubricants - Properties - viscosity index (definition , determination), flash and fire points, cloud and pour points, oilyness)

Solid lubricants - graphite and molybdenum sulphide

#### **Total No. of Periods: 45**

#### Text books:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

#### **References:**

- 4. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 5. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).

#### BFR101/201 OBJECTIVE

#### FRENCH

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

The Basic Course in French is designed to :

- Introduce the basics of the language to beginners
- To develop their knowledge as well as their communicative skills so as to be able to respond in simple everyday contexts.

Synchronies I consists of 13 lessons with each lesson presenting a dialogue and giving the knowhow, grammatical and lexical notions as well as activities required for communication. In addition, Synchronies I includes documents which initiate the learners to another world, another culture and which acclimatize them to the authentic use of the French language through the exploitation of written and iconographic documents. The Indian context has been used.

#### **COURSE OBJECTIVE :**

**CO1**: Will have a basic knowledge on Foreign Languages, foreign culture and heritage.

**CO2**: Will able to read and write a foreign language.

CO3: Will get sufficient exposure for developing basic conversational skills.

**CO4**: Will impart knowledge on foreigh lifestyle.

CO5: Will gain confidence to survive in global environment.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        |     |     |     |     |            |            |            |            |      |      |      |
| CO2 |                          | W   | S   |     | М   |            |            |            |            |      |      |      |
| CO3 |                          | М   |     | S   |     |            |            |            |            |      |      |      |
| CO4 | S                        |     | М   | W   |     |            |            |            |            |      |      |      |
| CO5 |                          | W   | W   |     |     |            |            |            |            |      |      |      |

#### **Course Assessment Method**

| Direct                   | Indirect            |
|--------------------------|---------------------|
| Internal Test            | Student Exit Survey |
| Assignments              | Faculty Survey      |
| Seminar                  | Industry            |
| Quiz                     | Alumni              |
| Online Test              |                     |
| End Semester Examination |                     |

#### UNIT – I:

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

#### UNIT – II

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation -Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er' verbs, 'to have', 'to learn', negation, irregular verbs

#### UNIT – III

At the café: Savoir -faire: speaking about one's likes, giving information, expressing admiration,

9

9

asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

#### $\mathbf{UNIT} - \mathbf{IV}$

### At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & nplural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

#### UNIT – V

A concert: Savoir -faire: inviting, accepting, expressing one's inability to accept an invitation

#### UNIT – VI

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, **At Nalli's** Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, exclamative adjectives, imperative tense

#### **REFERENCES:**

- 1. Course Material: Synchronie I Méthode de Français
- 2. Madanagobalane Samita Publications, Chennai, 2007

#### BGM 101/201 OBJECTIVES:

#### GERMAN

# • At the end of this course, students shall be able to obtain good knowledge of the language, to read, write and speak German, whereby the emphasis is laid on speech.

- At the end of the first course, the students are in the position to communicate in a basic manner.
- An example of their skills would be:
  - Ordering food in a restaurant
  - Expressing their likes and dislikes
  - ➢ Going for shopping
  - Booking a room in a hotel
  - > Or even making complaints where ever necessary.

#### **Course Objective :**

**CO1**: Will have a basic knowledge on Foreign Languages, foreign culture and heritage.

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

Total: 45 hours

**CO2**: Will able to read and write a foreign language.

CO3: Will get sufficient exposure for developing basic conversational skills.

CO4: Will impart knowledge on foreigh lifestyle.

**CO5**: Will gain confidence to survive in global environment.

**CO5**: Will gain confidence to survive in global environment.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | Programme Outcomes (POs) |     |            |            |            |            |            |            |      |      |      |
|------------|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| C01        | S          |                          |     |            |            | S          |            |            |            |      |      |      |
| CO2        |            | W                        | S   |            | М          |            |            |            |            |      |      |      |
| CO3        |            | М                        |     | S          |            |            |            |            |            |      |      |      |
| <b>CO4</b> | S          |                          | М   | W          |            | S          |            |            |            |      |      |      |
| CO5        |            | W                        | W   |            |            |            |            |            |            |      |      |      |

#### **Course Assessment Method**

| Direct        | Indirect            |
|---------------|---------------------|
| Internal Test | Student Exit Survey |
| Assignments   | Faculty Survey      |
| Seminar       | Industry            |
| Quiz          | Alumni              |

#### **Course structure:**

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

#### UNIT I

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – the article "the", conjugation of verbs

#### UNIT II

Shopping - Grammar - adjectives, endings before nouns, practice. Self introduction

#### UNIT III

Addresses, Occupations, Studies - Grammar - 'to be', the definite/indefinite articles, individual Training

#### UNIT IV

9

#### 9

#### 9

#### Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

#### UNIT V

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

#### **Resources:**

1. Sprachkurs Deutsch 1 ( Verlag Diesterweg), New Delhi Learning Centre

2.

#### BJP 101/201 OBJECTIVE:

- To have a basic knowledge of Japanese language, Japanese culture and heritage
- To impart knowledge Japanese lifestyle.
- To give sufficient exposure to develop basic conversational skills.

#### **Course Objective :**

CO1: Will have a basic knowledge on Foreign Languages, foreign culture and heritage.

JAPANESE

- **CO2**: Will able to read and write a foreign language.
- CO3: Will get sufficient exposure for developing basic conversational skills.
- CO4: Will impart knowledge on foreigh lifestyle.
- **CO5**: Will gain confidence to survive in global environment.

#### **CO/PO Mapping**

#### S-Strong, M-Medium, W-Weak

| COs | Progr      | Programme Outcomes (POs) |     |            |            |            |            |            |            |      |      |      |
|-----|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S          |                          |     |            |            |            |            |            |            |      |      |      |
| CO2 |            | W                        | S   |            | М          |            |            |            |            |      |      |      |
| CO3 |            | М                        |     | S          |            |            |            |            |            |      |      |      |
| CO4 | S          |                          | М   | W          |            |            |            |            |            |      |      |      |
| CO5 |            | W                        | W   |            |            |            |            |            |            |      |      |      |

#### **Course Assessment Method**

| Direct        | Indirect            |
|---------------|---------------------|
| Internal Test | Student Exit Survey |
| Assignments   | Faculty Survey      |

#### Bharath Institute of Higher Education and Research

# L T P C 0 0 3 1

#### 9

**Total 45 Hours** 

| B.Tech - | Department of | Civil | Engineering |  |
|----------|---------------|-------|-------------|--|

| BKR 101/201       |
|-------------------|
| <b>OBJECTIVE:</b> |

**KOREAN** 

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

2013 2. Living language Japanese Complete edition begineers through advanced course, Living

### 1. Japanese Reader collection Volume I, Yumi Boutwell and Clay Boutwell, Kotoba books,

**Text books** 

Vocobulary associated with directions-asking way-particles – e, de, mo, koko, soko, asoko,

#### 2. Genki I: An integrated course in elementary Japanese, Eri Banno and Yuko Ikeda, 2011

1. Japanese hiragana and katakana for beginners, Timothy G. Stout, 2011

culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

language, 2012

**Reference Books** 

### doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

for practice-Introduction to basic Kanji characters- use of audio and drills for practice

**UNIT IV** 

UNIT V

Seminar

Ouiz

**UNIT I** 

**UNIT II** 

**UNIT III** 9 Asking the price-associated vocabulary-usage of particles ni, ga and ne- use of audio and drills

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammarusage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and na-

ending adjectives-use of audio and drills for practice

#### Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introduction-counting numbers (1-100)-time-conversation with the use of audio devices, grammar-usage of particles wa, no, mo and ka

Industry

Alumni

9

9

9 Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and

#### 9

**Total: 45 Periods** 

- Learning a language is almost akin to a journey of discovery. It not only opens up a whole new dimension but also contributes significantly to the development of an individual's intelligence. Language gives us access and insights into another culture.
- It is a fundamental truth that cultures define themselves through languages. Since language is a symbol of culture, the curriculum for all the languages reflects this spirit. To give students some proficiency in the foreign languages like Korean

#### **COURSE OUTCOME:**

Upon completion of the course, students should be able to manage conversation, reading and writing on the topics related to:

- Holiday and travel
- Shopping
- Feelings, advice and introductions
- Hobbies and job requirements
- Plans and preparations
- Appointments and requests
- Ordering for food, rooms and houses

#### **COURSE OBJECTIVE :**

**CO1**: Will have a basic knowledge on Foreign Languages, foreign culture and heritage.

**CO2**: Will able to read and write a foreign language.

**CO3**: Will get sufficient exposure for developing basic conversational skills.

**CO4**: Will impart knowledge on foreigh lifestyle.

**CO5**: Will gain confidence to survive in global environment.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        |     |     |     |     |            |            |            |            |      |      |      |
| CO2 |                          | W   | S   |     | М   |            |            |            |            |      |      |      |
| CO3 |                          | М   |     | S   |     |            |            |            |            |      |      |      |
| CO4 | S                        |     | М   | W   |     |            |            |            |            |      |      |      |
| CO5 |                          | W   | W   |     |     |            |            |            |            |      |      |      |

#### **Course Assessment Method**

| Direct        | Indirect            |
|---------------|---------------------|
| Internal Test | Student Exit Survey |
| Assignments   | Faculty Survey      |
| Seminar       | Industry            |
| Quiz          | Alumni              |

#### UNIT I

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar:

Noun modifier, please try doing (something), irregular adjective/verb

#### UNIT II

#### UNIT III

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

#### UNIT IV

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

#### UNIT V

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it? ,will (do)

#### **Course Material:**

1. Korean for Non-Native Speakers(Student Book 1B) Korean Language Education Center, Sogang University

#### BCN 101/201 OBJECTIVE:

• To enhance the students use this language in day today conversations with ease and confidence.

#### **Course Objective :**

**CO1**: Will have a basic knowledge on Foreign Languages, foreign culture and heritage.

**CO2**: Will able to read and write a foreign language.

**CO3**: Will get sufficient exposure for developing basic conversational skills.

**CHINESE** 

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 0 | 0 | 3 | 1 |  |
|   | 1 | 1 |   |  |

#### 9 o

#### 9 ...

**Total: 45 Periods** 

### 9

9

**CO4**: Will impart knowledge on foreigh lifestyle.

**CO5**: Will gain confidence to survive in global environment.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | amme | Outco | mes (P | Os) |            |            |            |            |      |      |      |
|------------|------------|------|-------|--------|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b> | PO2  | PO3   | PO4    | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | S          |      |       |        |     |            |            |            |            |      |      |      |
| CO2        |            | W    | S     |        | М   |            |            |            |            |      |      |      |
| CO3        |            | М    |       | S      |     |            |            |            |            |      |      |      |
| <b>CO4</b> | S          |      | М     | W      |     |            |            |            |            |      |      |      |
| CO5        |            | W    | W     |        |     |            |            |            |            |      |      |      |

#### **Course Assessment Method**

| Direct        | Indirect            |
|---------------|---------------------|
| Internal Test | Student Exit Survey |
| Assignments   | Faculty Survey      |
| Seminar       | Industry            |
| Quiz          | Alumni              |

#### UNIT-1

History, Origins, Old and middle Chinese, Rise of northern dialects

#### UNIT-II

Influences three Varieties of Chinese - Classification - Standard Chinese and diglossia - Nomenclature

#### UNIT-III

Chinese characters, Homophones, Phonology

#### UNIT-IV

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

#### UNIT-V

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

#### **REFERENCES:**

- Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, ISBN HYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" 978-0-8248- 1892-0.
- 2. Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman,

9

9

9

9

9

**Total: 45 Periods** 

Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley,

- 3. Ramsey, S. Robert (1987), The Languages of China, Princeton University Press,
- 4. Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press,
- R. L. G. "Language borrowing Why so little Chinese in English?" The Economist. June 6, 2013

## BME 203ENGINEERING MECHANICSOBJECTIVE:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

- The vectorial and scalar representation of forces and moments
- Static equilibrium of particles and rigid bodies in two dimensions
- Physical properties of surfaces and solids
- Effect of friction on equilibrium and their application
- Principle of work and energy
- The laws and kinematics of motion of particles and rigid bodies

#### **COURSE OUTCOMES:**

- **CO1:** Students will gain knowledge regarding the various laws and principles associated with statics and dynamics statics and to apply them for practical solutions.
- **CO2**: Students will gain knowledge regarding center of gravity and momenta inertia and apply them for practical problems.
- **CO3**: Students will gain knowledge regarding various types of forces and reactions and tom draw free body diagram to quicker solutions for complicated problems.
- **CO4:** Student will gain knowledge in work and energy
- **CO5:** Student will gain knowledge on friction on equilibrium and its application.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | amme | Outco | mes (P | Os) |            |            |            |            |      |      |      |
|-----|------------|------|-------|--------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b> | PO2  | PO3   | PO4    | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S          |      |       |        |     |            |            |            |            |      |      |      |
| CO2 |            | W    | S     |        | М   |            |            |            |            |      |      |      |
| CO3 |            | М    |       | S      |     |            |            |            |            |      |      |      |
| CO4 | S          |      | М     | W      |     |            |            |            |            |      |      |      |
| CO5 |            | W    | W     |        |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Quiz                      | 4        | Alumni            |  |  |  |
| 5   | Online test               |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT – I Basics and Statics Of Particles

Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors – Vectorial representation of forces and moments – Vector operations on forces - Coplanar Forces – Resolution and Composition of forces – Resultant of several concurrent forces - Equilibrium of a forces – Forces in space - Equilibrium of particle in space - Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

#### UNIT – II Equilibrium of Rigid Bodies

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem - Equilibrium of Rigid bodies in two dimensions - Equilibrium of Rigid bodies in three dimensions.

#### UNIT – III Properties of Surfaces and Solids

Determination of areas – First moment of area and the Centroid of standard sections – T section, I section, Composite figures, Hollow section – second moments of plane area – Rectangle, triangle, circle - T section, I section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Basic concept of Mass moment of inertia.

#### UNIT – IV Friction

Frictional force – Laws of Coloumb friction – Cone of friction – Angle of repose – Simple contact friction – Sliding of blocks – Wedge friction - Ladder friction – Screw Jack – Belt friction - Rolling resistance.

#### UNIT – V Dynamics Of Particles

Displacements, Velocity and acceleration, their relationship – Relative motion – Relative acceleration – Curvilinear motion of particles – Newton's law – work energy equation – impulse and Momentum – Impact of

elastic bodies.

#### 12

12

12

12

#### **TEXT BOOK:**

- 1. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers: Vol. 1 Statics and vol. 2 Dynamics", McGraw-Hill International Edition, 2013.
- 2. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011.

#### **REFERENCES :**

- 3. Kumar, K. L Kumar, V., Engineering Mechanics, Tata McGraw Hill, New Delhi, 2010
- 4. Palanichamy, M.S., Nagan, S., Engineering Mechanics Statics & Dynamics, Tata McGraw Hill, 2013.
- 5. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013.
- 6. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt., Ltd., 2006.

### **BEE201 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING OBJECTIVE:**

| L | Т | Ρ | С |
|---|---|---|---|
| 2 | 0 | 0 | 2 |

• To get basic knowledge about electrical and electronics engineering

#### **COURSE OUTCOMES:**

- **CO1-** To know about basics about circuits
- **CO2-** To get idea about electrical machines and its working principle
- **CO3-** To understand about measurement systems
- **CO4-** To know about semi conductor devices
- **CO5-** To get knowledge about digital electronics

#### **CO/PO Mapping**

S – Strong, M – Medium, W – Weak

| COs        | Prog       | amme | Outco | mes (P     | Os)        |            |            |            |            |      |      |      |
|------------|------------|------|-------|------------|------------|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b> | PO2  | PO3   | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | М          |      |       |            |            |            |            |            |            | Μ    |      |      |
| CO2        |            |      | S     |            | М          |            |            | W          |            |      |      |      |
| CO3        |            | М    |       | S          |            |            |            | W          |            |      |      |      |
| <b>CO4</b> |            |      |       | W          |            |            |            |            |            | М    |      |      |
| CO5        | S          | М    |       |            |            | S          |            |            |            | Μ    |      | М    |

#### **Course Assessment Methods:**

| Direct Indirect |
|-----------------|
|-----------------|

| 1 | Internal Tests            | 1 | Course and Survey |
|---|---------------------------|---|-------------------|
| 2 | Assignments               | 2 | Faculty Survey    |
| 3 | Seminar                   | 3 | Industry          |
| 4 | Quiz                      | 4 | Alumni            |
| 5 | Online test               |   |                   |
| 6 | End Semester Examinations |   |                   |

#### UNIT – I D.C. AND A.C CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem – Thevenin's and Norton's Theorem – Problems.

#### **UNIT – II ELECTRICAL MACHINES**

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

#### **UNIT – III BASIC MEASURMENT SYSTEMS**

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

#### **UNIT IV – SEMICONDUCTOR DEVICES**

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Application – HWR, FWR – Zener Diode – BJT (CB, CE, CC) configuration & its characteristics.

#### **UNIT V – DIGITAL ELECTRONICS**

Number system – Logic Gates – Boolean Algebra – De-Morgan's Theorem – Half Adder & Full Adder – Flip Flops.

#### Text books:

- 1. N.Mittle "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation Dhanpat Rai and Co, 2004.
- 3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

#### **Reference books:**

 Edminister J.A. "Theory and problems of Electric Circuits" Schaum's Outline Series. McGraw Hill Book Compay, 2<sup>nd</sup> Edition, 1983

#### 6

**Total No. of Periods: 30** 

6

#### 6

6

- 5. Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill Internatinal Editions, 1993.
- 6. <u>D. P. Kothari</u> and <u>I. J. Nagrath</u> "<u>Electric machines</u>" Tata McGraw-Hill Education, 2004 Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

#### BCS 2L2 COMPUTER PRACTICE LABORATORY

#### **OBJECTIVE:**

• To get knowledge about computer practices

#### **COURSE OUTCOMES:**

CO1- To know about word processing

CO2- To know about spread sheet

**CO3-** Tto get idea about C programming

CO4- To get knowledge on C++ programmes

**CO5-** To know the fundamentals of computer programme

#### CO/PO Mapping

#### $S-Strong,\,M-Medium,\,W-Weak$

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
| COS | PO1                      | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | М                        |     |     |     |            |            | S          |            |            |      |      |      |
| CO2 |                          |     | S   |     | М          |            |            |            |            |      |      |      |
| CO3 |                          |     |     | S   |            |            |            |            |            |      |      |      |
| CO4 | S                        |     | Μ   |     |            |            |            |            |            |      |      |      |
| CO5 |                          | S   |     |     | W          |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Direc | t            | Indirect |                   |  |  |  |
|-------|--------------|----------|-------------------|--|--|--|
| 1     | Lab Exercise | 1        | Course End Survey |  |  |  |
| 2     | Model Exam   | 2        |                   |  |  |  |
| 3     | Observation  | 3        |                   |  |  |  |
| 4     | Viva-Voce    | 4        |                   |  |  |  |

#### LIST OF EXERCISES

#### **A)Word Processing**

Document creation, Text manipulation with Scientific Notations.

Table creation, Table formatting and Conversion.

Mail merge and Letter Preparation.

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

#### Drawing-Flow Chart

#### **B)Spread Sheeet**

Chart – Line,XY, Bar and Pie Formula – Formula Editor Spread Sheet-Inclusion of Object, Picture and Graphics, Protecting the document and sheet Sorting and Import / Export features.

#### C)Simple C Programming \*

Data types, Expression Evaluation, Condition Statements. Arrays Structures and Unions Functions

#### **D)Simple C++ Programming** Classes and Objects

Constructor and Destructor

\*For Programming exercises Flow chart and Pseudo code are essential.

**Total No. of Periods: 45** 

#### BEE2L1 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING PRACTICES LAB

#### **OBJECTIVE:**

• To get basic knowledge about electrical and electronics engineering lab practices

#### **COURSE OUTCOMES:**

CO1- to know about basics about circuits

CO2- to get idea about electrical machines and its working principle

CO3- to understand about measurement systems

**CO4-** to know about semi conductor devices

**CO5-** to get knowledge about digital electronics

#### **CO/PO Mapping**

### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |                          |     |     |            |     | S          |            |            |            |      |      |      |

#### Bharath Institute of Higher Education and Research

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 3 | 1 |

12

11

| CO2 |   |   | S |   | М |  |  |  |  |
|-----|---|---|---|---|---|--|--|--|--|
| CO3 |   | М |   | S |   |  |  |  |  |
| CO4 | S |   | М |   |   |  |  |  |  |
| CO5 |   | М |   |   | W |  |  |  |  |

#### **Course Assessment Methods:**

| Direc | t            | Indirect |                   |  |  |  |  |
|-------|--------------|----------|-------------------|--|--|--|--|
| 1     | Lab Exercise | 1        | Course End Survey |  |  |  |  |
| 2     | Model Exam   | 2        |                   |  |  |  |  |
| 3     | Observation  | 3        |                   |  |  |  |  |
| 4     | Viva-Voce    | 4        |                   |  |  |  |  |

#### List of Experiments for Electrical Engineering Lab

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

#### List of Experiments for Electronics Engineering Lab

- 1. Study of electronic components and equipments.
  - a) Resistor colour coding using digital multi-meter.
  - b) Assembling electronic components on bread board.
- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

#### **Total No. of Periods: 45**

L

0 0 3 1

ТРС

### BPC 2L1 PHYSICS AND CHEMISTRY LABORATORY

#### **OBJECTIVE:**

• To give basic knowledge on physics and chemistry experiments

#### **COURSE OUTCOMES:**

- CO1 To know about Ultrasonic and its application in NDT.
- CO2 To know the principle of Laser and its application in Engineering and medicine.
- CO3 Having a deep knowledge about the Principles of electrochemistry

- CO4 With a true wisdom about Corrosion
- **CO5** Having a sound knowledge in the Field of the Conventional and non- conventional energy .

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | Programme Outcomes (POs) |     |     |            |            |            |            |            |      |      |      |  |  |
|------------|------------|--------------------------|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1        | S          |                          |     |     |            |            |            |            |            |      |      |      |  |  |
| CO2        |            |                          | S   |     | М          |            |            |            |            | S    |      |      |  |  |
| CO3        |            | М                        |     | S   |            |            |            |            |            |      |      |      |  |  |
| <b>CO4</b> | S          |                          | Μ   | W   |            |            |            | М          |            |      |      |      |  |  |
| CO5        |            |                          |     |     | W          |            |            |            |            |      |      |      |  |  |

#### **Course Assessment Methods:**

| Direc | t            | Indirect |                   |  |  |  |  |
|-------|--------------|----------|-------------------|--|--|--|--|
| 1     | Lab Exercise | 1        | Course End Survey |  |  |  |  |
| 2     | Model Exam   | 2        |                   |  |  |  |  |
| 3     | Observation  | 3        |                   |  |  |  |  |
| 4     | Viva-Voce    | 4        |                   |  |  |  |  |

#### I - LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of resistivity of high resistance alloys and temperature coefficient
- 2. Study of Hall effect Hall coefficient determination
- 3. Determination of electrical conductivity of good conductors
- 4. Study of magnetic hysteresis and energy product
- 5. Determination of Band gap of a semiconductor
- 6. Determination of Dispersive power of a prism Spectrometer

#### **II - LIST OF EXPERIMENTS – CHEMISTRY**

- 1. Conducto metric titration (Simple acid base)
- 2. Conducto metric titration (Mixture of weak and strong acids)
- 3. Conducto metric titration using BaCl 2 vs Na 2 SO4
- 4. Potentiometric Titration (Fe  $^{2+}$  / KMnO<sub>4</sub> or K<sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> )
- 5. PH titration (acid & base)
- 6. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 7. Estimation of Ferric iron by spectrophotometer.

#### MATHEMATICS – III

#### **OBJECTIVE**

**BMA301** 

- To introduce Fourier series analysis this is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes
- To develop Z transform techniques for discrete time systems.

#### **COURSE OUTCOMES**

CO01: To learn the problem solving methods in linear differential equations

**CO02:** To learn Dirichlet's condition and operations using Fourier series

**CO03:** To have a clear understanding about 2<sup>nd</sup> order equations and wave equations

CO04: Properties of Laplace transform and problem solving using it

CO05: Properties of Fourier transform and problem solving using it

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| COs        | Prog       | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |  |
|------------|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1        | S          |                          |     |            |     |            |            |            |            |      |      |      |  |  |
| CO2        |            | W                        | S   |            | М   |            |            |            |            |      |      |      |  |  |
| CO3        |            | М                        |     | S          |     |            |            |            |            |      |      |      |  |  |
| <b>CO4</b> | S          |                          | М   | W          |     |            |            |            |            |      |      |      |  |  |
| CO5        | М          |                          |     | S          | М   |            |            |            |            |      |      |      |  |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |  |

#### UNIT – 1

#### PARTIAL DIFFERENTIAL EQUATIONS

12

Formation – Solution of Standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 3 |

#### **B.Tech - Department of Civil Engineering**

#### UNIT –II FOURIER SERIES

Dirichlet's conditions - General Fourier series- Half range sine and cosine series - Parse Val's identity – Harmonic analysis

#### UNIT – III

#### **BOUNDARY VALUE PROBLEMS**

Classification of second order linear partial differential equations – solution of one – dimensional wave equations, one dimensional heat equations.

#### **UNIT IV**

#### LAPLACE TRANSFORMS

Transforms of simple functions - basic operational properties - transforms of derivatives and integrals – initial and final value theorems – inverse transforms – convolution theorem – periodic functions – applications of Laplace transforms for solving linear ordinary differential equation up to second order with constant coefficients and simultaneous equations of first order with constant coefficients.

#### $\mathbf{UNIT} - \mathbf{V}$

**BCE301** 

**OBJECTIVES:** 

#### FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier sine and cosine transforms - properties - transforms of simple functions - convolution theorem - Parse Val's identity

#### **TEXT BOOKS:**

- 1. Kandasamy, P., Thilakavathy, K. And Gunavathy.K. "Engineering Mathematics ", Vol II & III (4<sup>th</sup> revised edition ) S Chand and co. , New Delhi, 2001.
- Narayanan.S, Manicavachangam pillay ,,T.K., Ramanaiah, G. "Advanced Mathematics 2. for Engineering Students ", Vol II & III (2<sup>nd</sup> Edition), S.Viswanathan (Printers and publishers pvt ltd) 1992.
- 3. Venkatraman, M.K. "Engineering mathematics" Vol III – A&B, 13<sup>th</sup> edition National publishing company, Chennai 2002

#### **APPLIED MECHANICS**

• To learn fundamental concepts of Stress, Strain and deformation of

| L | Т | Р | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

#### 12

T=15, L=45 TOTAL: 60 PERIODS

#### 12

12

solids with applications to bars, beams and thin cylinders.

- To know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- To understand the effect of torsion on shafts and springs.
- To analyze a complex two dimensional state of stress and plane trusses

#### **COURSE OUTCOMES**

**CO01:** To apply the fundamental concepts of stress and strain in the design of various structural components and machines

CO02: To analyze and design shafts to transmit required power

- CO03: To analyze about the force in member Truss with different methods
- **CO04:** To determine the bending, shear stresses and deflection produced in a beam subjected to system of loads

CO05: To determine stresses due to impact and suddenly applied loads

#### **CO/PO MAPPING**

| COs        |     | Programme Outcomes (POs) |     |     |            |            |            |            |            |      |      |      |  |  |  |
|------------|-----|--------------------------|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|--|--|
| COS        | PO1 | PO2                      | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1        | S   |                          | М   | М   |            |            |            |            | М          |      |      |      |  |  |  |
| CO2        | S   |                          | М   | М   |            |            |            |            | М          |      |      |      |  |  |  |
| CO3        | S   |                          | М   | М   |            |            |            |            | М          |      |      |      |  |  |  |
| <b>CO4</b> | S   |                          | М   | М   |            |            |            |            | М          |      |      |      |  |  |  |
| CO5        | S   |                          | М   | М   |            |            |            |            | М          |      |      |      |  |  |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |  |
|--------|---------------------------|----------|-------------------|--|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |  |
| 3      | Seminar                   | 3        | Industry          |  |  |
| 4      | Online test               | 4        | Alumni            |  |  |
| 5      | Quiz                      |          |                   |  |  |
| 6      | End Semester Examinations |          |                   |  |  |

#### UNIT I

#### Simple Stresses and Strains

Tension, compression and shear stress - Hook's law - simple problems -compound bars - Relationship between elastic constants - Thermal stresses.

#### UNIT II

**Principal Stresses& Torsion** 

Combined stresses – Principles stress and principal planes – Mohr's circle - stresses in thin cylinders and shells. Theory of torsion – Strain energy in torsion – Torsion of circular shafts – shear stresses due to torsion of Closed and Open coiled helical springs.

#### UNIT III

#### **Analysis of Plane Trusses**

Stability and Equilibrium of plane frames, Perfect Frames, Types of trusses – Analysis of forces in truss members - Method of joints – Methods of sections – Tension coefficient method – Graphical method.

#### UNIT IV

#### Beams & Bending

Beams and support conditions - Types of supports - Shear force and bending moment – Dynamics for simply supported beams, cantilevers and overhanging beams with concentrated and / distributed loads. Theory of simple bending – bending stress distribution – shear stress distribution - leaf springs.

#### UNIT V

#### **Strain Energy**

Strain energy due to axial force, bending moment, flexural and torsional shear – Resilience stresses due to impact and suddenly applied loads.

#### **Total No. of Periods: 45**

#### **Text Books:**

1. Ramamurtham S & Narayanan R, Strength of Materials , Dhanpat Rai Publication 2008.

#### **Reference:**

- 1. Egor P, Popov, Introduction of Mechanics of Solids, 1998.
- 2. Ryder G.H. Strength of Materials, Macmillan India, 2002.
- 3. Dr Bansal R.K, Engineering Mechanics and Strength of Materials, Laxmi Publications (P) Ltd. New Delhi 2010.
- 4. Khurmi R.S, A Text Book of Engineering Mechanics S.Chand& Co, 2012.
- 5. Srinath L S, Advanced Mechanics of Solids, Tata McGraw Hill Co, 2009.
- 6. Jain O.P. & Jain B.K, Theory and Analysis of Structures Vol I & II 2012,2011

#### BCE302 OBJECTIVE:

#### SURVEYING – I

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To introduce the principles of various surveying methods and applications to Civil Engineering projects.

#### **COURSE OUTCOMES**

**CO01:** Carry out preliminary surveying in the field of civil engineering applications.

**CO02:** Plan a survey, taking accurate measurements, field booking, plotting and adjustment of traverse using various conventional instruments.

CO03: Plan a survey for applications such as road alignment and height of building.

**CO04:** Take horizontal and vertical angles precisely by an optical distance measurement using Theodolite.

**CO05:** Set out curves, buildings, culverts and tunnels.

#### CO/PO Mapping

#### S – Strong, M – Medium, W – Weak

| COs | <b>Programme Outcomes (POs)</b> |     |     |     |            |            |            |            |            |      |      |      |
|-----|---------------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>                      | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                               | М   |     | М   | S          |            |            |            |            |      | М    |      |
| CO2 |                                 | S   |     |     | М          |            |            |            |            |      |      |      |
| CO3 | S                               |     |     |     | S          |            |            |            |            |      | S    | М    |
| CO4 | S                               |     |     | М   |            |            |            |            |            |      |      |      |
| CO5 |                                 |     |     |     | S          |            |            |            |            |      | S    | М    |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |  |
|--------|---------------------------|----------|-------------------|--|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |  |
| 3      | Seminar                   | 3        | Industry          |  |  |
| 4      | Online test               | 4        | Alumni            |  |  |
| 5      | Quiz                      |          |                   |  |  |
| 6      | End Semester Examinations |          |                   |  |  |

#### UNIT I INTRODUCTION AND CHAIN SURVEYING

9

Definition – Principles – classification-field & office work-scales-conventional signs – survey instruments – care & adjustment – ranging & chaining – Reciprocal Ranging – setting perpendiculars – well- conditioned triangles – traversing – plotting – enlarging & reducing figures.

#### UNIT II COMPASS & PLANE TABLE SURVEYING

9

9

Prismatic compass – Surveyors compass - bearing systems & conversions- local attractionmagnetic declination – Dip – Traversing – Plotting – adjustment – Plane table Surveying -Methods of Radiation – intersection, Resection – traversing – Adjustments- Errors in plane tabling.

#### UNIT III LEVELING APPLICATION

Level line-Horizontal line-levels & Staves – sprit level – sensitiveness-bench marks – temporary and permanent adjustments– fly & check leveling – Booking – reduction – Curvature and refraction reciprocal leveling – longitudinal and cross sectioning – plotting – calculation of areas and volumes – contouring – methods – characteristics – and uses of contours – plotting-earth work volume – capacity of reservoirs.

#### UNIT IV THEODOLITE SURVEYS

Thedolite-vernier and microptic-description and uses – temporary and permanent adjustments of vernier transit – Horizontal angles – vertical angles – closing error and distribution – Gale's. table- Omitted measurement

#### UNIT V ENGINEERING SURVEYS

Reconnaissance-preliminary and location surveys for Engineering Projects – Layout – Setting out work- Route surveys for highways, railways and water ways – curve ranging – Horizontal and vertical curves – Simple Curves – setting with chain and tapes, tangential angles by theodolite, double theodolite-compound and reverse curves - Transition curves-functions and requirements-sight distances- mine surveying- instruments – tunnels correlation of underground and surface surveys.

#### **Total No of Periods : 45**

9

9

#### **Text Books:**

1. Punmia B.C."Surveying" Vols I and II & III Laxmi Publications, 1999.

#### **Reference:**

- 2. Kanekar T.P."Surveying and Levelling" VOIs. I and II, united book corporation,
- 3. pune, 1994.
- 4. Chandra A.M, "Plane Surveying and Higher Surveying", New Age International (P)
- 5. Limited, Publishers, Chennai, 2002.
- 6. Heribert Kahmen and wolfgang Faig "surveying" Walter de Gruyter, 1995
- 7. Bannister A and Raymonds. "Surveying" ELBS. Sixth Edition, 1992.

### BCE303 BUILDING CONSTRUCTION

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### **OBJECTIVE:**

- To introduce students to various materials and methods commonly used in civil engineering construction and their properties.
- To give a detailed explanation of the tests performed on the fresh concrete and the harden concrete.
- To give a vision of the basics to be followed in the construction site

#### COURSE OUTCOMES

CO01: To learn about the different manufacturing process of the cement

CO02: To know the types of the paint, Plastering, GFRP and geotextile

CO03: To have a clear understanding about foundation and its type, Plate load test.

CO04: About Water supplying, and drainage in the construction site

CO05: To know about Thermal insulation, water proofing, sound acoustic treatments

#### **CO/PO Mapping**

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |                          | М   |     | S   | М   | М          |            | М          | М          | W    |      | М    |
| CO2 | М                        |     | S   | М   | W   | W          |            |            | М          |      |      | М    |
| CO3 |                          | М   | S   | S   |     |            |            | М          | W          | М    |      |      |
| CO4 | S                        | W   |     |     | S   |            |            |            |            |      |      |      |
| CO5 | S                        |     | М   | W   | М   |            |            | W          | W          | W    |      | W    |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |
|--------|---------------------------|----------|-------------------|--|
| 1      | Internal Tests            |          | Course and Survey |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |
| 3      | Seminar                   | 3        | Industry          |  |
| 4      | Online test               | 4        | Alumni            |  |
| 5      | Quiz                      |          |                   |  |
| 6      | End Semester Examinations |          |                   |  |

#### UNIT I

#### **Cement & Concrete**

Manufacture of cement – Hydration of cement – Test on coarse and fine aggregates tests on cement, types of cement, tests on fresh & hardened concrete.

#### UNIT II

#### **Preservatives & Special Materials**

Plastering - types – Paints – varnishes – distempers – wall cladding. Polymers (PVC Sheets, Pipes GFRP) ceramics & Clay Products - Refractory – Special Concrete - FRC, ferrocement& polymeric concrete - geotextiles.

#### UNIT III

**Substructures & Foundation** 

9

9

Soil Exploration - investigation report. Plate load test – Bearing Capacity of Soil – Improving the bearing Capacity – Types of Foundations – raft Foundation – pile, Pier & caisson- basements – diaphragm walls.

#### UNIT IV

#### **Building Services - I**

Electric Wiring – Water Supply – Drainage- Air Conditioning – Ventilation – ramps, Escalators, Lifts, Stairs.

#### UNIT V

#### **Building Services II**

Water Proofing - Thermal Insulation - Termite proofing - Acoustic Treatment (Sound Conditioning) - Fire Protection - Intelligent Buildings

#### **Total No. of Periods: 45**

#### **Text Books:**

- 1. Arora S.P.and Bindra S.P. "Building Construction, Planning Techniques and
- 2. Materials of Construction". DhanapatRai and Sons.

#### **Reference:**

- 3. Chudley R "Construction Technology", (Vol.I,II,III,&IV) ELBS / Longman (2<sup>nd</sup> Edition).
- 2. Jha J and Sinha S.K. "Construction and Foundation Engineering" Khanna Publishers, 1993.

#### FLUID MECHANICS

| <b>OBJECTIVE:</b> |
|-------------------|
|-------------------|

**BCE304** 

- To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to analyze and appreciate the complexities involved in solving the fluid flow problems.
- To introduce the basics of hydrostatic forces involved in fluid mechanics and also to acquaint the students to learn about the theorems on Pascal's law and buoyancy
- To understand the various types of fluid flow and to practice the problems based on Bernoullis equations and its applications
- To provide basic ideas on the boundary layer theorem and its classification along with problems underlying the subjects.
- To develops similitude and model studies for the basics of fluid mechanics with buckinghum pi theorem as the basic concept.

#### **Course Outcomes**

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 0 | 0 | 3 |  |

9

CO01: To learn about the basics of fluid mechanics and various properties of fluids

**CO02:** To learn about the various forces on plane and curved surfaces and the concepts of buoyancy

**CO03:** To have a clear understanding about fluid kinematics and dynamics

**CO04:** To study the basics of boundary layer flow and flow through pipes

**CO05:** To study about various models like distorted models and various dimensionless numbers **CO/PO Mapping** 

#### CO/PO Mapping

| S – Strong, M – Medium, W | – Weak |
|---------------------------|--------|
|---------------------------|--------|

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        |     |     | М   |            |            |            |            |            | W    |      |      |
| CO2 |                          |     |     |     |            | S          |            | W          |            |      | Μ    |      |
| CO3 |                          |     |     | S   |            |            |            |            | М          |      |      |      |
| CO4 |                          |     |     |     |            | М          |            |            | S          | W    |      |      |
| CO5 |                          |     |     |     | М          |            |            |            |            |      |      | S    |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            |   | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I

#### **Definitions & Fluid Properties**

Definitions – Fluid and Fluid Mechanics – Dimensions and units – Fluid properties continuum Concept of system and control volume.

#### UNIT II

#### Fluid Statics

Pascal's law and hydrostatic equation – Forces on plane and curved surfaces – Buoyancy-Pressure measurement.

#### UNIT III

#### Fluid Dynamics & Kinematics

Fluid Kinematics - Stream, steak and path lines, Classification of flows-continuity equation, Stream and Potential functions, Flow nets, Velocity measurement. Euler and Bernoulli's equations- Application of Bernoulli's equation-Discharge measurement-laminar flows through

9

9

pipes and between plates – Hagen Poisuille equation – Turbulent flow, DancyWeisbach formula - moody Diagram – Momentum Principle- Impact of jets on plane and curved plates.

#### UNIT IV

#### **Boundary Layer and Flow through Pipes**

Definition of boundary layer – Thickness and classification - Displacement and momentum thickness. Development of laminar and Turbulent flows in circular pipes, Major and Minor losses of Flow in Pipes in series and in parallel pipe network.

#### UNIT V

#### Similitude and Model Study

Dimensional analysis – Rayleigh's method – Buckingham PI-Theorem- Similitude and Models – Scale effect and distorted models.

#### **Total No. of Periods: 45**

9

#### **Text Books:**

1. Kumar K.L "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi.

#### **References :**

- 1. Streeter, Victor, L, and Benjamin., "Fluid Mechanics", McGraw-Hill Ltd., 1998
- 2. Natarajan M.K. "Principles of Fluid Mechanics", Agencies, Vidayal Karuppur, Kumbakonam, 1995.
- 3. Fox Robert W. and McDonald. Man T., Introduction Fluid Mechanics", John Wiley & Sons,1995.

### BCE305 ENGINEERING EARTH SCIENCE OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

- To understand the importance of geological knowledge such as earth, earthquake and to apply this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor as well as to choose types of foundations.
- An ability to function on multi-disciplinary teams.
- Graduates will be capable of utilizing their backgrounds in engineering and earth science to provide solutions to engineering problems within the context of the natural world. Areas of geological engineering practice might include fluid flow and contaminant transport in the subsurface; geo-mechanics (i.e., the behavior of earth materials), geo-

engineering (i.e., design with earth materials); and discovery, development, and utilization of energy resources.

#### **OUTCOMES:-**

At the end of the course, the students would

- **C001:** To understand the role of geology in the design and construction process of underground openings in rock.
- **C002:** Be able to apply geologic concepts and approaches on rock engineering projects.
- **C003:** Be able to identify and classify rock using basic geologic classification systems.
- **C004:** Be able to use the geologic literature to establish the geotechnical framework needed to properly design and construct heavy civil works rock projects.
- **C005:** To assign projects which test student knowledge and application of intact rock and rock mass properties in geotechnical engineering.

#### **CO/PO Mapping**

| Car | Programme Outcomes (Pos) |     |     |     |     |            |            |            |            |             |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|-------------|------|------|
| Cos | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | PO11 | PO12 |
| CO1 | S                        |     |     | S   |     | S          | S          |            | М          |             |      |      |
| CO2 | S                        |     |     | S   |     | S          | S          |            | М          |             |      |      |
| CO3 | S                        |     |     | S   |     | S          | S          |            | М          |             |      |      |
| CO4 | S                        |     |     | S   |     | S          | S          |            | М          |             |      |      |
| CO5 | S                        |     |     | S   |     | S          | S          |            | М          |             |      |      |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### **General Geology**

Geology in Civil Engineering - Branches of geology - Earth Structure and Composition - Elementary knowledge on continental drift and plate tectonics. Earth processes - Weathering - Work of rivers, wind and sea and their engineering importance – origin, occurrence of earthquake- Mode of occurrence - prospecting –Ground water - Importance in civil engineering.

#### UNIT II Mineralogy

Elementary knowledge on symmetry elements of crystallographic systems - physical properties of minerals - study of the following rock forming minerals - Quartz family. Feldspar family, Augite, Hornblende, Biotite, Muscovite, Calcite, Garnet - properties, process of formation of all minerals - Coal and Petroleum - Their origin and occurence in India.

#### UNIT III

#### Petrology

Classification of rocks - Distinction between Igneous, Sedimentary and Metamorphic rocks. Description – occurrence, properties and distribution of following rocks. Igneous rocks - Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite and Basalt. Sedimentary rocks - sandstone, Limestone, Shale, Conglomerate and breccia. Metamorphic rocks - Quartzite, Marble, Slate, Gniess and Schist.

#### UNIT IV

#### **Structural Geology and Rock Mechanics**

Attitude of beds - Outcrops - Geological maps - study of structures - Folds, Faults and Joints - Their bearing on Engineering Construction -Rock mechanics - physical properties and mechanical properties of rocks – porosity – permeability - density – strength – hardness – elasticity – plasticity - dynamic property of rocks - types of wave theory – factors influencing wave velocity - static and dynamics moduli of elasticity – grouting.

#### UNIT V

#### Geological and Geophysical Investigation in Civil Engineering

Site investigations - Geological methods - Exploration techniques - geophysical methods - Seismic and electrical methods - direct penetration - core boring - logging of cores - geological condition necessary for construction of dams - tunnels - building - Road cutting.

#### **Total No. of Periods: 45**

#### **Text Books:**

1. Parbin Singh, "Engineering and General Geology ", Katson Publication House.

2. P. C. Varghese, "Engineering Geology for Civil Engineers". PHI Learning Pvt. Ltd., **References:** 

- 1. Legeet, "Geology and Engineering ", McGraw Hill Book Company, 1998.
- 2. Blyth, " Geology for Engineers ", ELBS, 1995.

#### BCE 3L1 SURVEYING PRACTICAL – 1 OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

• To understand and posses the knowledge about field techniques in

## 9

9

#### Surveying

#### **COURSE OUTCOMES**

**CO01:** To know how to do chain surveying, ranging and its importance

CO02: Study about types of compass, local attractions and its errors

CO03: To study plane table surveying and its various methods of finding inaccessible points

CO04: To study about leveling and its types, LS and CS sections of alignment

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | М                        | S   | М   |     |     |            |            |            |            |      |      |      |
| CO2 | М                        | S   | М   |     |     |            |            |            |            |      |      |      |
| CO3 | М                        | S   | М   |     |     |            |            |            |            |      |      |      |
| CO4 | М                        | S   | М   |     |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Direct |              |   | Indirect          |  |  |  |  |
|--------|--------------|---|-------------------|--|--|--|--|
| 1      | Lab Exercise | 1 | Course End Survey |  |  |  |  |
| 2      | Model Exam   | 2 |                   |  |  |  |  |
| 3      | Observation  | 3 |                   |  |  |  |  |
| 4      | Viva-Voce    | 4 |                   |  |  |  |  |

- 1. a) Simple chain survey problems involving instruments such as optical and prism Square cross staff.
  - b) Overcoming obstacles in chaining and ranging.
- 2. a) Measurement of bearing of survey lines by prismatic compass.
  - b) Running closed and open compass traverse.
  - c) Plotting and Adjustments of traverse.
- 3. a) Plane table survey of building or a park or a road by different methods.
  - b) Field solution of two and three point problems.
- 4. Problems in leveling.

#### **Total No. of Periods: 60**

#### BCE3L2 STRENGTH OF MATERIALS LAB OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

• To expose the students to the testing of different materials under the

action of various forces and determination of their characteristics experimentally.

#### **COURSE OUTCOMES**

CO01: To study the failure due to tensile force subjected to a material

**CO02:** To study the failure due to shear force subjected to a material

CO03: To study hardness properties of materials and its types

**CO04:** To study impact intensity of materials and its properties

CO05: To study ductility properties of materials

**CO06:** To study fatigue properties of materials

CO07: To study the deflections in springs

CO08: To study the behavior of different types of columns

#### CO/PO Mapping

#### S – Strong, M – Medium, W – Weak

| COs        | Os Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|------------|-----------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b>                  | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| CO2        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| CO3        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| <b>CO4</b> | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| CO5        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| CO6        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| CO7        | W                           | S   |     |     | М   |            |            |            |            |      |      |      |
| <b>CO8</b> | W                           | S   |     |     | М   |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Direct |              |   | Indirect          |  |  |  |  |
|--------|--------------|---|-------------------|--|--|--|--|
| 1      | Lab Exercise | 1 | Course End Survey |  |  |  |  |
| 2      | Model Exam   | 2 |                   |  |  |  |  |
| 3      | Observation  | 3 |                   |  |  |  |  |
| 4      | Viva-Voce    | 4 |                   |  |  |  |  |

#### I.TESTS ON STEEL

1. Tension Test to find yield stress, ultimate stress, nominal and actual breaking stress and % age elongation and reduction in area of cross section, work done in breaking the specimen and calculation of Young's modulus using different extensometers (test on mild steel, High tensile steel Rods & flats).

- 2. Shear test: Double Shear
- 3. Hardness test Vicket, Brunell, and Rockwell.
- 4. Impact Test using Charpy and Izod Testing machines
- 5. Cold Bend Test
- 6. Ductility Test: sheet Ductility, Reverse bending on works.

#### 7. Fatigue Test.

#### II TESTS ON TIMBER:

Compression test both parallel and perpendicular to the grains, deflection

#### **III OTHER TESTS:**

- 1. Springs: Leaf spring and helical spring
- 2. Columns: Long and short columns

3. Beams: Steel and timber beams with different cross sections of different and conditions (simply supported, cantilever, propped, continuous) Test under elastic and Ultimate stages.

#### **Total No. of Periods: 60**

С

TP

L

3 1 0 4

#### **References:**

- 1. Davis H.E. Trophell.G.E & Hanck, G.F.W. , The Testing Of Engineering Materials Mcgrew Hill, International Book Co.
- 2. Timoshenko S.P, &Young, D.H. Strength of Materials East West Press Ltd.
- 3. Relevant 813 code. Venon john, Engineering Materials, 3rt Edition, McMillan Co.Ltd.,

#### BMA402 NUMERICAL METHODS

#### **OBJECTIVES**:

This course aims at providing the necessary basic concepts of a few numerical methods and

give procedures for solving numerically different kinds of problems occurring in engineering and technology.

#### **OUTCOMES:-**

At the end of the course, the students would

- **CO01:** Have a fundamental knowledge of the basic solutions of equations and eigen value problems.
- **CO02:** Have a well-founded knowledge of standard numerical differentiation and integration which can describe real life phenomena.
- CO03: Acquire skills in handling situations involving first and second order differential equations
- **CO04:** Understand boundary value problems on ordinary and partial differential equations

**CO05:** Be able to analyze the interpolation techniques.

#### CO/PO Mapping

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (Pos) |     |     |            |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |

| CO1 | S |   | М | S | М |  | М | М |
|-----|---|---|---|---|---|--|---|---|
| CO2 |   | М |   |   |   |  |   |   |
| CO3 | М |   | S |   |   |  | М |   |
| CO4 |   |   |   | S | S |  |   |   |
| CO5 | S |   |   |   |   |  | S |   |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |  |

#### UNIT-I SOLUTIONS OF EQUATIONS AND EIGEN VALUE PROBLEMS 12

Iterative method Newton - Raphson method for single variable. Solutions of Linear system by Gaussian Gauss – Jordan, Jacobi and Gauss – Seidel methods, Inverse of a matrix by Gauss – Jordan method. Eigen value of a matrix by power and Jacobi methods.

#### UNIT-II INTERPOLATION (FINITE DIFFERENCES)

Newton's Divided Difference Formula – Lagrange's Interpolation Newton forward and backward difference formulae – Stirling's Bessel's central difference formulae.

#### UNIT-III NUMERICAL DIFFERENTIATION AND INTEGRATION 12

Numerical Differentiation with interpolation polynomials, Numerical integration by Trapezoidal Simpson's (Both 1/3" and 3/8") rules. Double Integrals using Trapezodial and Simpson's rules.

### UNIT-IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS 12

Single step methods – Taylors series, Euler's and Modified Euler, Runge – Kutta method of first and second order differential equations. Multiple step methods – Milne and Adam's – Bashforth predict and Corrected Method.

#### UNIT-V BOUNDARY VALUE PROBLEMS FOR ODE AND PDE 12

Finite difference for the second order ordinary differential equations. Finite difference solutions for one dimensional heat Equations. Finite difference solutions for one dimensional heat Equations(both implicit and Explicit) one dimensional wave equation and two dimensional Laplace and Poisson Equation.

#### **T** = 15, **L** = 45 **TOTAL: 60 PERIODS**

#### **REFERENCES:**

- 1. Srinivasan, "Numerical Methods for Engineering" CBS Publishers.Chennai.1994.
- 2. Datta, "Numerical Methods for Linear Control Systems" CBS Publishers. Chennai 2005.
- 3. Yang, "Applied Numerical Methods Using MATLAB" CBS Publishers. Chennai 2005.

#### BCE401 THEORY OF STRUCTURES

| L | Т | Ρ | С |  |  |
|---|---|---|---|--|--|
| 3 | 1 | 0 | 4 |  |  |

#### **Objectives:**

• To know the method of finding slope and deflection of beams and

trusses using energy theorems and to know the concept of analysing indeterminate beam.

• To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

#### **Course Outcomes:**

**CO01:** To find the deflection in beams and frames using Energy theorems.

**CO02:** To analyze indeterminate beams like continuous beams and fixed beams

**CO03:** To analyze the long and short columns and determine the design loads.

CO04: To assess the state of stress in three dimensions

CO05: To solve problems involving unsymmetrical bending structural members

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | М                        |     | S   | М          |     |            |            |            |            |      |      |      |  |
| CO2 | М                        |     | S   | М          |     |            |            |            |            |      |      |      |  |
| CO3 | М                        |     | S   | М          |     |            |            |            |            |      |      |      |  |
| CO4 | М                        |     | S   | М          |     |            |            |            |            |      |      |      |  |
| CO5 | М                        |     | S   | М          |     |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |
|--------|---------------------------|----------|-------------------|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |
| 3      | Seminar                   | 3        | Industry          |  |
| 4      | Online test               | 4        | Alumni            |  |
| 5      | Quiz                      |          |                   |  |
| 5      | End Semester Examinations |          |                   |  |

#### **B.Tech - Department of Civil Engineering**

### UNIT I Energy Theorem

Conservative and non-conservative systems – Strain energy and complimentary energy – Principle of virtual displacement and virtual forces, castigliano's first theorem, Engesser's theorem, castigliano's second theorem, Maxwell's theorem

#### UNIT II

#### **Deflection of Beam**

Determination of deflection and slope – Double integration method – Macaulay's method-Area moment method-conjugate beam method, strain energy and dummy unit load approaches.

#### UNIT III

#### Statically Indeterminate Beams

Axially load members - composite bars – Beams: Propped, fixed and continuous beams - Theorem of three moments-calculations of reactions, Bending Moment and Shear forces - shear force and bending moment diagrams.

#### UNIT IV

#### **Theory of Columns**

Axial load - combined bending and axial – Euler's formula for long struts-practical applications – Rankins Gordon's formula – beam columns.

#### UNIT V

Thick Cylinders

Lame's equation - shrink fit- compound cylinders – wire wound cylinders. **DEFLECTION OF TRUSSES** 

Castigliano's Theorem, dummy unit load method, Williotmohr's diagram.

#### **Total No. of Periods: 45**

#### **Text Books:**

1. Gupta S.P, Pandit G.S, Gupta R., Theory of Structures, Vol.I&II .Tata McGraw HillCo,1981

#### **References:**

- 2. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003
- 3. Beer and Johnson. Mechanics of Materials, S.I Metric Edition, McGraw Hill Co, 2002
- 4. Punmia B.C.Theory of Structures (SMTS) Vol 1&II, Laxmi publishing Pvt Ltd, NewDelhi, 2004.
- 5. Jain O.P. and Jain B.K., Theory and analysis of structures, Mechanics of Materials Nem Chand & Brothers, Roorkee, 2001

9

9

9 .

#### BCE402 SURVEYING – I I

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 0 | 0 | 3 |  |

#### **OBJECTIVE:**

• This subject deals with geodetic measurements and Control Survey methodology and its adjustments. The student is also exposed to the Modern Surveying.

#### **COURSE OUTCOMES**

On completion of this course, the students will be able to

**CO01:** Have the fundamental knowledge to measure both horizontal distance and elevations without the use of sophisticated instruments.

**CO02:** Acquires knowledge about the principle of control surveying.

**CO03:** Have knowledge on the survey errors and its adjustments.

**CO04:** Have knowledge in the advanced topics in astronomy.

**CO05:** Have knowledge to modern methods of surveying like Photogrammetry, Total station, Hydrographic survey and cartography.

#### **CO/PO MAPPING**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | S                        |     |     | М   |     |            |            |            |            |      |      | S    |  |
| CO2 | S                        |     |     |     | М   |            |            |            |            |      |      | М    |  |
| CO3 | S                        |     |     | М   |     |            |            |            |            |      |      |      |  |
| CO4 | S                        | М   | М   |     |     |            |            |            |            |      | М    |      |  |
| CO5 | S                        |     |     |     | S   |            |            |            |            |      | S    | S    |  |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |  |
|--------|---------------------------|----------|-------------------|--|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |  |
| 3      | Seminar                   | 3        | Industry          |  |  |
| 4      | Online test               | 4        | Alumni            |  |  |
| 5      | Quiz                      |          |                   |  |  |
| 6      | End Semester Examinations |          |                   |  |  |

#### UNIT I

#### **Tacheometric Surveying**

Tacheometric systems - Tangential, stadia and subtense methods - Stadia systems - Horizontal and inclined sights - Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Anellactic lens – Subtense bar.

#### UNIT II

#### **Control Surveying**

Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals -Base line - Instruments and accessories - Corrections - Satellite station - Reduction to centre -Trigonometric leveling – Single and reciprocal observations - Modern trends

#### UNIT III

#### **Survey Adjustments**

Errors - Sources, precautions and corrections - Classification of errors - True and most probable values - weighted observations - Method of Equal shifts - Principle of least squares - Normal equation - Correlates - Level nets - Adjustment of simple triangulation networks

#### UNIT IV

#### **Astronomical Surveying**

Celestial sphere - Astronomical terms and definitions - Motion of sun and stars - Apparent altitude and corrections - Celestial co-ordinate systems - Different time systems - Nautical almanac - Star constellations -Practical astronomy - Field observations and calculations for azimuth

#### UNIT V

#### Miscellaneous

Photogrammetry - Introduction - Terrestial and aerial Photographs - Stereoscopy -Parallax – Electromagnetic distance measurement - Carrier waves - Principles - Instruments - Trilateration - Hydrographic Surveying – Tides - MSL - Location of soundings and methods - Three point problem - Study of Box - Sextants and station pointer - River surveys - Measurement of current and discharge - Cartography - Cartographic concepts and techniques - Cadastral surveying - Definition - Uses - Legal values -Scales and accuracies.

#### **Total No. of Periods: 45**

#### **Text Books:**

1. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, 2005

#### **References:**

- 2. 1. Clark D., " Plane and Geodetic Surveying ", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, sixth Edition, 1971.
- 3. James M. Anderson and Edward M. Mikhail, " Introduction to Surveying ", McGraw Hill Book Company, 1985.
- 4. Wolf P.R. " Elements of Photogrammetry", McGraw Hill Book Company, Second Edition, 1986.
- 5. Robinson A.H., Sale R.D. Morrison J.L.andMuehrche P.C., " Elements of Cartography ", John Wiley and Sons, New York, Fifth Edition, 1984.
- 6. HeribertKahmen and Wolfgang Faig, "Surverying ", Walter de Gruyter, 1995.

8

11

7. Kanetkar T.P., " Surveying and Levelling ", Vols. I and II, United Book Corporation, Pune, 1994.

#### BCE403 OBJECTIVES:

### **SOIL MECHANICS**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

- To impart knowledge on behavior and the performance of saturated soil.
- To understand and access both physical and engineering behavior of soils, mechanism of stress transfer in two-phase systems and stability analysis of slopes.

### **Course Outcomes:**

- **CO1:** To carries out soil classification
- **CO2:** To solve three phase system problems
- **CO3:** To solve any practical problems related to soil stresses estimation, permeability and seepage including flow net diagram.
- **CO4:** To estimate the stresses under any system of foundation loads.
- **CO5:** To solve practical problems related to consolidation settlement and time rate of settlement.

### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |                          | М   |     | S   |     |            |            |            |            |      |      |      |
| CO2 | S                        |     |     | S   |     |            |            |            |            |      |      |      |
| CO3 |                          |     |     | S   |     |            |            |            |            |      |      |      |
| CO4 | М                        |     |     | М   |     |            |            |            |            |      |      |      |
| CO5 |                          | М   |     | S   |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |  |

# UNIT I Introduction

Nature of soil - Soil description and classification for engineering purposes - IS Classification system – Phase relationships - Soil compaction - Theory, comparison of laboratory and field compaction methods – Ground improvements by compaction.

#### UNIT II

#### Soil Water and Water Flow

Soil water - static pressure in water - Permeability measurement in the laboratory and field - Seepage - Introduction to flow nets - Simple problems.

### UNIT III

### **Stress Distribution and Settlement**

Effective stress concepts in solids - Stress distribution in soil media - Use of influence charts - Components of settlement - Immediate and consolidation settlement - Terzaghi's one dimensional consolidation theory.

#### UNIT IV

#### Shear Strength

Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass - Measurement of shear strength - direct shear - triaxial compression, UCC and Vane shear tests - Pore pressure parameters.

#### UNIT V

#### **Slope Stability**

Slope failure mechanisms - Types - Infinite slopes - Finite slopes - Total stress analysis for saturated clay - Method of slices - friction circle method - Use of stability number - Slope protection measures.

#### **Total No. of Periods: 45**

- **Text Books:** 1. 1.Punmia P.C., "Soil Mecha
- 1. 1.Punmia P.C., "Soil Mechanics and Foundations ", Laxmi Publications Pvt. Ltd., New Delhi 2005

# **References:**

- 1. Holtz R.D. and Kovacs W.D., "Introduction to Geotechnical Engineering ", Prentice-Hall, 1995.
- 2. <u>McCarthy P.D.F., "Essentials of Soil Mechanics and Foundations ", Prentice-Hall, 197</u>3.
- 3. Sutten B.H.C., "Solving Problems in Soil Mechanics", Longman Group Scientific and Technical, U.K.England, 1994.
- 4. Khan I.H., "A text book of Geotechnical Engineering ", Prentice Hall of India, New Delhi, 1999.
- 5. Arora K.R., "Soil Mechanics and Foundation Engineering ", Standard Publishers and Distributors, New Delhi, 1997.

8 c

9

9

#### BASIC STRUCTURAL DESIGN

# **OBJECTIVES:**

**BCE404** 

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

- To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections.
- Design of structural systems such as roof trusses, purlins as per provisions of current code (IS 800 2007) of practice.

# **COURSE OUTCOMES:**

**CO01:** To study about different materials used in masonry

**CO02:** To analyse the steel structures.

CO03: To design of trusses and their members.

**CO04:** To carry out the analysis of simple beams

**CO05:** To study about different loading conditions on trusses.

### **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | W                        |     | S   | М          |     |            |            |            |            |      |      |      |
| CO2 | W                        |     | S   | М          |     |            |            |            |            |      |      |      |
| CO3 | W                        |     | S   | М          |     |            |            |            |            |      |      |      |
| CO4 | W                        |     | S   | М          |     |            |            |            |            |      |      |      |
| CO4 | W                        |     | S   | М          |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I

#### Masonry

8

Strength of bricks and masonry – Design of walls – Pillars and roofing as per the latest BIS codes. Timber Structures – Properties and strength of timber used in constructions – permissible

stresses in timber – design of joints, using bolts, and metal connections – design of tension and compression members – beams in bending.

# UNIT II

# Steel Structures

Introduction – properties of Indian standard rolled steel sections – types of loads, permissible stresses in tension, compression and shear as per BIS Code - Riveted and Bolted connections – Permissible stresses for various types of rivets and bolts -Efficiency of a joint - types of failures of riveted Joint - design of riveted and bolted connections for members subjected to axial forces - design of eccentrically loaded connections.

# UNIT III

# **Tension Members**

Design of simple and compound steel sections subjected to tension- tension splice-Compression Members - Maximum slenderness ratio for different types of compression members – Design of simple and compound sections to resist compressive loads – design of battens and lacings – design of column base and connections – column splicings.

# UNIT IV

### Beams

Design of simple beams- strength and stiffness criteria – design of built up beams – curtailment of flange plates – connections between flange and web- need for lateral support for compression flange and their design – web strength of beams in shear – design of grillage foundation

# UNIT V

# **Roof Trusses**

Types of roof trusses for different spans - design of pitched roof trusses for dead, live and wind loads - Design of joints, Design of supports and bearings – design of purlins.

# **Total No. of Periods: 45**

# **Text Books:**

1. Ramachandra S. Design of steel Structures, Vol I & II, Standard Publications, New Delhi 1982

# **References:**

- 1. Arya.A.S. & Ajmani. IL "Design of Steel Structures". Nem Chand Bros., Roorkee (UP), 1992
- 2. Dayaratnam.P, "Design of Steel Structures", Wheelers Publishing Co.Ltd, 2008
- 3. Duggal, Design of Steel Structures, Tata McGrew Hill Co.II Edition, 1991
- 4. Vazirani V.N. and Ratwani M.M. : Steel Structures , Khanna Publications, New Delhi,1976

# 9

#### 9

# 9

**Note:** The relevant BIS Codes for the design of masonry (I.S.1905) Timber (LS883) and Steel Structures (IS 800) are permitted in the University Examinations. Steel Tables are also permitted in the University Examinations

# BCE405 TRANSPORTATION ENGINEERING OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

• To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

#### **Course Outcomes:**

**CO01:** To prepare the plan for highways as per IRC standards.

**CO02:** To perform geometric design of urban and rural roads

CO03: To design flexible and rigid pavements using IRC methods

**CO04:** To suggests modern materials and methods of highway construction.

**CO05:** To evaluate, carry out maintenance and strengthening of existing pavements.

# **CO/PO MAPPING**

| <b>S</b> – Strong | , M – | Medium, | W - | Weak |
|-------------------|-------|---------|-----|------|
|-------------------|-------|---------|-----|------|

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 |                          |     | S   | S          |     |            |            |            |            |      |      |      |  |
| CO2 |                          |     | S   | S          |     |            |            |            |            |      |      |      |  |
| CO3 |                          |     | S   | S          |     |            |            |            |            |      |      |      |  |
| CO4 |                          |     | S   | S          |     |            |            |            |            |      |      |      |  |
| CO5 |                          |     | S   | S          |     |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |

# UNIT I

# **Highway Planning and Alignment**

9

Highway Development in India, Macadam's Method of Road Construction, Jayakar Committee Recommendations and Realizations, Twenty-year Road Development Plans, Concepts of Ongoing Highway Development Programmes at National Level, Institutions for Highway Development at National level - Indian Roads Congress, National Highway Authority of India, Ministry of Road Transport and Highways (MORTH) and Central Road Research Institute. Requirements of Ideal Alignment, Factors Controlling Highway Alignment Engineering Surveys for Alignment - Conventional Methods and Modern Methods (Remote Sensing, GIS and GPS techniques) Classification and Cross Section of Urban and Rural Roads (IRC), Highway Cross Sectional Elements – Right of Way, Carriage Way, Camber, Krebs, Shoulders and Footpaths [IRC Standards]

#### UNIT II

#### **Geometric Design of Highways**

Design of Horizontal Alignments – Super elevation, Widening of Pavements on Horizontal Curves and Transition Curves [Derivation of Formulae and Problems] Design of Vertical Alignments – Rolling, Limiting, Exceptional and Minimum Gradients, Summit and Valley Curves Sight Distances - Factors Affecting Sight Distances, PIEV Theory, Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance [Derivations and Problems in SSD and OSD] Geometric Design of Hill Roads [IRC Standards Only]

#### UNIT III

#### **Design of Rigid and Flexible Pavements**

Rigid and Flexible Pavements- Components and their Functions Design Principles of Flexible and Rigid Pavements, Factors Affecting the Design of Pavements - ESWL, Climate, Sub-grade Soil and Traffic Design Practice for Flexible Pavements [CBR method, IRC Recommendations-Problems] Design Practice for Rigid Pavements – [IRC Recommendations-Problems]

#### UNIT IV

#### **Highway Materials and Construction Practice**

Desirable Properties and Testing of Highway Materials: - (Tests have to be demonstrated in Highway Engineering Laboratory) Soil – California Bearing Ratio Test, Field Density Test Aggregate - Crushing, Abrasion and Impact Tests Bitumen - Penetration, Ductility, Viscosity, Binder Content and Softening Point Tests. Construction Practice - Water Bound Macadam Road, Bituminous Road and Cement Concrete Road [as per IRC and MORTH specifications] Highway Drainage [IRC Recommendations]

#### UNIT V

#### **Highway Maintenance**

Types of Defects in Flexible Pavements – Surface Defects, Cracks, Deformation, Disintegration – Symptoms, Causes and Treatments. Types of Pavement Failures in Rigid Pavements – Scaling, Shrinkage, Warping, Structural Cracks, Spalling of Joints and Mud Pumping – and Special

9

9

#### 9

Repairs Pavement Evaluation – Pavement Surface Conditions and Structural Evaluation Overlay Design by Benkleman Beam Method [Procedure only]

#### **Total No. of Periods: 45**

# **Text Books:**

1. Khanna K and Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001. **References:** 

- Indian Roads Congress (IRC) specifications: Guidelines and special publications on 1. Traffic Planning and Management
- 2. Transportation Engineering – An Introduction, C.Jotin Khisty, B.Kent Lall, Prentice Hall of India Pvt Ltd. 2006
- 3. MORTH Guidelines for Highway Engineering.
- 4. Kadiyali L R, Principles and Practice of Highway Engineering, Khanna Technical Publications, Delhi, 2000

#### **BCE 406 ENVIRONMENTAL STUDIES OBJECTIVES:**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

- To study the nature and facts about environment.
- To find and implement scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

# **Course Outcomes**

# After successful completion of this course, the students should be able to

- **CO1**: Play an important role in transferring a healthy environment for future generations
- **CO2**: Analyze the impact of engineering solutions in a global and societal context
- **CO3:** Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems
- CO4: Ability to consider issues of environment and sustainable development in his personal and professional undertakings
- **CO5:** Highlight the importance of ecosystem and biodiversity

# **CO/PO** Mapping

# S – Strong, M – Medium, W – Weak

| COs |            | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
|     | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 |            |                          |     |     |     | S          | S          |            |            |      |      |      |  |
| CO2 |            |                          |     |     |     | S          | S          |            |            |      |      |      |  |
| CO3 |            |                          |     |     |     |            | М          |            |            |      |      |      |  |
| CO4 |            |                          |     |     |     | W          | М          | W          |            |      |      |      |  |
| CO5 | М          |                          |     |     |     | М          | М          |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

### The Multidisciplinary Nature of Environmental Studies

2

Definition, scope and importance, Need for public awareness.

#### Natural Resources: Renewable and Non – Renewable Resources

Natural resources and associated problems

a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effect on forests and tribal people.

b) Water resources: Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.

c) Mineral resources: Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.

d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

e) Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.

f) Land resources: Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

Concepts of an ecosystem, Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)

#### UNIT III

#### **Biodiversity and Its Conservation**

Introduction and Definition - genetic, species and ecosystems diversity, Bio geographical classification of India - Value biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a megadiversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - Insitu and Ex-situ conservation of biodiversity. Environmental Pollution Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management: Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management: floods earthquake, cyclone and landslides.

#### **UNIT IV**

#### **Social Issues and The Environment**

From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation -Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness.

#### UNIT V

#### **Human Population and The Environment**

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies.

#### **Field Work**

Visit to a local area to document environment environmental assets-river forest / grassland / hill mountain, Visit to a local polluted site-Rural/Industrial/Agricultural. Study of common plants, insects, birds, Study of simple ecosystems-ponds, river, hill slopes.

#### **Total No. of Periods: 60**

#### 6

15

7

# **Text books:**

1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.

### **References:**

- 1. Bharucha Erach, "The Biodiversity of India", Mapin Publishing Pvt. Ltd., Ahmedabad India.2002
- 2. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 3. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 4. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 6.

# BCE4L1 SURVEY PRACTICAL - II

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 0 | 0 | 4 | 2 |  |

# **OBJECTIVES:**

• To understand field problems like tachometry, setting out for foundation marking etc.

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- **CO1:** Take angular and linear measurements using total station
- **CO2:** Prepare contour maps for the given area
- **CO3:** Field observation for the calculation of azimuth.
- **CO4:** Determination of personal stereoscopic acuity in laboratory.

# **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 | М                        | М   |     |     | S   |            |            |            |            |      |      |      |  |  |
| CO2 |                          | М   |     |     | S   |            |            |            |            |      |      |      |  |  |
| CO3 | S                        | М   |     |     |     |            |            |            |            |      |      |      |  |  |
| CO4 |                          |     |     |     | S   |            |            |            |            |      |      |      |  |  |

# **Course Assessment Methods:**

| Direc | t            | Indirect |                   |  |  |  |  |
|-------|--------------|----------|-------------------|--|--|--|--|
| 1     | Lab Exercise | 1        | Course End Survey |  |  |  |  |

| 2 | Model Exam  | 2 |  |
|---|-------------|---|--|
| 3 | Observation | 3 |  |
| 4 | Viva-Voce   | 4 |  |

### UNIT I

### Tacheometry

Tangential system (using theodolite, leveling staff) Stadia system (using theodolite, leveling staff) Subtense system (using theodolite, tape, cross staff, leveling staff)

# UNIT II

### **Setting out Works**

Foundation marking (using theodolite, tape, ranging rods) Simple curve - right / left handed (using theodolite, tape, ranging rods) Transition curve (using theodolite, tape, ranging rods)

### UNIT III

#### Field Astronomy

Field observation for the calculation of azimuth (using theodolite, tape)

#### UNIT IV

#### **Electronic Surveying (Using Photogrammetry Accessories / Instruments)**

Practicing fusion of stereo pairs of charts and photographs to get 3D Use of pocket stereoscope and parallax bars Determination of personal stereoscopic acuity in laboratory Work on stereo test charts to access stereoscopic ability

**Total No. of Periods: 60** 

# BCE4L2 SOIL MECHANICS LABORATORY OBJECTIVES:

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 0 | 0 | 4 | 2 |  |

• To understand and assess both Physical and Engineering behavior of soils through laboratory testing procedures.

### **COURSE OUTCOMES**

- **CO01:** To learn about the different type of soil according to their classification and their size distribution.
- CO02: To determine the soil's property and their atterberg's limit.

CO03: To have a clear understanding about determining the optimum moisture content.

**CO04** : About the compressive strength of the soil which is obtain from the site.

**CO05** : To know about permeability of the soil, consolidate test on the soil.

# **CO/PO Mapping**

| COs        |            | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |  |  |
|------------|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1        | М          | S                        | М   | S          | М   |            |            |            |            |      |      |      |  |  |  |
| CO2        | S          | W                        | S   |            |     |            |            |            |            |      |      |      |  |  |  |
| CO3        |            |                          | М   | S          |     |            |            |            |            |      |      |      |  |  |  |
| <b>CO4</b> | S          |                          |     |            |     |            |            |            |            |      |      |      |  |  |  |
| CO5        |            |                          | М   | W          |     |            |            |            |            |      |      |      |  |  |  |

# S – Strong, M – Medium, W – Weak

# **Course Assessment Methods:**

| Direct |              |   | Indirect          |  |  |  |  |
|--------|--------------|---|-------------------|--|--|--|--|
| 1      | Lab Exercise | 1 | Course End Survey |  |  |  |  |
| 2      | Model Exam   | 2 |                   |  |  |  |  |
| 3      | Observation  | 3 |                   |  |  |  |  |
| 4      | Viva-Voce    | 4 |                   |  |  |  |  |

1. Grain size distribution - Sieve analysis

- 2. Grain size distribution Hydrometer analysis
- 3. Atterberg limits test
- 4. Determination of moisture Density relationship using standard proctor.
- 5. Permeability determination (constant head and falling head methods)
- 6. Determination of shear strength parameters.
  - a) Direct shear test on cohesion less soil
  - b) Unconfined compression test on cohesive soil
  - c) Tri axial compression test on cohesion less soil

7. One dimensional consolidation test (Determination of co-efficient of consolidation only)

# **Total No. of Periods: 60**

# **References:**

- 1. "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering CollegeCo-operatiave Society, Chennai,
- 2. Lambe T.W., "Soil Testing for Engineers ", John Wiley and Sons, New York, 1990.
- 3. "I.S.Code of Practice (2720) Relevant Parts ", as amended from time to time.
- 4.

# STRUCTURAL ANALYSIS – I

#### **OBJECTIVES:**

BCE501

• To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of structures.

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

**CO1:** Analyze the pin jointed plane frames using energy and consistent deformation method

- CO2: Analyze indeterminate structures using various classical methods.
- **CO3:** Determine absolute maximum bending moment and shear force in beams due to moving loads.
- **CO4:** Find the maximum moment, shear and stresses produced in arches due to external loads temperature effects and support settlements.
- **CO5:** To find the influence line diagram for determinate structures.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | М                        |     | М   | S   |            |            |            |            |            |      |      |      |
| CO2        | М                        |     | М   | S   |            |            |            |            |            |      |      |      |
| CO3        | М                        |     | М   | S   |            |            |            |            |            |      |      |      |
| <b>CO4</b> | М                        |     | М   | S   |            |            |            |            |            |      |      |      |
| CO5        | М                        |     | М   | S   |            |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

# **Indeterminate Analysis**

Indeterminate Structures: Introduction to static and kinematic Indeterminacy- two and three dimensional pin jointed and rigid jointed structures-space trusses-Energy method-application to indeterminate pin jointed trusses-temperature effect-beams curved in plan.

# UNIT II Slope Deflection Method

10

С

LTP

3 1 0 4

# UNIT III

# Moment Distribution Method

Moment distribution method: Stiffness and distribution factors-carry over factor-analysis of continuous beams -single storied portal frames.

# UNIT IV

# **Rolling Loads**

Rolling loads: Single concentrated loads - two concentrated loads-uniformly distributed loadscurves of maximum SFD and BMD – equivalent. UDL

# UNIT V

# **Influence Line Diagrams**

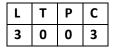
Influence line for statically determinate beams for bending moment and shear force- absolute maximum BM-concentrated and UDL-Influence line for forces in members for statically determinate truss parallel chord truss.

# **Total No. of Periods: 60**

# **Text Book:**

1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis – Vol. 1 & Vol. 2",Laxmi Publications, New Delhi, 2003.

# **Reference:**


- 1. Bhavai Katti, S.S, Structural Analysis Vol. 1 & Vol. 2, Vikas Publishing Pvt Ltd., New Delhi,2008
- 2. Analysis of Indeterminate Structures C.K. Wang, Tata McGraw-Hill, 1992.
- 3. Negi L.S. Jangid & R.S., "Structural Analysis", Tata McGraw-Hill Publications, NewDelhi, Sixth Edition, 2003.

# BCE502 APPLIED HYDRAULIC ENGINEERING OBJECTIVES:

- To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines.
- At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering.

# **OUTCOMES:-**

At the end of the course, the students would



10

9

- **CO01:** Be able to apply their knowledge of fluid mechanics in addressing problems in open channels.
- **CO02:**They will possess the skills to solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
- **CO03:**They will have knowledge in hydraulic machineries (Turbines)

CO04: Acquire skills in rotodynamic machineries that will help in their day-to-day-life.

**CO05:** Acquire skills in Reciprocal pumps.

### **CO/PO** Mapping

# S – Strong, M – Medium, W – Weak

| Cos | Programme Outcomes (Pos) |     |     |     |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| Cos | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | S    |
| CO2 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | S    |
| CO3 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |
| CO4 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |
| CO5 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

# **Open Channel Flow**

Types of flow – State of Flow - Velocity distribution - Specific energy, specific force, critical flow computation - flow measurement. Chezy's and Manning's equation, Computation Uniform flow – Normal depth – Hydraulically best section.

# UNIT II

#### Varied Flow

Varied Flow- Rapid & Gradual - Dynamic equation characteristic of flow profiles – Classification of flow – Computation of the flow profiles – Direct step method - Canal transitions – Hydraulic Jump – Type of Jump, Location of Jumps – Energy losses in Jumps – Surges in Canal – Types of Surges.

# UNIT III

9

RotodynamicsMachinary Turbines: Classification of turbines -Work done - Efficiency of Turbines, Pelton Wheel, Francis turbine, Kaplan and propeller turbines. Similarity laws and specific speed. Performance of turbines - impact of free jets.

# UNIT IV

# Pumps

Rotodynamic Machinery Pumps: Classification of pumps – Centrifugal Pumps – Casing – Impellor – Work done and Efficiency – Cavitations.

# UNIT V

# **Reciprocating Pumps**

Reciprocating pump - Work done - Air Vessel - Indicator Diagram.

# **Total No. of Periods: 45**

# Text Book:

1. Bansal R K., A Text Book of Fluid Mechanics & Hydraulic Machines – Laxmi Publications 2010

# **Reference:**

- 1. Subramanya K., "Flow in Open channels ", Tata McGraw Hill Publishing Company 1986
- 2. Kumar K.L., "Engineering Fluid Mechanics ", Eurasia Publishing House (P) Ltd. New Delhi, 1992.
- Rajput R.K, A Text of Fluid Mechanics & Hydraulic machines S.Chand & Co.P.Ltd 2009

# BCE503 FOUNDATION ENGINEERING

# **OBJECTIVES:**

• To impart knowledge on common method of sub soil investigation and design of foundation and to acquire the capacity to investigate the soil condition and to select and design a suitable foundation.

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- **CO1:** Select type of foundation required for the given soil condition.
- **CO2:** Determine the settlement of the foundation on different types of soil
- **CO3:** Find the dimensions of the foundation for isolated footing, combined footing and floating foundation
- **CO4:** Analyze the group of piles for their load capacity
- **CO5:** Carry out stability analysis of retaining walls.

# **CO/PO Mapping**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

9

9

| COs        |            | Programme Outcomes (POs) |     |            |            |            |            |            |            |      |      |      |  |  |  |
|------------|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|--|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1        |            |                          | S   | S          |            |            |            |            |            |      |      |      |  |  |  |
| CO2        |            |                          | S   | S          |            |            |            |            |            |      |      |      |  |  |  |
| CO3        | W          |                          | S   | S          |            |            |            |            |            |      |      |      |  |  |  |
| <b>CO4</b> | М          |                          | S   | S          |            |            |            |            |            |      |      |      |  |  |  |
| CO5        | S          |                          | S   | S          |            |            |            |            |            |      |      |      |  |  |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 6   | End Semester Examinations |   |                   |

#### UNIT I

#### Site Investigation and Selection Of Foundation

Introduction – Scope and objectives – Method of exploration: boring – Sampling – disturbed and undisturbed sampling – sampling techniques – Bore log and report – Penetration tests– Data interpretation – Selection of foundation based on soil condition

#### UNIT III

#### **Shallow Foundation**

Introduction – Location and depth of foundation – codal provisions – bearing capacity of shallow foundation on homogeneous deposits – bearing capacity from in-situ tests – Factors influencing bearing capacity – codal provisions – Settlement – Components of settlement – Settlement of foundations on granular and clay deposits – Allowable and maximum differential settlements of buildings – Codal provision – Methods of minimizing settlement.

#### UNIT III

### **Design of Footing**

Types of foundation – structural design of spread footing – Design aspects of combined and mat foundation – Codal provisions.

# UNIT IV Pile Foundation

9

9

9

**B.Tech - Department of Civil Engineering** 

Types of piles – Factors influencing the selection of pile – Carrying capacity in granular and cohesive soils – Static and dynamic formulae – Capacity from in-situ tests– Piles subjected to uplift – Negative skin friction – Group capacity – Settlement of pile groups – Interpretation of pile load test – Pile caps – Codal provisions

# UNIT V

# **Retaining Walls**

Earth pressure theory – Plastic equilibrium in soils – active and passive states – Rankine's theory – Coloumb's wedge theory – Classical and limit equilibrium solution – Earth pressure on retaining walls of simple configurations – pressure on the wall due to single line load alone – Graphical method (Culmann's method alone) – Stability of retaining wall.

# **Total No. of Periods: 45**

9

# **Text Books:**

1. Punmia, B.C., Soil mechanics and foundations, Laxmi publications pvt. Ltd., New Delhi. **References:** 

- 1. Khan, I.H., A text book of Geotechnical Engineering, Prentice Hall of India, New Delhi, 1999.
- 2. Arora K.R. Soil mechanics and foundation engineering, standard publishers and distributors, New Delhi, 1997.
- 3. Bowles J.E. Foundation analysis and design, McGraw Hill, 1994.
- 4. Gopal Ranjan and Rao, A.S.R. Basic and applied soil mechanics, Wiley Eastern Ltd., New Delhi (India), 1997.

# BCE504 REINFORCED CONCRETE STRUCTURES – I (BIS Codes are permitted in the University Exam)

# **OBJECTIVES:**

• To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- **CO1:** Design RC concrete structural elements using various methods.
- CO2: Design reinforced concrete slabs and beams by WSD for flexure
- **CO3:** Design various basic elements of reinforced concrete structures like slabs, beams, columns and footings by LSD
- CO4: Design reinforced concrete slabs and beams for shear and torsion by LSD
- **CO5:** Design reinforced concrete Footing

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

### **CO/PO Mapping**

| COs | Progr      | Programme Outcomes (POs) |     |     |            |            |            |            |            |      |      |      |  |  |  |
|-----|------------|--------------------------|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|--|--|
|     | <b>PO1</b> | PO2                      | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1 | М          |                          | S   | М   |            |            |            |            |            |      |      |      |  |  |  |
| CO2 | М          |                          | S   | М   |            |            |            |            |            |      |      |      |  |  |  |
| CO3 | М          |                          | S   | М   |            |            |            |            |            |      |      |      |  |  |  |
| CO4 | М          |                          | S   | М   |            |            |            |            |            |      |      |      |  |  |  |
| CO5 | М          |                          | S   | М   |            |            |            |            |            |      |      |      |  |  |  |

# S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |  |

### UNIT I

9

9

9

9

Actual and idealized stress- strain diagrams of concrete and steel (Mild Steel, High Strength deformed bars) – behavior of R.C.beam in bending – introduction to the ESD philosophy – Design of rectangular beams, tee beams, shear, development length- design of one way slab, two way slabs BIS 456 2000.

# UNIT II

# **Working Stress Method**

Design of continuous beams and slabs – axially and eccentrically loaded column footings for individual columns and combined rectangular footings for two columns.

# UNIT III

#### **Design of Beams**

Limit state design of rectangular T and L shaped beams for flexure, shear, bond torsion, - design of one way slab – Lintels – sun shades.

# UNIT IV

# LSM: Design of Slabs &Columns

Limit state design of two way slab using BIS 456 – limit state design of short rectangular and circular columns for axial and eccentric loads using SP- 16 design of long columns.

# UNIT V

# LSM: Design of Footing

Limit state design of square / rectangular footings for axially and eccentrically loaded columns combined rectangular footings for two columns.

# **Total No. of Periods: 45**

L Т Ρ 0

3 0

1. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi,2003

# **References:**

**Text Books:** 

- 1. Jain.A.K. Limit State Design of R.C.Structures, Nerchand Publications
- 2. BIS 456 2000
- 3. S.P.16 of BIS
- 4. W.H. & R.S. Mosely, J.H.Bungcy an R.Hulse, Reinforced Concrete Design, 5th Edition, Macmillan Co.
- 5. Ramamrutham S, Design of Steel Structures, Dhanpat Rai Publishing Co., New. Delhi, 2001
- 6. Dr.Purushothaman P Reinforced Concrete Structures Tata McGraw-Hill, 1984

# **ENVIRONMENTAL ENGINEERING –I**

**BCE505** 

• To make the students conversant with principles of water supply, treatment and distribution

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- **CO1:** Plan water supply system for developing area
- **CO2**: Design the various treatment plant in water supply system
- **CO3**: Treat the drinking water using advanced techniques
- **CO4** : Design the water distribution systems
- **CO5**: Principles of design of water supply and drainage in buildings

# **CO/PO** Mapping

# S – Strong, M – Medium, W – Weak

| COs |            | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |  |  |
|-----|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|--|
|     | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1 |            |                          | S   | М          |     |            |            |            |            |      |      |      |  |  |  |
| CO2 | М          |                          | S   | М          |     |            |            | М          |            |      |      |      |  |  |  |
| CO3 |            |                          | S   | Μ          |     |            |            |            |            |      | W    |      |  |  |  |
| CO4 | W          |                          | S   | М          |     |            |            |            |            |      |      |      |  |  |  |

С

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### Introduction

Scope of environmental engineering – Role of Environmental Engineer – Environmental impacts of Development – sustainable development – Environmental pollution – Water, Air and Land.

#### **UNIT II**

#### **Planning For Water Supply and Sewerage Systems**

Public water supply and sewerage systems – Objectives – Design period – Population forecasting – Water demand – Sources of water – Source Selection – Water quality – Characterization – Water quality standards – Sources of wastewater – Quantity of sanitary sewage – Estimation of storm runoff – Characteristics and composition of sewage and their significance – Effluent standards

#### UNIT III

#### **Conveyance System**

Water supply – intake structures – Pipe materials - Hydraulics of flow in pipes – Transmission main design – Laying, jointing & testing of pipes – appurtenances – Pumps – Sewerage – Hydraulics of flow in sewers – Design of sanitary and storm sewers – Computer applications – Laying, jointing & testing of sewers – appurtenances – Pumps.

#### **UNIT IV**

#### Water Distribution

Requirements of water distribution – Components - Service reservoirs – Network design – Economics – Computer applications – Analysis of distribution networks – Appurtenances – operation and maintenance – Leak detection.

#### UNIT V

#### Water Supply and Drainage in Buildings



9

#### ....

9

9

Principles of design of water supply and drainage in buildings – House service connection – Sanitary fixtures and fittings – Systems of sanitary plumbing – House drainage – House sewer connection.

#### Total No. of Periods: 45

# **Text Books:**

1. Garg, S.K., Environmental Engineering, Vols. I and II, Khanna Publishers, New Delhi, 1994

# **References:**

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 2. Manual on Sewerage and Sewage Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1993
- 3. Shah. C.S, Water Supply and Sanitation, Galgotia Publishing Company, New Delhi, 1994
- 4. Peavy H.S, Rowe D.R. and George Tchobanoglous, Environmental Engineering, McGraw Hill Book Company, New Delhi, 1995.

# BCE506 CONSTRUCTION TECHNOLOGY

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

# **OBJECTIVES:**

- The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities.
- To understand various construction procedures from sub structure to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

# **OUTCOMES:**

# At the end of the course, the students would

- **CO01:**Have a fundamental knowledge on the planning, different codes of practice, details and sequence of building construction
- **CO02:**Have knowledge on temporary structures such as scaffolding, underpinning and formwork structures in construction
- **CO03:**Will have the ability to understand the principles, types, merits & demerits of Prefabrication of structures
- **CO04:**Will have the knowledge of manufacture, batching, mixing, transporting, placing, compaction of concrete

**CO05:** Will acquire knowledge on handling of different types of construction equipments

# **CO/PO** Mapping

# S – Strong, M – Medium, W – Weak

| Cos |            | Programme Outcomes (Pos) |     |            |     |            |            |            |            |      |      |      |  |  |  |
|-----|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|--|
|     | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1 | S          |                          |     | М          | S   |            | М          |            |            | Μ    |      | Μ    |  |  |  |
| CO2 |            |                          | М   |            |     |            |            |            |            |      |      |      |  |  |  |
| CO3 | М          |                          |     | S          |     |            |            |            |            | Μ    |      |      |  |  |  |
| CO4 |            |                          |     |            | S   |            | S          |            |            |      |      |      |  |  |  |
| CO5 | S          |                          |     |            |     |            |            |            |            | S    |      |      |  |  |  |

#### **Course Assessment Methods:**

|   | Direct                    | Indirect |                   |  |  |  |  |
|---|---------------------------|----------|-------------------|--|--|--|--|
| 1 | Internal Tests            | 1        | Course and Survey |  |  |  |  |
| 2 | Assignments               | 2        | Faculty Survey    |  |  |  |  |
| 3 | Seminar                   | 3        | Industry          |  |  |  |  |
| 4 | Online test               | 4        | Alumni            |  |  |  |  |
| 5 | End Semester Examinations |          |                   |  |  |  |  |
| 6 | Quiz                      |          |                   |  |  |  |  |

#### **UNIT I**

#### Planning

Principles of Planning - regulations and byelaws, different codes of practice - Indian, American, & British codes of practice - Preparation of layouts - Orientation of Buildings- Specifications details and sequence of construction - co-ordination - site clearance - marking (setting out)-Earthwork excavations – timbering – Dewatering

#### **UNIT II**

#### **Temporary Structure & Shell Structures**

Temporary shed - centering and shuttering – sheet piles, scaffoldings, shuttering forms – special forms for shells – slip form, moving form- shoring, and under pinning.

#### **UNIT III**

#### Prefabrication

of prefabrication - Types - materials for prefabrication- standardization - systems - modular co - ordination- production, transportation-erection-merits & demerits.

#### **UNIT IV**

#### Concrete

Process of manufacture of concrete, batching, mixing, transporting, placing, compaction, and curing concrete with admixtures.

#### **UNIT V**

#### 9

9

9

# Principles

#### **B.Tech - Department of Civil Engineering**

# hauling and erection of structures – Dewatering and pumping equipments.

# **Text Books :**

**Construction Equipments** 

1. Sheety, M.S, Concrete Technology, Theory and Practice, S. Chand and Company Ltd, New Delhi, 2005.

Selection of equipment for earth work, concreting, paving, pile erection- Material handling,

# **References:**

- 1. Peurifoy R.L.,"Formwork for concrete structures", McGrew Hill Co., 1999
- Jha J. and Sinha S.S., "Construction and Foundation Engineering", Khanna Publishers, 1993.
- 3. Chudley.R, "Construction Technology" (Vol. I, II, III,& IV) ELBS / Longman Publishers (second Edition)
- 4. Arora S.P and Bindra S.P. "Building Construction, Planning Techniques and Materials of Construction", Dhanpat Rai and sons 1997

# BCE5L1 CONSTRUCTION ENGINEERING LABORATORY OBJECTIVES:

- To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.
- To know about the fresh mixed concrete and experience by mixing a freshly mixed concrete.

# **OUTCOMES:-**

At the end of the course, the students would

**CO01**: Have a fundamental knowledge of the basic test to be performed on the material used in the construction site

CO02: Testing the aggregate material which is used in the laying pavement

**CO03:** Designing the mix of the concrete for various structures in construction.

**CO04:** To know about the freshly mixed concrete and check their workability by slump, consistency and compaction.

**CO05:** To know the ability of the bitumen and their properties for laying pavements.

# **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| Cos        |     | Programme Outcomes (Pos) |     |            |            |            |            |            |            |      |      |      |  |  |
|------------|-----|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|--|--|
| Cus        | PO1 | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| <b>CO1</b> | S   |                          |     |            | М          | М          |            |            |            |      |      |      |  |  |
| CO2        |     |                          |     |            | М          |            |            |            |            |      |      |      |  |  |

#### Bharath Institute of Higher Education and Research

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

# **Total No. of Periods: 45**

| CO3 |   | М | М |   |   |   |  |  |  |
|-----|---|---|---|---|---|---|--|--|--|
| CO4 | S |   |   | W | М |   |  |  |  |
| CO5 |   |   |   |   |   | М |  |  |  |

#### **Course Assessment Methods:**

| Direct |              |   | Indirect          |  |  |  |  |
|--------|--------------|---|-------------------|--|--|--|--|
| 1      | Lab Exercise | 1 | Course End Survey |  |  |  |  |
| 2      | Model Exam   | 2 |                   |  |  |  |  |
| 3      | Observation  | 3 |                   |  |  |  |  |
| 4      | Viva-Voce    | 4 |                   |  |  |  |  |

#### UNIT I

#### **Tests on Cement**

Specific gravity, fineness, specific surface, soundness, consistency, initial and final setting time, compressive strength of cement mortar.

#### UNIT II

#### **Tests on Aggregates**

- a. Tests to find salinity, organic content etc.,
- b. Size distribution of particles.
- c. Specific gravity / voids ratio.
- d. Bulking of Sand.

Particle size, shape, flakiness index, elongation index, sieve analysis, specific gravity, density, absorption test, crushing and impact strength of coarse aggregates and abrasion tests.

#### **UNIT III**

#### **Concrete Mix Design**

#### UNIT IV

#### **Tests on Fresh and Hardened Concrete**

Slump test, Vee-Bee Test, Compaction factor test, Test on cubes and cylinders – Determination of Young's modulus, compressive strength, tensile strength (beam and cylinder).

#### UNIT V

#### Highway: Tests On Bituminous Materials And Mixes :

# a. Penetration test on Bitumen

- b. Ductility test on Bitumen
- c. Softening point test on Bitumen or tar
- d. Flash and fire point tests on bitumen cut back bitumen
- e. Specific gravity test.

f. Viscosity test on black bitumen – cutback bitumen or tar (using orifice viscometer).

g. Marshall stability test on bituminous mix - preparation of bituminous mix and determination of density, voids, stability and flow values.

### Total No. of Periods: 60

# BCE5L2 FLUID MECHANICS AND FLUID MACHINERY LAB OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

• Students should be able to verify the principles studied in theory by performing the experiments in lab.

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- CO1: Measure theoretical discharge in pipes, Venturimeter, orificemeter and notches
- CO2: Demonstrate and conduct experiment to find characteristic curves of various pumps
- CO3: Demonstrate and conduct experiment to find characteristic curves of various turbines

# **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| COs |            | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |  |  |
|-----|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|--|
| COS | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| C01 |            | S                        |     |            |     |            |            |            |            |      |      |      |  |  |  |
| CO2 |            | S                        |     | М          |     |            |            | М          |            |      |      |      |  |  |  |
| CO3 |            | S                        |     |            |     | W          |            |            |            |      |      |      |  |  |  |

# A) Fluid Mechanics Lab Experiments

- 1. Determination of flow through pipes, losses in pipes.
- 2. Calibration of Orifice Meter & Venturi Meter
- 3. Flow through Notches & weirs.
- 4. Flow Through open orifices: Calculation of Cd, Co &Cv
- 5. Buoyancy experiment, Metacentric-height
- 6. Calibration of Mouth Pieces- Constant & Variable Head Method
- 7. Impact of jet on Vanes: inclined, curved.
- 8. Verification of Bernoulli's equation.

# **B) Fluid Machinery Lab Experiments**

- 1. Performance characteristics of Centrifugal Pump.
- 2. Performance characteristics of Multistage Pump
- 3. Performance characteristics of Gear Pump

- 4. Performance characteristics of Reciprocating Pump
- 5. Performance characteristics of Impulse Turbine
- 6. Performance characteristics of Reaction Turbine.
- 7. Performance characteristics of Jet Pump
- 8. Performance characteristics of Vane Pump

#### **References:**

1. Dr.Modi P.N & Sethi S.M "Hydraulics and Hydraulic Mechanics". Standard, Publishing Co, New Delhi.

**Total No. of Periods: 45** 

# BCE601 STRUCTURAL ANALYSIS – II OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

• To introduce the students to basic theory and concepts of structural analysis and methods for the analysis of structures.

# **COURSE OUTCOMES**

### After successful completion of this course, the students should be able to

- **CO1:** Analyze Space Truss using tension Coefficient method
- **CO2:** Analyze cable suspension bridges
- CO3: Perform plastic analysis of indeterminate beams and frames
- CO4: Analyze structures by using matrix flexibility and stiffness methods
- **CO5:** Implement basic concepts of finite element analysis

# **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| COs |            | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |  |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|--|--|
| COS | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1 |            |                          | М   | S   |     |            |            |            |            |      |      |      |  |  |  |
| CO2 |            |                          | М   | S   |     |            |            |            |            |      |      |      |  |  |  |
| CO3 |            |                          | М   | S   |     |            |            |            |            |      |      |      |  |  |  |
| CO4 |            |                          | М   | S   |     |            |            |            |            |      |      |      |  |  |  |
| CO5 |            |                          | М   | S   |     |            |            |            |            |      |      |      |  |  |  |

#### **Course Assessment Methods:**

| Dir | ect            | Indirect |                   |  |  |  |
|-----|----------------|----------|-------------------|--|--|--|
| 1   | Internal Tests | 1        | Course and Survey |  |  |  |
| 2   | Assignments    | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar        | 3        | Industry          |  |  |  |

| 4 | Online test               | 4 | Alumni |
|---|---------------------------|---|--------|
| 5 | Quiz                      |   |        |
| 6 | End Semester Examinations |   |        |

# **UNIT I**

#### **ITD for Indeterminate Structures**

Influence line for statically indeterminate structures – Maxwell Betti theorem - Muller – Breslau Principle and its application to determine the influence lines of reactions. SF and BM at a section of continuous beams - qualitative influence lines for horizontal thrust reaction and moments for continuous beams, portal and arches.

#### **UNIT II**

### Arches & Cables

Arches and suspension Cables : Three hinged and two hinged arches-parabolic and circular arches - influence lines for three and two hinged arches for horizontal thrust, SF and BM at any section - length of cable, maximum tension - types supports – forces in towers.

# **UNIT III**

#### **Plastic Theory**

Plastic Theory: Plastic moment of resistance - plastic modulus - shape factor - plastic hinges determination of collapse load for continuous beams and portals.

#### UNIT V

#### **Stiffness Method**

Matrix Method of Structural Analysis: Stiffness methods-development of stiffness method stiffness matrix for continuous beams and portals application to simple pin jointed trusses, continuous beams, portal frames.

# **UNIT V**

#### **Flexibility Method**

Matrix method of Structural Analysis: Flexibility method - statically determinate and indeterminate (up to 2 degrees only) structures- formation of flexibility matrix - simple problems on Continuous beams, Portal frame.

#### **Text Books:**

# 1. S.S.Bhavikati. Structural Analysis Vol.-I & II. Vikas Publishing House pvt ltd, 2009 **References:**

- 1. William Weaver, Computer Programs for structural Analysis, VNR Publishers, 2006
- 2. Rubinstein M.F, Matrix Computer Analysis of Structures, Prentice Hall, Englewood cliffs, 1990

**Total No. of Periods: 45** 

9

9

9

9

- 3. Arya AS. and Jain." Theory and Analysis of Structures", Nem Chand & Bros, Dec 1992
- 4. Pandit G S and Gupta S P,"Matrix methods in structural analysis", Tata McGrawHill Publishing Company Limited, 2007

# **REMOTE SENSING AND GIS**

# **OBJECTIVES:**

**BCE602** 

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

# **COURSE OUTCOMES**

### After successful completion of this course, the students should be able to

- **CO1:** Apply the concepts of Electro Magnetic energy, spectrum and spectral signature curves in the practical problems
- **CO2:** Apply the concepts of satellite and sensor parameters and characteristics of different platforms
- CO3: Apply the concepts of DBMS in GIS
- CO4: Analyze raster and vector data and modeling in GIS

CO5: Apply GIS in land use, disaster management, ITS and resource information system

### **CO/PO Mapping**

# S – Strong, M – Medium, W – Weak

| COs        | Progr      | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |  |
|------------|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1        |            |                          |     | S          | S   |            |            |            | S          |      |      |      |  |  |
| CO2        |            |                          |     | S          | S   |            |            |            | S          |      |      |      |  |  |
| CO3        |            |                          |     | S          | S   |            |            |            | S          |      |      |      |  |  |
| <b>CO4</b> |            |                          |     | S          | S   |            |            |            | S          |      |      |      |  |  |
| CO5        |            |                          |     | S          | S   |            |            |            | S          |      |      |      |  |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 6   | End Semester Examinations |   |                   |

L | T | P | C

3 0

#### UNIT I

#### **Remote sensing**

Definition Historical Components of Remote Sensing Principles & methods of remote sensing -Active and Passive remote sensing - Remote Sensing platforms -Electro magnetic radiation-Spectrum- Block body radiation – planks law – Stefan – Boltzmann law – satellites classification – based on orbit- sun synchronous and Geosynchronous based on purpose Earth Resources satellites, communication satellite Weather satellites Spy satellites Sensors Description of sensor in landscape, spot, IRS series and current satellites- Radar\_SLAR-and SAR.

#### UNIT II

#### **EMR** interactions

Interaction with atmosphere Scattering of EMR Raleigh, Mie, Non Selective and Raman Scattering Bach scattering Speckle EMR Interaction with water and Ozone Atmospheric windows and its significance EMR interaction with the earth surface materials Radiance, irradiance, Absorbed and Transmitting energy – reflectance- Specular- and diffuse surface-Spectral signature – and curves EMR interaction with soil Resolution Spectral, Spatial, Radiometric, and Temporal.

#### UNIT III

#### **Resources Engineering**

Characteristics of Digital satellite image enhancement Filtering Applications of Aerial photographs and satellite imageries – merits – Limitations – Water resources – watershed management – Urban Studies – Flood Management- Fishing Forestry etc.,

#### UNIT IV

#### **Geographic Information System**

GIS – Components of GIS – Hardware, Software and Organisational Context – Data – Spatial and Non-Spatial – Maps – Types of Maps – Projection – Types of Projection - Data Input – Digitizer, Scanner – Editing – Raster and Vector data structures – Comparison of Raster and Vector data structure – Analysis using Raster and Vector data – Retrieval, Reclassification, Overlaying, Buffering – Data Output – Printers and Plotters.

#### UNIT V

### **Miscellaneous Topics**

Visual Interpretation of Satellite Images – Elements of Interpretation - Interpretation Keys Characteristics of Digital Satellite Image – Image enhancement – Filtering – Classification -Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Urban

9

9

#### 9

Applications- Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Water resources – Urban Analysis – Watershed Management – Resources Information Systems Total No. of Periods: 45

# **Text Books:**

1. Anji Reddy, "Remote Sensing and Geographical Information Systems", BS Publications 2001

# **References:**

- 1. Anand P.H,"Principles of remote Sensing and Geographical Information Systems", Sri Venkateswara Publishers, 2003.
- 2. Lillesand T.M and Kiefer R.W. Remote sensing and Image, Interpretation, John Wiley and Sons, INC, New York, 1987.
- 3. Burrough P A,"Principle of GIS for land resource assessment", Oxford University, 1990.

# BCE603 REINFORCED CONCRETE STRUCTURES – II

(B.I.S Codes, BIS 3370, ISI 343. and Pigeaud's Charts are permitted in the Examinations.)

# **OBJECTIVES:**

• To give an exposure to the design of continuous beams, slabs, staircases, walls and bridge structures and to introduce yield line theory

# **COURSE OUTCOMES**

# After successful completion of this course, the students should be able to

- CO1: Design counter-fort and cantilever retaining walls
- **CO2:** Design underground and overhead water tanks
- **CO3:** Design bridges and flat slab
- CO4: Different methods and systems uniform and non-uniform pre-stressing design
- **CO5:** Design Slab using yield line theory

# CO/PO Mapping

# S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |                          |     | S   | М          |     |            |            |            |            |      |      |      |
| CO2 |                          |     | S   | М          |     |            |            |            |            |      |      |      |
| CO3 |                          |     | S   | М          |     |            |            |            |            |      |      |      |
| CO4 |                          |     | S   | М          |     |            |            |            |            |      |      |      |
| CO5 |                          |     | S   | М          |     |            |            |            |            |      |      |      |

# **Course Assessment Methods:**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

| Direct |                           |   | Indirect          |  |  |  |  |
|--------|---------------------------|---|-------------------|--|--|--|--|
| 1      | Internal Tests            | 1 | Course and Survey |  |  |  |  |
| 2      | Assignments               | 2 | Faculty Survey    |  |  |  |  |
| 3      | Seminar                   | 3 | Industry          |  |  |  |  |
| 4      | Online test               | 4 | Alumni            |  |  |  |  |
| 5      | Quiz                      |   |                   |  |  |  |  |
| 6      | End Semester Examinations |   |                   |  |  |  |  |

# UNIT I

# **Retaining Walls**

Retaining Walls – Design of cantilever and counter fort types using working stress method.

# UNIT II

# Water Tanks

Water Tanks – Underground rectangular tanks – Domes – overhead circular and rectangular tanks – Design of staging and foundations.

# UNIT III

# Bridges

Bridges – slab Bridge – Distribution of concentrated loads by effective width and Pigeaud's method. Load distribution in interconnected girders by Courbon's method – T – Beam Bridge.

# UNIT IV

# **Pre stressed Concrete**

Principles of Pre-stressing – Materials for pre-stressed Concrete – Different methods and systems – uniform and non-uniform pre-stressing – losses in pre-stress – Analysis of simply supported beams with straight and parabolic tendons.

# UNIT V

# **Yield Line Theory**

Yield Line Theory: Application of virtual work method to square, rectangular, and Triangular slabs.

# **Text Books:**

1. N.Krishnaraju, Design of R.C.Structures, CBS Publishers and Distributors. Delhi, 1989

# **Reference Books:**

- 1. Mac Ginley, T.J. Reinforced Concrete Design, Theory and Examples, E and N.Spon. Umited London, 1978
- 2. Jaikrishna and Jain O.P, Plain and Reinforced Concrete Vol. I & II", Nem Chand & Bros., 1958

# 8

**Total No. of Periods: 45** 

# 10

9

# 8

- 3. Krishna Raju N, Bridge Engineering" Oxford and IBH Publishing, 2010
- 4. Park R. and Paulay T. Reinforced Concrete Structures John Wiley and Sons, 1975.
- 5. Neville A.M. Properties of Concrete, Pitman Pub., 1981

# BCE604 ENVIRONMENTAL ENGINEERING – II OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To educate the students on the principles and design of Sewage Collection, Conveyance, treatment and disposal.

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

- **CO1 :** Design sewerage systems
- **CO2**: Choose suitable pumps for discharge of sewage
- CO3: Design the various unit operations for waste water treatment
- **CO4:** Design the sludge treatment and disposal methods
- **CO5:** Perform quality analysis of sewage the characteristics and composition of sewage, self Purification of streams.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | М                        |     | S   |     |            |            |            |            |            |      |      |      |  |
| CO2 | М                        |     |     |     |            | S          |            |            |            |      |      |      |  |
| CO3 | М                        |     | S   |     |            |            |            |            |            |      |      |      |  |
| CO4 | М                        |     | S   |     |            |            |            |            |            |      |      |      |  |
| CO5 | М                        |     |     | S   |            |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |  |
|--------|---------------------------|----------|-------------------|--|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |  |
| 3      | Seminar                   | 3        | Industry          |  |  |
| 4      | Online test               | 4        | Alumni            |  |  |
| 5      | Quiz                      |          |                   |  |  |
| 6      | End Semester Examinations |          |                   |  |  |

# UNIT I Water Treatment

Objectives - Unit operations and processes - Principles, functions and design of flash mixers, floculators, sedimentation tanks and filters. Disinfection - Aeration – iron and manganese removal, de fluoridation and demineralization – Water softening.

#### UNIT II

#### Sewage Treatment (Primary Treatment)

Objectives – Unit Operations & Processes – Principles, functions and design of screen, grit chambers and primary sedimentation tanks.

### UNIT III

#### Sewage Treatment (Secondary Treatment)

Secondary Treatment – Activated Sludge Processes and Trickling filter, other treatment method. Stabilization of Ponds and Septic tanks. Advances in Sewage Treatment.

### UNIT IV

Sewage Disposal9Method – Dilution – Self purification of surface water bodies – Oxygen sag curve – Land<br/>disposal – Sewage farming – Deep well injection – Soil dispersion system.

# UNIT V

# **Sludge Management**

Thickening – Sludge digestion – Biogas recovery – Drying beds – Conditioning and Dewatering<br/>– Sludge disposal.Total No. of Periods: 45

#### **Text Books:**

1. Garg S.K.Environmental Engineering, Vols. I and II, Khanna Publishers, New Delhi,1999

#### **References:**

- 1. Manual on Water Supply and Treatmen(CPHEEO), Ministry of Urban Development, Government of India, New Delhi, 1999.
- 2. Manual on Sewerage and Sewage Treatment(CPHEEO), Ministry of Urban Development, Government of India, New Delhi, 1993.
- 3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering MoGraw Hill Company, New Delhi, 1995.
- 4. Shah C.S., Water Supply and Sanitation, Galgotia Publishing Company, New Delhi, 1998

| LT | Ρ | С |
|----|---|---|
|----|---|---|

9

9

# **IRRIGATION ENGINEERING**

# **OBJECTIVES:**

**BCE605** 

- To expose the student to different phases in Water Resources Management and National Water Policy. Further they will be imparted required knowledge on Reservoir planning, management and economic analysis including Irrigation and Irrigation management practices
- **CO1:** Estimate water requirements for irrigation and drinking
- CO2: Estimate consumptive use of water for irrigation
- **CO3:** Perform water resources and prepare water budget.
- **CO4:** Prepare irrigation scheduling and water distribution for various crops.
- **CO5:** Design cross drainage works

### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |             |      |      |  |
|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|-------------|------|------|--|
|            | PO1                      | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | PO11 | PO12 |  |
| CO1        | М                        |     |     | S   |            |            |            |            |            |             |      |      |  |
| CO2        | М                        |     |     | S   |            |            |            |            |            |             |      |      |  |
| CO3        | М                        |     |     | S   |            |            |            |            |            |             |      |      |  |
| <b>CO4</b> | М                        |     | S   | S   |            |            |            |            |            |             |      |      |  |
| CO5        | М                        |     |     | S   |            |            |            |            |            |             |      |      |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I

#### **Irrigation as A Science**

Definition, Need, Benefit, Historical Development, Scope in the country and the state - Sources for irrigation, wells, springs, rivers, streams, tanks, reservoirs - Flow and Lift irrigation. Methods of flow irrigation - Devices and equipments for lift irrigation - Duty, different concepts of duty and factors affecting duty.

# UNIT II Crop Water Requirements

Soil – plant – water relationship – Evapo transpiration – consumptive use - Perennial, Annual and Seasonal crops - Principal irrigated, dry and wet irrigated crops - Assessment of crop water requirements - Effective rainfall - Net irrigation requirements for principal crops - Irrigational quality - Salt resistant crops - Water logging, remedial measures.

#### UNIT III

#### **Conveyance and Distribution of Irrigation Water**

Head works – Diversion and storage structures -Canals unlined and lined. Canal alignments - contour ridge, Branch canals, minors, water course and notches - Control structures - drops, escapes, shutters and operating devices, division boxes - Cross drainage structures- under tunnels, aqueducts, siphons, siphon aqueducts - Cross masonry structures - road and railway bridges.

#### UNIT IV

#### **Irrigation Water Management**

Need for optimization of water use - Management and productivity - Minimizing irrigation water losses - Operational rules for regulation - physical structures for management on farm development works - Participatory Irrigation Management (PIM) - Water Users Associations (WUA) - Training the water users.

#### UNIT V

#### **Design of Irrigation Structures**

Sluices and surplus weirs in tanks - Earth dam section, homogenous and zoned. Anicuts and weirs on solid and permeable foundation - Head regulators, canal drops, canal siphons and aqueducts, under tunnels - Simple design of masonry and earth dams- Designing channels-Computer aided designs.

#### **Total No. of Periods: 45**

#### **Text Books:**

- 1. Sharma R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBII Publishing Company, New Delhi, 2002.
- 2. Sathyanarayanan Murthy, "Irrigation Design and Drawing", Published by Mrs.L.Banumathi, Tuni, East Godavari District. A.P. 1998.

#### **References:**

- 1. Michael A.M,"Irrigation Theroy and practice", Vikas Publishing House, 2000.
- 2. Hand Book on irrigation system operation Practices, Water Management and training Project Technical Report No.33. CWC, 1990.
- 3. Hand Book for improving Irrigation System maintenance Practices, Water Management and Training Report No.19A, CWC, Delhi, 1989.

9

9

## BCE6L1 COMPUTER AIDED BUILDING DRAWING

#### **OBJECTIVES:**

• To introduce the students to draw the plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and

functional requirements as per National Building Code.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

CO1: To study about drawing of Residential Building using Autocad

CO2: To study about drawing of RCC framed using Autocad

CO3: To study about drawing of office building using Autocad

CO4: To study about drawing of various types of Truss

CO5: To Study about 3D drawing of a building using revit architecture

#### **CO/PO Mapping**

#### $S-Strong,\,M-Medium,\,W-Weak$

| Cos |            | Programme Outcomes (Pos) |     |            |            |            |            |            |            |      |      |      |  |  |
|-----|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|--|--|
|     | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 |            |                          |     |            | М          |            |            |            |            |      |      |      |  |  |
| CO2 |            |                          |     |            | М          |            |            |            |            |      |      |      |  |  |
| CO3 |            |                          |     |            | М          |            |            |            |            |      |      |      |  |  |
| CO4 |            |                          |     |            | М          |            |            |            |            |      |      |      |  |  |
| CO5 |            |                          |     |            | М          |            |            |            |            |      |      |      |  |  |

#### **Course Assessment Methods:**

| Direct |              | Indirect |                   |  |  |  |
|--------|--------------|----------|-------------------|--|--|--|
| 1      | Lab Exercise | 1        | Course End Survey |  |  |  |
| 2      | Model Exam   | 2        |                   |  |  |  |
| 3      | Observation  | 3        |                   |  |  |  |
| 4      | Viva-Voce    | 4        |                   |  |  |  |

#### Building Drawing In Accordance With Development And Control Rules Satisfying Orientation And Functional Requirements For The Following:

| 1. Residential buildings with load bearing walls (RCC roof)       | 9                        |
|-------------------------------------------------------------------|--------------------------|
| 2. RCC framed structures                                          | 9                        |
| 3. Office buildings (RCC roof)                                    | 9                        |
| 4. Industrial buildings – North light roof structures – Trusses – |                          |
| Gantry arrangements                                               | 9                        |
| 5. Perspective view for small buildings                           | 9                        |
|                                                                   | Total No. of Periods: 45 |

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

#### **Text Books:**

- 1. Verma B.P, "Civil Engg. Drawing & House planning", Khanna publishers, Delhi, 2014
- 2. Dr. Balagopal & Prabhu T S, "Building drawing & detailing", Spades publishers, Calicut, 1984

#### **References:**

- 1. M. G. Shah, C. M. Kale, S. Y. Patki ,"Building drawing", Tata McGraw-Hill, 2002
- 2. Dr. Kumaraswamy N, Kameswara Rao A,"Building Planning & Drawing", Charotar Publishing House, 1995

#### BCE6L2 ENVIRONMENTAL ENGINEERING LAB OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

• To understand the sampling and preservation methods and significance of characterization of wastewater.

#### **OUTCOMES:-**

At the end of the course, the student is expected to be aware of the procedure for quantifying quality parameters for water and waste water

CO01: Have a fundamental knowledge to conduct various quality tests on water and wastewater

**CO02:** Have a well-founded knowledge to assess the suitability of water for drinking and irrigation purpose.

**CO03:** Acquire skills in assessing the suitability of water for concreting works

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| Cos |     | Programme Outcomes (Pos) |     |            |     |            |            |            |            |      |      |      |  |  |
|-----|-----|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|
|     | PO1 | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 |     | S                        | М   |            | М   |            |            |            |            |      |      |      |  |  |
| CO2 |     | S                        | М   |            | М   |            |            |            |            |      |      |      |  |  |
| CO3 |     | S                        | М   |            | Μ   |            |            |            |            |      |      |      |  |  |

#### **Course Assessment Methods:**

| Direct |              | Indirect |                   |  |  |  |
|--------|--------------|----------|-------------------|--|--|--|
| 1      | Lab Exercise | 1        | Course End Survey |  |  |  |
| 2      | Model Exam   | 2        |                   |  |  |  |
| 3      | Observation  | 3        |                   |  |  |  |
| 4      | Viva-Voce    | 4        |                   |  |  |  |

#### List of Experiments:

1. a. Determination of pH.

- b. Determination of Turbidity
- 2. Determination of hardness.
- 3. Determination of Alkalinity.
- 4. Determination of Residual Chlorine
- 5. Estimation of Chlorides.
- 6. Estimation of Ammonia Nitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settleable, Volatile and fixed solids.
- 13. B.O.D.Test
- 14. C.O.D.Test

#### **References:**

- 1. Trivedhi and Goel. Chemical and Biological Methods for Water Pollution studies.
- 2. A Course manual Water and Waste Water Analysis, national Environmental Engineering
- 3. Research Institute Nagpur Publication.
- 4. Standard Methods for Examination of Water and Wastewater APHA, AWAA and WPCF, 1985 Edition.

#### ESTIMATION AND COSTING

#### **OBJECTIVES:**

BCE701

• To provide the student with the ability to estimate the quantities of item of works involved in buildings, water supply and sanitary works, road works and irrigation works, and also to equip the student with the ability to do rate analysis, valuation of properties and preparation of reports for estimation of various items.

#### **OUTCOMES:**

At the end of the course, the students would

- **CO01:** Will have a basic knowledge on methods and types of estimation and its merits and demerits
- CO02: Have knowledge on specifications and tendering process for contracts
- **CO03:** Will have the ability to understand the types, formation, terms and conditions in contracts and arbitration
- **CO04:** Will have the knowledge of rate analysis of different item of work and MB and bill of quantities

**Total No. Of Periods:60** 

LIT

3 0

С

Ρ

# **CO05:** Will able to value a property, price escalation recommendations and auditing **CO/PO Mapping**

| Cos        |            | Programme Outcomes (Pos) |     |            |     |            |            |            |            |      |      |      |  |  |
|------------|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|--|
|            | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1        | S          |                          |     | М          | S   |            | М          |            |            | М    |      | М    |  |  |
| CO2        |            |                          | М   |            |     |            |            |            |            |      |      |      |  |  |
| CO3        | М          |                          |     | S          |     |            |            |            |            | М    |      |      |  |  |
| <b>CO4</b> |            |                          |     |            | S   |            | S          |            |            |      |      |      |  |  |
| CO5        | S          |                          |     |            |     |            |            |            |            | S    |      |      |  |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

|   | Direct                    | Indirect |                   |  |  |  |
|---|---------------------------|----------|-------------------|--|--|--|
| 1 | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2 | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3 | Seminar                   | 3        | Industry          |  |  |  |
| 4 | Online test               | 4        | Alumni            |  |  |  |
| 5 | End Semester Examinations |          |                   |  |  |  |
| 6 | Quiz                      |          |                   |  |  |  |

#### UNIT I

#### Estimation

Purpose – Methods of estimation – advantages – types of estimates – detailed estimates of residential buildings – single storied and multistoried buildings – earthwork – foundations – Super structure – Fittings including sanitary and electrical fittings – paintings.

#### UNIT II

#### **Specifications and Tenders**

Specifications – Detailed and general specifications – construction specifications – sources – types of specifications – Tender notices – types – corrigendum notice – tender procedures – Drafting model tenders

#### UNIT III

#### Contracts

Contract – types of contracts – formation of contract – contract conditions – contract problems – contract for labor, material, design and construction – drafting of contract documents – construction contracts – arbitration and legal requirements.

#### UNIT IV

#### **Rate Analysis and Preparation Of Bills**

9

9

9

Data – Rate analysis – abstract estimate – report to accompany estimate – measurement book – bills – types

#### UNIT V

#### Valuation

Basic – Principles of valuation – Value and Cost – value engineering – value analysis – phases in value engineering – information – function – escalation – evaluation – recommendation implementation – Audit

#### **Total No. of Periods: 45**

1. Estimating and costing in Civil Engineering –Dutta B.N & Dutta S UBS Publishers & Distributors Pvt. Company, Lucknow 1986

#### **References:**

**Text Book:** 

- 1. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & Company Ltd., 2004
- 2. Birdie G.S. "A text book on estimating and costing" Dhanpat Rai and Sons, New Delhi.
- 3. Jagannathan G, Getting more at less cost The Value Engineering Way, Tata McGraw Hill, New Delhi, 1992.

# BCE702 COMPUTER AIDED DESIGN OF STRUCTURES OBJECTIVES:

• To introduce the students about computer graphics, structural analysis, design and optimization and expert systems, applications in analysis.

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

CO1: Prepare wire frame modelling and solid modelling using drafting packages

CO2: Perform structural analysis using computer packages

CO3: Prepare algorithms for the analysis and design of steel and RC structures

CO4: Analysis simple structures using expert systems

CO5: Aalysis and design of structures by using STADD.PRO, STRAP

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs        |            | Programme Outcomes (POs) |     |            |     |            |            |            |            |      |      |      |  |
|------------|------------|--------------------------|-----|------------|-----|------------|------------|------------|------------|------|------|------|--|
|            | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1        | S          |                          | S   | S          | S   |            |            |            |            |      |      |      |  |
| <b>CO2</b> |            |                          | S   | S          | S   |            |            |            |            |      |      |      |  |

| L | Г | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

| CO3 |  | S | S |   |   |  | Μ |  |
|-----|--|---|---|---|---|--|---|--|
| CO4 |  | S | S | S | W |  |   |  |
| CO5 |  | S | S | S |   |  |   |  |

#### **Course Assessment Methods:**

|   | Direct                    | Indirect |                   |  |  |
|---|---------------------------|----------|-------------------|--|--|
| 1 | Internal Tests            | 1        | Course and Survey |  |  |
| 2 | Assignments               | 2        | Faculty Survey    |  |  |
| 3 | Seminar                   | 3        | Industry          |  |  |
| 4 | Online test               | 4        | Alumni            |  |  |
| 5 | End Semester Examinations |          |                   |  |  |
| 6 | Quiz                      |          |                   |  |  |

#### UNIT I

Introduction to computer graphics - Fundamentals of CAD - Hardware and software requirements - Design process - Applications and benefits - drafting packages- use of AUTOCAD – application to layout of buildings and structures - graphic primitives – wireframe modeling and solid modeling.

#### **UNIT II**

Design and Optimization: Optimization techniques - principles of design of steel and RCC structures - applications to simple design problems.

#### **UNIT III**

Introduction of Finite Element Analysis: Fundamentals of finite element analysis - steps involved - boundary value problems. Galerkin's approach – variation principles – finite element matrix - assemblage solution for deflections - stresses and strains - simple problems using triangular elements.

#### **UNIT IV**

Analysis of Structures by FEM: Analysis of plane truss, space truss, plane frame and space frame by using FEM packages – ANSYS – STRUDL – NASTRAN – SAP 2000.

#### **UNIT V**

**TEXT BOOKS:** 

#### Structural Engineering Packages: Introduction of various structural engineering packages analysis and design of structures by using STADD.PRO, STRAP.

1. Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.

#### **Total No. of Periods: 45**

#### **Bharath Institute of Higher Education and Research**

#### 9

8

#### 10

#### 9

#### **References:**

- 1. Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi Publications Pvt. Ltd 2003.
- 2. Rajasekaran, S., Finite Element Analysis. AH Wheelers Publishing Company Ltd.,
- 3. Rao S.S.Optimization Theory and Application, Wiley Eastern Ltd.
- 4. Auto CADD manual.

#### **BCE703 DESIGN OF STEEL STRUCTURES**

(BIS 800 – 2007, Chimney code, Steel handbook, hand book for light gauge section and IRC loading standards are to be permitted in the Examinations.)

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 1 | 0 | 4 |

#### **OBJECTIVES:**

• This course deals with some of the special aspects with respect to Civil Engineering structures in industries.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- **CO1**: Design of plate girders, web and flange design, curtailment of flange plates.
- **CO2**: Design of simple and built up columns subject to combined bending and axial loads
- **CO3**: Design of flexural and compression members, Design of self supporting steel chimneys.
- **CO4**: Design of overhead rectangular, cylindrical and pressed steel tanks
- **CO5**: To study shape factor, plastic hinge ,plastic moment , plastic analysis of beams .

#### **CO/PO** Mapping

| COs |            | Programme Outcomes (POs) |     |            |            |            |            |            |            |      |      |      |  |  |
|-----|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|--|--|
|     | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 | М          |                          | S   | М          |            |            |            |            |            |      |      |      |  |  |
| CO2 | М          |                          | S   | М          |            |            |            |            |            |      |      |      |  |  |
| CO3 | М          |                          | S   | М          |            | Μ          |            |            |            | W    |      |      |  |  |
| CO4 | М          |                          | S   | М          |            |            |            |            |            |      |      |      |  |  |
| CO4 | М          |                          | S   | М          |            |            |            |            |            |      |      |      |  |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

|   | Direct                    | Indirect |                   |  |  |
|---|---------------------------|----------|-------------------|--|--|
| 1 | Internal Tests            | 1        | Course and Survey |  |  |
| 2 | Assignments               | 2        | Faculty Survey    |  |  |
| 3 | Seminar                   | 3        | Industry          |  |  |
| 4 | Online test               | 4        | Alumni            |  |  |
| 5 | End Semester Examinations |          |                   |  |  |
| 6 | Quiz                      |          |                   |  |  |

#### UNIT I

#### **Plate Girder**

Design of plate girders – web and flange design – curtailment of flange plates – Design of stiffeners and splices – Design of gantry girder.

#### UNIT II

# Columns Subjected To Combined Bending And Axial Loads10Design of simple and built up columns subject to combined bending and axial loads - design of<br/>column base and connections to foundation.10

#### UNIT III

#### **Light Gauge Steel Sections**

Behavior – Design of flexural and compression members – Design of self supporting steel chimneys.

#### UNIT IV

#### Steel Water Tanks

Design of overhead rectangular, cylindrical and pressed steel tanks including the design of staging and foundations.

#### UNIT V

#### **Plastic Theory**

Shape factor – plastic hinge – plastic moment – plastic analysis of beams - design of beams. Total No. of Periods :45

## Text Books:

1. Ramachandra S. Design of steel Structures, Vol I & II, Standard Publications, New Delhi.

#### **References:**

- 1. Arya.A.S. & Ajmani. IL "Design of Steel Structures". Nem Chand Bros., Roorkee (UP), 1992.
- 2. Dayaratnam.P, Design of Steel Structures, Wheelers Publishing Co.Ltd 2008
- 3. Duggal, Design of Steel Structures, Tata McGrew Hill Co.II Edition 1991
- 4. Vazirani V.N. and Ratwani M.M. : Steel Structures , Khanna Publications, New Delhi1976

8

- **10** .
- 9

# BCE7L1 COMPUTER AIDED DESIGN OF STRUCTURES LAB OBJECTIVES:

• To introduce the students to analyze and design different structures like trusses, beams, frames etc.

#### **OUTCOMES:-**

At the end of the course, the students would

CO01: To Study about Microsoft Ofiice

CO02: To Study about drawing of buildings using Autocad in 2D

CO03: To Study about drawing of buildings using Autocad in 3D

CO04: To Study about Modeling

CO05: To Study about 3D objects

CO06: To Study about Solid Editing

**CO07:** To Study about drawings of plans and layouts

**CO08:** To Study about various mode of drawing in Autocad

**CO09:** To Study about file management

CO10: To Study about analysis of trusses and frame

**CO11:** To Study about analysis of different component in staad pro

CO12: To Study about analysis and design of different component in staad pro

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| Car        | 0/         |     |     |     | Progr | amme       | Outco      | mes (P     | os)        |             |      |      |
|------------|------------|-----|-----|-----|-------|------------|------------|------------|------------|-------------|------|------|
| Cos        | <b>PO1</b> | PO2 | PO3 | PO4 | PO5   | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | PO11 | PO12 |
| CO1        |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO2        |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO3        |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| <b>CO4</b> |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO5        |            |     |     |     | М     |            |            |            |            |             |      |      |
| CO6        |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| <b>CO7</b> |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| <b>CO8</b> |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO9        |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO10       |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO11       |            |     |     |     | Μ     |            |            |            |            |             |      |      |
| CO12       |            |     |     |     | Μ     |            |            |            |            |             |      |      |

#### **Course Assessment Methods:**

| Direct |              | Indire | ect               |
|--------|--------------|--------|-------------------|
| 1      | Lab Exercise | 1      | Course End Survey |
| 2      | Model Exam   | 2      |                   |
| 3      | Observation  | 3      |                   |

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

| 4 Viva-Voce | 4 |  |
|-------------|---|--|
|-------------|---|--|

- 1. Preparation of Script and Slide presentation
- 2. Creating 2D drawings plan, elevation, section of residential buildings
- 3. Creating 3D drawings, preparation of elevation for multi storeyed buildings.
- 4. Surface modeling and solid modeling
- 5. 3D objects construction and enhanced viewing
- 6. Solid Editing and real time 3D rotations
- 7. Working with layouts.
- 8. Modifying AUTOCAD environment and plotting
- 9. File management
- 10. Analysis of Plane truss space truss plane frame space frame and other elements such as plate elements and shell elements.
- 11. Analysis of different structural components by using STADD.PRO STRAP.
- 12. Analysis and design of different structural components by using STRAP STADD.PRO STADD etc.

#### **Total No. of Periods: 45**

#### BCE7L2 COMPUTER AIDED DESIGN AND DRAFTING LABORATORY

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

(R.C.C, Steel, Irrigation & Environment)

#### **OBJECTIVES**:

- The student shall be able to conceive, design and draw all types of irrigation structures in detail showing plan, elevation and sections.
- This subject includes process design (excluding Structural Design) of major units associated with water and sewage treatment and transport including house building drainage. At the end of the course, the student is expected to know about the sizing of treatment plant units and draw the general arrangement.
- To understand the techniques for designing of reinforced concrete structures and steel structures

#### **OUTCOMES:-**

At the end of the course, the students would

- **CO01:** Have a fundamental knowledge of the design of irrigation structures.
- **CO02:** Have a fundamental knowledge of the design of environmental works which can describe real life phenomena.
- **CO03:** To learn about design and Drawing for concrete structures
- CO04: To learn about design and Drawing for steel structures

#### **CO/PO Mapping**

| Cos |            | Programme Outcomes (Pos) |     |            |            |            |            |            |            |      |      |      |  |  |
|-----|------------|--------------------------|-----|------------|------------|------------|------------|------------|------------|------|------|------|--|--|
| COS | <b>PO1</b> | PO2                      | PO3 | <b>PO4</b> | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |
| CO1 | S          |                          | S   |            |            |            | W          |            | М          |      | S    |      |  |  |
| CO2 | S          |                          | S   |            |            |            | W          |            | М          |      | S    |      |  |  |
| CO3 | S          |                          | S   |            |            |            | W          |            | М          |      | S    |      |  |  |
| CO4 | S          | Μ                        | S   |            | М          |            | М          |            | М          |      | S    |      |  |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Direc | Direct       |   | ect               |
|-------|--------------|---|-------------------|
| 1     | Lab Exercise | 1 | Course End Survey |
| 2     | Model Exam   | 2 |                   |
| 3     | Observation  | 3 |                   |
| 4     | Viva-Voce    | 4 |                   |

#### UNIT – I

Detailed design and drawing (Not to scale) of the following reinforced concrete structures.

- 1. a. Typical building floors consisting of stabs and beams.
  - b. Flat slabs using BIS code formula.
- 2. Isolated and combined footings.

#### UNIT-II

Detailed design and drawing (Not to scale) of the following steel structures :

- 1. a. Columns and base plate
  - b. Grillage foundation
- 2. Plate Girder

#### UNIT-III

# Design of following irrigation works are to be worked out and drawing (Not to Scale) are to be drawn. 15

- 1. Earthen Dams Sections of different types of earth dams, plan showing drainage systems.
- 2. Tank Sluice Wing type
- 3. Tank Surplus Weir
- 4. Canal Regulator (Head regulator)

#### UNIT-IV

# Design of the following Environmental works are to be worked out and detailed drawing (Not to Scale) to be drawn. 15

1. General layout of water supply scheme

15

- 2. Mixing basin, flocculation and sedimentation tanks
- 3. Slow and rapid sand filters Service and clear water reservoirs

#### **Total No. of Periods: 60**

#### **Text Book:**

- 1. Satyanarayana Murthy, "Irrigation Design and Drawing", Published by Mrs. L. Banumathi, Tuni, East Godavari District, A.P. 1998
- 2. Punmia, B.C., Jain, A.K., and Jain.A., Environmental Engineering, Vol.I& Vol.II, Lakshmi Publications, Newsletter, 2005.

#### **REFERENCES:**

- 3. Krishnamurthy D, Structural Design Drawing CBS Publication. New Delhi 1985.
- 2..Shah M.G & Kale C.M, Building Drawing to Built to Environment Tata McGraw Hill Co.
- 5. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 6. Manual on Sewerage and Sewage Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1993.
- 7. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering MoGraw Hill Company, New Delhi, 1995.
- 8. Shah C.S, Water Supply and Sanitation, Galgotia Publishing Company, New Delhi 1994

# BCE051 MATRIX METHODS AND STRUCTURAL ANALYSIS OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To introduce the students to advanced methods of analysis like matrix methods, structural analysis stiffness method, Flexibility method and also analysis of space structures.

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

- **CO1:** Apply the basic concepts of matrix methods in structural Analysis
- CO2: Find out the deflections in beams and trusses using various methods
- CO3: Analyze the structures using flexibility and stiffness method
- **CO4:** Determine member forces using element and system matrices for determinate and indeterminate structures
- **CO5:** Determine the forces in various members due to lack of fit and thermal expansion.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

COs Programme Outcomes (POs)

|     | <b>PO1</b> | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
|-----|------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| CO1 | М          |     | М   | S          | S   |            |            |            |            |      |      |      |
| CO2 | М          |     | М   | S          |     |            |            |            |            |      |      |      |
| CO3 | М          |     | М   | S          |     |            |            |            |            |      |      |      |
| CO4 | М          |     | М   | S          |     |            |            |            |            |      |      |      |
| CO4 | М          |     | М   | S          |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 6   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I

Concept of Indeterminate Structural Analysis –Indeterminacy - flexibility method stiffness method – choice of method.

#### UNIT II

Stiffness Method: Three dimensional structures – space trusses – grid structures – rigid frame structures.

#### UNIT III

Analysis of Structural system using substructure: Basic concepts – analysis of substructure – simple examples.

#### UNIT IV

Flexibility method: Trusses, beams and space frames.

#### UNIT V

Preparation of Computer Programmes: Trusses – beam – space frames

#### **Total No. of Periods: 45**

#### **TEXT BOOKS:**

1. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw-Hill Publications, New Delhi,2003.

#### **References:**

 BhaviKatti, S.S, "Structural Analysis – Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

#### 9

9

9

9

- 2. William Weaver,"Computer Programs for Structural Analysis", Van Nostrand, 1967)
- 3. Rubinstein M.E, "Matrix Computer Analysis of Structures", Prentice Hall, 1969.

#### BCE052 INDUSTRIAL STRUCTURES OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• This course deals with some of the special aspects with respect to Civil Engineering structures related to industries

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

- **CO1:** Prepare the layout for industrial buildings
- CO2: Design for functional requirements
- **CO3:** Design steel girder, bunker and silos
- CO4: Design RC structures like chimneys, silos and folded plates
- CO5: Design prestressed precast concrete units.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs |            | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| C01 | S          |                          | М   | М   |     |            |            |            |            |      |      |      |  |
| CO2 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO3 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 5   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I General

Specific equipments for industries like Engineering. Textile, Chemical etc., - Site layout and external facilities classification of industries minimum standards internal calculation – Materials – Works.

#### UNIT II

#### **Functional requirements**

1. Lighting – Natural and artificial – protection from the sun – sky light.

2. Services, Layout, wiring fixtures, cable and pipe bridges - Electrical installations - lighting -Substations - effluent.

3. Ventilation and fire protection, ventilation & air – conditioning, fire escapes and, chutes, fire alarms, extinguishers and hydrants.

#### UNIT II

#### **Planning & Design**

(Requirement of factory and other rules)

Layout stages. Loading Design of single bay and design of multi bay multi storied frames in RCC and steel – Analysis of industrial structures.

#### **UNIT IV**

#### **Design Of Apartment Structures**

Cranes - Different types - principles - design of girder - open web and solid web bunkers - silos - R.C. ducts.

#### **UNIT V**

#### **Construction Techniques**

Expansion joints- design of machine foundations and other foundations as per I.S. Code - Water proofing - roof drainage - joints - sound, shock proof mountings.

#### **Total No. of Periods: 45**

#### **TEXT BOOKS**

1. Purushothaman P, "Reinforced Concrete Structural elements", Tata McGraw-Hill, 1984. **References:** 

- 1. Pasala Dayaratnam,"Design of Steel Structure", Wheeler publishers Allahabad, 1990.
- 2. Planning industrial structures Dunham, Industrial Structures McGraw-Hill Book Co; 1st edition (1948)
- 3. Henn W. Buildings for Industry, vols.I and II, London Hill Books, 1995.
- 4. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990.
- 5. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982.

10

8

#### BCE053 DESIGN R.C.FRAMED STRUCTURES

#### **OBJECTIVES:**

• The design aspects and analysis methodologies of tall buildings will be introduced. The stability analysis of tall buildings is another important objective of this course.

#### **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

- **CO1:** Computation of design moments and shears.
- CO2: Analysis for wind and earthquake effects, Design of beams, columns and slabs.
- CO3: Design by empirical and rigid frame analysis.
- CO4: Design of various types of shear walls and detailing
- **CO5:** Moment distribution and FEM methods of analysis of tall building using standard packages.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |
|-----|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
|     | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 |            |                          | S   | S   | S   |            |            |            |            |      |      |      |  |
| CO2 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO3 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4 |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO5 | М          |                          | S   | S   |     |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 5   | End Semester Examinations |   |                   |

#### UNIT I

Single Storey Industrial Frames: Estimation of member forces in single storey R.C.C. Industrial bents -of flat Top & gabled configuration from handbooks – Design of members, rigid joints and footing detailing.

#### UNIT II

10

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

Medium – Rise Framed Buildings : Computation of design moments and shears using substitute frame methods of IS 456 and explanatory handbooks – Analysis for wind and earthquake effects - Design of beams, columns and slabs by Sp-16 Design aid - Detailing of reinforcement -Design of staircases and footings.

#### **UNIT III**

Flat Slab Design, Design of heavily loaded warehouse type – Multi storey frames using flat – slab type of construction – Design by empirical and rigid frame analysis – Detailing – Design of pile foundations.

#### **UNIT IV**

Tall building - functional details – wells, staris and shear walls – lateral deflection - Frame and shear wall interaction - Design of various types of shear walls and detailing – Design of pile foundations.

#### UNIT V

Computer Methods. Moment distribution and FEM methods of analysis of tall building using standard packages.

#### Total No. of Periods : 45

#### **Text Books:**

1. Vazirani V.N & Ratwani MM,"Concrete Structures", Khanna Publishers, New Delhi, 1995

#### **References:**

- 1. P.Purushothaman, Reinforced Concrete Structural elements Tata McGraw Hill Co, New Delhi.
- 2. R.Park&T.Paulay, Design of Reinforced Concrete Structural Elements John Wiley & Sons, New York, 1975.
- 3. C.M.Reynolds& J.C. Steedam Reinforced Concrete Designers Handbook Rupa& Co, Calcutta, 1987.
- 4. V.Baikov, and E.Singalov, Reinforced Concrete Structures, Mir Publishers, Moscow,1971.
- 5. W.H.MosleyandW.J.Spencer, Micro Computer Application in Structural Engineering McMilfan Press, London, 1986.

#### **BCE054 CONCRETE BRIDGES**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### **OBJECTIVES:**

• To make the student to know about various bridge structures, selection

9

9

of appropriate bridge structures and design it for the given site conditions.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

**CO1:** Design of through type and deck type steel highway bridges.

- CO2: Design various type of plate girder and truss girder railway bridge
- CO3: Design various types of RC slab bridges for IRC loading
- CO4: Design various types of RC girder bridges for IRC loading
- **CO5:** Design prestressed concrete bridges

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |
|------------|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1        |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO2        |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO3        |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| <b>CO4</b> |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4        |            |                          | S   | S   |     |            |            |            |            |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |
| 5   | Quiz                      |   |                   |  |  |  |
| 5   | End Semester Examinations |   |                   |  |  |  |

#### UNIT I

#### General

a. Types of concrete bridges, advantages, Limitation, Selection of site and Spacing of piers. B. I. R.C. code provisions, loading standards impact load theories of load distribution for Bridges, decks – Usage of Charts and curves for deck slab design.

#### UNIT II

#### **R.C. Girder Bridges**

T. Beam and slab bridges, Balanced Cantilever bridges: Advantages – General proportions for spans, Impact factor – Design of main girder and articulation.

#### UNIT III

#### **Box Culverts and Continuous Beams**

8

9

Design of single, multiple vent box Culverts – Moment distribution method - Design of continuous beams.

#### UNIT IV

#### **Pre – Stressed Concrete Bridges**

12

8

Advantages – Examples of prestressed concrete Bridges - types – Design principles – Simply supported bridges.

#### UNIT V

#### **Bearing and Substructures**

Types of bearings, design of bearings for girder bridges- Types bridge substructure - Piers abutments, shallow and deep foundations - General arrangements.

#### **Total No. of Periods: 45**

#### **Text Books:**

1. Ratwani NM, Vazirani VN, "Design of Concrete Bridge", Khanna Publishers, New Delhi, 1975

#### **References:**

- 1. Johnson Victor W,"Essentials of Bridge Engineering",Oxford IBH Publishing Co, New Delhi, 1980
- 2. Dr Krishnamorthy, "Introduction to Bridges", Two Editions, 1959, 1963
- Jain OP and Jaikrishna,"Plain and reinforced Concrete Vol.2", Nemchand and bros, Roorkee, 1958
- 4. Rowe, R.E. "Concrete Bridges Design", John Wiley & Sons, Inc, New York, 1962
- 5. Jacques Ramsay Robinson,"Piers, Abutments and Formwork for Bridges", C. Lockwood, 1964

#### **BCE055**

#### TALL STRUCTURES

#### **OBJECTIVES:**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• The design aspects and analysis methodologies of tall structures will be introduced. The stability analysis of tall structures is another important objective of this course.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- CO1: implement design philosophies for the development of high rise structures
- CO2: find out the design loads for high rise buildings
- **CO3**:analyse the behavior of tall buildings subjected to lateral loading.
- CO4: perform computerized general three dimensional analysis for high rise building

• CO5: perform stability analysis using various methods for tall buildings

#### **CO/PO Mapping**

| COs | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 |                          |     | S   | S   |     |            |            |            |            |      |      |      |  |
| CO2 |                          |     | S   | S   |     |            |            |            |            |      |      |      |  |
| CO3 |                          |     | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4 | М                        |     | S   | S   |     |            |            |            |            |      |      |      |  |
| CO4 |                          |     | S   | S   |     |            |            |            |            |      |      |      |  |

#### S – Strong, M – Medium, W – Weak

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 5   | End Semester Examinations |   |                   |

#### UNIT I

Historical Development & Design Criteria: Design philosophy Loading, strength and stability. Stiffness and dirt limitations. Human comfort, Creep, shrinkage and temperature effects – Fire – Foundation -settlement – Soil structure interaction.

#### UNIT II

Gravity loading Methods and lively hood reduction- Impact loading - Construction loads – Wind loading – Static and dynamic approach – Analytical and experimental method – Earthquake loading – Model analysis.

#### UNIT III

Behaviour of Various Structural system: Factors affecting growth, height and structural form. High Rise behavior- Rigid frames - Braced frames - Infilled frames - Shear walls - Coupled shear walls - Walls frames - Tubular cores and hybrid mega systems.

#### UNIT IV

Analysis & Design: Modeling – Analysis of building as total structural system considering overall integrity and major sub – system interaction. Analysis of member forces- Drift and twist -Computerised general three dimensional analysis - Section shapes, Properties and resisting

9

9

capacity – Design of differential movement – Creep and shrinkage effects- Temperature effects and fiber resistance.

#### UNIT V

Stability of Tall Buildings : Overall buckling analysis - Wall frames - Approximate methods – Second order effects – P – Delta – Simultaneous first – order and P – Delta analysis – Translational – Torsional instability – Out of plumb – Effect of foundation rotation.

#### **Total No. of Periods: 45**

8

#### **TEXT BOOKS**

1. Wolfgang Schueller "High Rise Building Structures", John Wiley And Sons, New York, 1976.

#### **References:**

- 1. Tung-Yen Lin & Sidney D. Stotesbury, "Structures Concept and Systems for Architects and Engineers", John Wiley & Sons, 1981
- 2. Lynn Baedle S., "Advances in Tall Buildings", CBS Publishers and Distributors. New
- 3. Delhi, 1986.
- 4. Bryan Stafford Smith And Alex Coull, " Tall Building Structures ", Analysis And Design, John Wiley And Sons, Inc., 1991.

## BCE056 ADVANCED CONCRETE DESIGN

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### **OBJECTIVES:**

• To apprise the students about the basics of design of flat slabs, folded plates and cylindrical shells.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- **CO1**: To study Limit Analysis of beams in Flexure.
- **CO2**: Limit analysis and design of Portal frames
- **CO3**: Analysis and design of orthogrid floors/roofs.
- CO4: Analysis and design of prismatic folded plates and circular cylindrical shells

#### **CO5**: To study the Design of bunkers and silos.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | amme | Outco | mes (P | Os)        |            |            |            |            |      |      |      |
|-----|------------|------|-------|--------|------------|------------|------------|------------|------------|------|------|------|
|     | <b>PO1</b> | PO2  | PO3   | PO4    | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |            |      | S     | S      |            |            |            |            |            |      |      |      |
| CO2 |            |      | S     | S      |            |            |            |            |            |      |      |      |
| CO3 |            |      | S     | S      |            |            |            |            |            |      |      |      |

| CO4 |  | S | S |  |  |  |  |
|-----|--|---|---|--|--|--|--|
| CO4 |  | S | S |  |  |  |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 5   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

Limit Analysis of beams in Flexure: Behaviour of reinforced concrete members in bending and shear. Plastic hinge Rotation capacity. Factors affecting rotation capacity of a section. Plastic moment. Moment curvature relationship.

Redistribution of moments - Analysis and limit state design of continuous beams.

# UNIT II9Limit Analysis & Design: Limit analysis and design of Portal frames.9UNIT III9Design of Flat Slabs Using BIS 456: Analysis and design of orthogrid floors/roofs.9UNIT IV9Analysis and design of prismatic folded plates and circular cylindrical shells using beam approximation.9UNIT V9Design of bunkers and silos.9

#### **Text Books:**

 Krishna Raju N," Advanced Concrete Design", CBS Publishers and Distribution, Delhi, 1988.

#### **References:**

- Jain OP and Jaikrishna,"Plain and reinforced Concrete Vol.2", Nemchand and bros, Roorkee, 1958
- 2. Dunham C W,"Advanced Concrete Design", Mc Graw Hills Company, 1992
- 3. Malick and Rangasamy, "Reinforced Concrete Design", Khanna Publishers, Delhi, 1976

## BCE057 INDUSTRIAL WASTE TREATMENT AND DISPOSAL OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To provide knowledge on sources and characteristics of industrial wastewater, techniques and approaches for minimizing the generation and application of physio chemical and biological treatment methods for recovery, reuse and disposal.

#### **OUTCOMES:-**

At the end of the course, the students would

- **CO01:** Have a fundamental knowledge of the effluent discharge standards and waste minimization technology
- **CO02:** Have a well-founded knowledge of characteristics of industrial wastewater and treatment methods.
- CO03: Acquire knowledge about conventional methods of treatment for industrial waste.
- **CO04:** Understand various biological treatment methods
- **CO05:** Have a fundamental knowledge of combined treatment of industrial and municipal wastes.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| Cos        | Progr      | amme | Outco | mes (P | os) |            |            |            |            |      |      |      |
|------------|------------|------|-------|--------|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b> | PO2  | PO3   | PO4    | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        |            |      |       |        |     |            | S          | М          |            |      | S    | М    |
| CO2        |            |      | W     |        |     |            | М          |            |            |      |      |      |
| CO3        | W          | М    | М     |        |     |            | М          |            |            |      |      |      |
| <b>CO4</b> | W          | М    | М     |        |     |            | М          |            |            |      |      |      |
| CO5        | W          | М    | М     |        |     |            | S          |            | S          |      |      |      |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |  |  |
|-----|---------------------------|---|-------------------|--|--|--|--|
| 1   | Internal Tests            | 1 | Course end Survey |  |  |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |  |  |
| 5   | End Semester Examinations |   |                   |  |  |  |  |

\

#### UNIT I

9

Effects of industrial wastes on streams, land and air, waste water treatment plants, water quality criteria – effluent standards : Process modification, method and material changes, housekeeping

etc., to reduce water discharges and strength of the waste and established recovery methods for bye products within the plant operations.

#### **UNIT II**

Characteristics of major industrial waste water (liquid wastes) Chemical Industries: Petrochemicals & refineries, pharmaceuticals. Apparel Industries: Textile, synthetic fibres, leather, paper. Agro Industries: Fertilizer Food Industries: Heat – packing pickles, canning poultry and eggs, distillers, sugar. Metallurgical Industries: Thermal power station, nuclear power plants.

#### **UNIT III**

Conventional methods of treatment and disposal of industrial wastes. Equalisation and neutralization, separation of solids – sedimentation and filtrations.

#### **UNIT IV**

Removal of organic contents: Biological treatment methods, aerobic and anaerobic, digestion, tickling filters, stabilization ponds, activated sludge process – oxidation ditch.

#### UNIT V

Physico Chemical Treatment Method – Neutralization, coagulation, flocculation, adsorption and precipitation. Combined treatment of industrial and municipal wastes.

#### **Text Books:**

1. Eckenfalder W.W,"Industrial Water Pollution Control", McGraw Hill, New York, 1989 **References:** 

- 1. Arceivala S.J & Shyam Asolekar R, "Waste Water Treatment and Pollution Control Tata McGraw Hill, 1998.
- 2. Nelson Leonard Nemerow," Theories and practice of industrial waste treatment", Addison Wesley Pub. Co., 1963
- 3. World Bank Group "Pollution prevention and Treatment Hand Book" World Bank and UNEP Washington DC, 1998

#### **AIR & NOISE POLLUTION**

#### **OBJECTIVES:**

• This subject covers the sources, characteristics and effects of air and

#### Т Ρ С L 3 0 0 3

#### **Total No. of Periods: 45**

#### 9

9

9

#### 9

**BCE058** 

noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

• The emphasis in this course will be the monitoring and control of particulate and Gaseous pollutants, Minimization of the noise and noise pollution including technical measures, Codes, regulations, directives and standards about noise pollution.

#### **COURSE OUTCOMES**

**CO01:** To learn about the air pollutants, sources and its effects.

**CO02:** To have a clear understanding on the air quality standards and its techniques.

**CO03:** To determine the fluid resistance for organic materials.

**CO04:** To find the Properties of air pollution and its control measures.

**CO05:** To learn about the effects and the sources of noise pollution.

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| COs        | Programme Outcomes (POs) |     |     |     |     |            |            |            |            |      |      |      |
|------------|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | S                        | W   |     |     |     | М          | S          |            |            |      |      |      |
| CO2        |                          |     | S   |     |     |            |            |            | W          |      |      | М    |
| CO3        |                          | М   |     | S   |     |            | S          |            | S          |      |      |      |
| <b>CO4</b> | S                        |     |     |     |     |            |            | М          | М          |      |      |      |
| CO5        |                          |     |     | S   |     |            |            |            | S          |      |      |      |

#### **Course Assessment Methods:**

| Dir | Direct         |   | lirect            |
|-----|----------------|---|-------------------|
| 1   | Internal Tests | 1 | Course and Survey |
| 2   | Assignments    | 2 | Faculty Survey    |
| 3   | Seminar        | 3 | Industry          |
| 4   | Online test    | 4 | Alumni            |
| 5   | Quiz           |   |                   |

#### UNIT I

#### Introduction

Definition of clean air, nature, air pollutants, sources of air pollutants, effects of air pollution on man, animal, vegetation and properties.

#### UNIT II

#### Ambient Air Quality Standards and Air Quality Monitoring

Harmful concentration – geographical factors in air pollution – air pollution control legislation. Classification sampling; sampling techniques; monitoring atmospheric pollution.

#### UNIT III

9

## B.Tech - Department of Civil Engineering

## Fluid Resistance to Particle Motion

Principles of removal of a gaseous constituent; adsorption and combustion; catalytic combustion of organic materials; catalytic oxidation and decomposition.

#### UNIT IV

## Air Pollution and Control Measures

Setting chambers; momentum separators, fibrous filters; electro static precipitators; bag houses centrifugal spray scrubbers; venture scrubbers; elementary principles of air pollution e-control techniques.

## UNIT V

#### Noise Pollution

Sound and noise; sources of noise pollution, environmental and industrial noise; effects of noise pollution: measures for prevention and control of noise; environmental and industrial noise; noise control legislation.

#### Total No. of Periods: 45

## TEXT BOOKS:

 Anjaneyulu D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.

#### **References:**

- 1. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi,1996.
- 2. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi, 1996.
- 3. Stern A.C. ed, "Air Pollution Vol. I, II & III", Academic Press, New York, 1968
- 4. Cunniff P.F, "Environmental Noise Pollution", John Wiley & Sons, New York. 1977.
- 5. Docks H.M., "Environmental Pollution", John Wiley & Sons. New York 1981.
- 6. Chanlett T Emit,"Environmental Protection", McGraw Hill series in Water Resources and Environmental Engineering, New York. 1973.
- 7. Patrick C.F,"Environemental noise pollution", John Wiley & Sons, 1977.

# BCE059 ENVIRONMENTAL HEALTH ENGINEERING OBJECTIVE:

- To introduce types of pollution and its impacts
- To acquaint the student with various methods and techniques of disposing and management of waste

| 3 0 0 3 | L | Т | Ρ | С |
|---------|---|---|---|---|
|         | 3 | 0 | 0 | 3 |

8

• To give an insight into the various diseases that affect human beings and introduces the importance of sanitation processes

#### **Course Outcomes**

**CO01:** To learn about the various environmental pollution and the impacts of land use and overuse of natural resources.

CO02: To learn the various water acts and the sources of water pollution

CO03: To learn the various Air acts and the sources and the effects of Air and noise pollution **CO04:** Insight into the solid waste management and various disposal techniques.

CO05: Insight into food sanitation and the effects of food borne diseases

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| COs        | Progr      | Programme Outcomes (POs) |     |     |     |            |            |            |            |      |      |      |  |  |  |
|------------|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|--|--|
| COS        | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1        | W          | М                        | S   |     |     |            |            |            |            |      |      |      |  |  |  |
| CO2        |            | S                        | М   |     | W   |            |            |            |            |      |      |      |  |  |  |
| CO3        |            | S                        |     | S   |     |            |            |            |            |      | М    |      |  |  |  |
| <b>CO4</b> |            |                          |     |     | М   | W          | S          |            |            |      |      |      |  |  |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | End Semester Examinations |   |                   |

#### UNIT I

Impact of Development and Water Pollution – Ecology and ecosystems Impact of development, land use and natural resource management, Cause and effects of environmental pollution.

#### UNIT II

Natural Processes: Pollution due to industrial, agriculture and municipal wastes - Limitation of disposal of dilution. BOD considerations in streams. Water Pollution control legislation.

#### **UNIT III**

#### Air and Noise Pollution and Control- Pollutants and their sources- Effect of pollution of human wealth, vegetation- Air pollution control legislation -noise pollution- sources and effects -Control measures.

#### **UNIT IV**

9

9

9

Solid Wastes Management and Water Control Sources - Characteristics Quantities – Collection methods and disposal techniques - Sanitary -landfill -Incineration and pyrolysis – composting - water borne diseases – of mosquitoes, flies, rodents.

Rational control and naturalistic methods of control, uses and limitations of pesticides, engineering measures of water control.

#### UNIT V

Food & Milk Sanitation : Relation of food to disease – principles of food sanitation – Sanitation of Kitchen in restaurants and other catering establishments – Quality changes in milk – Milk as carrier of infection – Pasteurization of milk – HTST and LTLT processes. Cattle shed sanitation.

#### Total No. of Periods: 45

9

#### **Text Books:**

1. Ehlws V.M. and E.W. Steel. Municipal and Rural Sanitation – McGraw Hill Co. Inc, New York, 1954

#### **References:**

- 1. Park J.E. and Park K.,"Text Book of Preventing and Social Medicine", M/s. Banarsidos, Bhanot, Jabalpur, 1980.
- 2. Stern A.C. ed, "Air Pollution Vol. I, II & III", Academic Press, New York, 1968
- 3. Cuniff P.E,"Environmental Noise Pollution", John Wiley & Sons, New York. 1977.

## BCE060 RENEWABLE SOURCES OF ENERGY OBJECTIVES:

• To impart knowledge on sources and characteristics of various renewable source of energy and strategies for its implementation.

#### **OUTCOMES:-**

At the end of the course, the student is expected to

**CO01:** Have knowledge about the various renewable sources of energy

**CO02:** Have a well-founded knowledge about the Primary energy sources

CO03: Acquire skills in assessing the suitability of direct energy conversion

**CO04:** Have knowledge about bio – energy

**CO05:** Have knowledge about solar energy.

#### CO/PO Mapping

S – Strong, M – Medium, W – Weak

| Programme | Outcomes  | (Pos)                     |
|-----------|-----------|---------------------------|
|           | Programme | <b>Programme Outcomes</b> |

| Cos | 8-         |     |     |     |     |            |            |            |            |      |      |      |  |  |  |
|-----|------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|--|--|
| CUS | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |  |  |
| CO1 |            | S   | S   |     |     |            |            |            |            |      |      |      |  |  |  |



| CO2        | S | S |  |  |  |  |  |
|------------|---|---|--|--|--|--|--|
| CO3        | S | S |  |  |  |  |  |
| <b>CO4</b> | S | S |  |  |  |  |  |
| CO5        | S | S |  |  |  |  |  |

#### **Course Assessment Methods:**

| Dir | Direct            |   | lirect            |
|-----|-------------------|---|-------------------|
| 1   | Internal test 1   | 1 | Course end Survey |
| 2   | Internal test 2   | 2 | Faculty Survey    |
| 3   | Internal test 3   | 3 | Industry          |
| 4   | Assignment        | 4 | Alumni            |
| 5   | End semester exam |   |                   |

#### UNIT I

#### General

Primary energy sources -direct energy - conversion -comparison with conventional energy-conversion devices.

SOLAR ENERGY – Principles of solar energy collection – solar radiation – measurement instruments - data and estimation - types of collectors - characteristics and design principles of different types of collectors - testing of collectors.

#### UNIT II

#### **Solar Energy Applications**

Solar thermal applications – water heaters and air heaters performance and applications - simple calculations on solar cooling, solar drying, solar ponds, solar tower concepts and solar furnace.

#### UNIT III

#### Wind and Tidal Energy

Energy from the wind – general theory of windmills – design aspects of horizontal axis and vertical axis windmills – applications. Energy from tides and waves – working principles of tidal plants and ocean thermal energy conversion plants – power from geothermal energy – principles of working of geothermal power plants.

#### UNIT IV

#### **Bio** – Energy

Energy from bio – mass bio – gas plants – various types -design principles of bio – gas plants applications- Energy from waste burning- power plants, utilization of industrial and municipal wastes – energy from the agricultural wastes.

#### UNIT V

9

**9** 1d

9

#### Direct Energy Conversion

(Description, principle of working and basic design aspects only) Magneto hydrodynamic systems, thermo electric generators, thermionic generators fuel cells solar cells types, e.m.f. generated, power output, tosses and efficiency and applications.

#### **Total No. of Periods: 45**

1. D. Yogi Goswami, Frank Kreith & Jan F. Kreider," Principles of Solar Energy Engineering", CRC Press, 2000

#### **References:**

**Text Books:** 

- 2. John A. Duffie, William A. Beckman,"Solar Energy Thermal processes", John Wiley & Sons; 4th Edition edition (17 May 2013).
- 3. Sukhatme K, Suhas P. Sukhatme," Solar Energy", Tata McGraw-Hill Education, 1996
- 4. Rai G.D,"Solar Energy Utilisation", Khanna Publishers, 1987
- 5. Shao-lee Soo,"Direct Energy conversion", Prentice-Hall, 1968

## BCE061 STUCTURES ON EXPANSIVE SOILS

#### OBJECTIVE

- To understand the dynamics of earth and to estimate dynamic properties of soils
- To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.
- To design these structures in expansive soil
- To study the effectiveness of some supper structure resting on treated expansive soil
- Factors influencing mechanisms in expansive soils

#### **Course Outcomes**

- CO01: To understand the dynamics of earth and to estimate dynamic properties of soils
- CO02: To improve the engineering properties and make it suitable for construction
- **CO03** The engineering properties, problems and solution need to be considered when constructing a foundation on expansive soils.
- **CO04:** To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.

CO05: To study the behaviour of the stabilized soil subjected to cyclic loading

#### **CO/PO Mapping**

#### S-Strong, M-Medium, W-Weak

|     | Prog | ramme | Outco | mes (P | Os) |  |
|-----|------|-------|-------|--------|-----|--|
| COs | PO   |       |       |        |     |  |

| COs | PO<br>1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|---------|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|
|     |         |     |     |     |     |     |            |     |     |      |      |      |

**Bharath Institute of Higher Education and Research** 

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

| CO1 | S | М | W | S | М |  |  |  |  |
|-----|---|---|---|---|---|--|--|--|--|
| CO2 | S | М | S | М | М |  |  |  |  |
| CO3 | М | М | W | S | М |  |  |  |  |
| CO4 | S | S | М | S | М |  |  |  |  |
| CO5 | М | М | М | S | М |  |  |  |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 5   | End Semester Examinations |   |                   |

#### UNIT I

#### **Geotechnical Problem**

Occurrence and distribution - moisture equilibrium - Soil, structure, environmental interactiondistress symptoms - case histories.

#### UNIT II

#### **Expansive Soil Properties**

Clay mineralogy - swell potential - field exploration - laboratory tests for identification.

#### UNIT III

#### Soil Heaving

Heave Prediction - Method of prediction of heave- Empirical methods - double of dometer tests - soil moisture suction - field observations, shrinkage.

#### UNIT IV

#### **Design of Footing**

Foundation Design – Design consideration – individual and continuous footings- stiffened matsunderreamed piles- codal provisions.

| UNIT | V |
|------|---|
|      | • |

| Stabilization         |
|-----------------------|
| Stabilization methods |

#### **Text Books:**

**Total No. of Periods: 45** 

9

9

9

9

9

Bharath Institute of Higher Education and Research

1. John .D.N & Debora .J.M, "Expansive Soils Problems And Practice In Foundation & Pavement Engineering", J. Wiley, 1992.

#### **References:**

- 1. Satish Grower, The Architecture of India, Buddist, Hindu Period and Islamic Period. Vikas Publishing HousPvt Ltd., New Delhi, 1984.
- 2. Chen F.R," Foundation on Expansive Soils", Elseivier ,1973.
- 3. Parcher J.V & Means R.E, Soil Mechanics & Foundation, Columbus, 1968.
- 4. Perkk R.E., Hansen W.E, Thombum T.H, "Foundation Engineering", John Wiley, 1974.
- 5. Kameswarao N.S.V," Dynamic Soil Test & Applications", Wheeler Publishing Co., 2002

# BCE062SOIL DYNAMICS & MACHINE FOUNDATIONOBJECTIVE

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

- To understand the soil properties and suitable remedial measures to improve their behavior.
- To familiarize students with the dynamic properties of soil.
- To create an understanding about the importance of designing machine foundation for reciprocating and impact machines.

Student will demonstrate the ability to design machine foundations.

#### **COURSE OUTCOMES**

CO01: To understand the Vibration of elementary systems

**CO02:** To improve the engineering properties and application in soil dynamics.

**CO03:** The engineering dynamic properties of soil Field & Laboratory methods.

CO04: To develop specific design Impact type machine and Rotary type machines

CO05: To study the principles of vibration neutralizer

#### CO/PO Mapping

| S – Stron | ng, M - | - Medium, | W – | Weak |
|-----------|---------|-----------|-----|------|
|-----------|---------|-----------|-----|------|

|     | Progr | amme    | Outco | mes (P | Os) |     |            |     |     |      |      |      |
|-----|-------|---------|-------|--------|-----|-----|------------|-----|-----|------|------|------|
| COs | PO1   | PO<br>2 | PO3   | PO4    | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | S     | М       | М     | S      | М   |     |            |     |     |      |      |      |
| CO2 | М     | W       | S     | М      | М   |     |            |     |     |      |      |      |
| CO3 | М     | Μ       | W     | S      | М   |     |            |     |     |      |      |      |
| CO4 | М     | S       | М     | S      | М   |     |            |     |     |      |      |      |
| CO5 | М     | М       | М     | S      | М   |     |            |     |     |      |      |      |

#### **Course Assessment Methods:**

|  | Direct | Indirect |
|--|--------|----------|
|--|--------|----------|

| Bha | rath Institute | of Higher | Education | and Research |
|-----|----------------|-----------|-----------|--------------|
|     |                |           |           |              |

#### **Text Books:**

## UNIT V

passive – principles of vibration neutralizer (no derivation)

9 **Vibration Isolation & Screening** Vibration isolation technique mechanical isolation, foundation isolation, isolation by location isolation by barriers – active and passive isolation tests – problems – types of Isolation – active,

procedures of design of foundations for machineries of reciprocating type, Impact& Rotary type (treated as single degree freedom only) – dynamic loads, simple design procedures for foundations under Reciprocation machines. Impact type machine and Rotary type machines.

#### **UNIT IV**

#### **Design of Machine Foundation** General requirements of machine foundations – Design criteria – principles of & simple

uniform compression and shear- Determination of dynamic properties of soil- Field & Laboratory methods.

**UNIT II** 

**Dynamic Properties Of Soils** 9 Elastic properties of soils – soil treated as spring or elastic half space – Co – efficient – provision of dynamic properties of soil as per latest BIS 5249 -Co efficient of elastic, uniform and non-

**UNIT III** 

Waves & Wave Propagation Wave propagation in an elastic homogeneous isotropic medium - Shear and compression waves wave propagation in elastic, half space (no theoretical treatment or derivation) properties of compression, shear and Raleigh waves – application in soil dynamics.

#### UNIT I

## Introduction

**Internal Tests** 1 1 Course and Survey 2 Assignments 2 Faculty Survey 3 3 Seminar Industry 4 Alumni 4 Online test 5 Ouiz 5 **End Semester Examinations** 

Vibration of elementary systems - vibratory - single degree freedom -system - free and forced vibrations with and without damping – transient response of single degree freedom systems.

9

8

#### 10

## **Total No. of Periods: 45**

1. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 2010.

#### **References Books:**

- 1. Rtehart F.E, R.D.Woods & J.R. Hall, vibrations of Soils and Foundations, Prentice Hall, 1970.
- 2. Prakash S.& Pun V.K, Soil Dynamics & Design foundation, McGraw Hill Co. 1998.
- 3. Srinivasulli P & Vaidanathan C," Handbook on machine Foundations", McGraw Hill Co.1976.
- 4. Code Practice of Design and Construction of Machine Foundations, I.S.2974, 1987 Part I to IV.
- 5. Prakash .S and Puri V.K, "Foundation for Machines", McGraw Hill Publishing Company, Newyork, 1988

#### BCE063

#### HYDROLOGY

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### **OBJECTIVES:**

• To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

- **CO1:** Measure the rainfall intensity , duration and frequency
- **CO2:** Assess the losses of precipitation due to evaporation
- **CO3:** Prepare the unit hydrograph for surface runoff
- CO4: Solve the flood routine and channel routine problems
- **CO5:** Conduct yield test on aquifers

#### **CO/PO Mapping**

S – Strong, M – Medium, W – Weak

| COs | Progr      | amme | Outco | mes (P | Os) |            |            |            |            |      |      |      |
|-----|------------|------|-------|--------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b> | PO2  | PO3   | PO4    | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |            |      |       | S      | М   |            |            |            |            |      |      |      |
| CO2 |            |      |       | S      | М   |            |            |            |            |      |      |      |
| CO3 |            |      |       | S      | М   |            |            |            |            |      |      |      |
| CO4 | М          |      |       | S      | М   |            |            |            |            |      |      |      |
| CO4 |            |      |       | S      | М   |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Direct Indirect |
|-----------------|
|-----------------|

|                                                                     | Total No. of Periods: 45 |
|---------------------------------------------------------------------|--------------------------|
| Channel routing, Other methods of routing.                          |                          |
| Flood estimation – Gumbel's method – log Pearson types III method – | Reservoir flood routing, |

| 1 | Internal Tests            | 1 | Course and Survey |
|---|---------------------------|---|-------------------|
| 2 | Assignments               | 2 | Faculty Survey    |
| 3 | Seminar                   | 3 | Industry          |
| 4 | Online test               | 4 | Alumni            |
| 5 | Quiz                      |   |                   |
| 5 | End Semester Examinations |   |                   |

#### UNIT I

#### **Hydrometeorology**

Hydrological cycle -Hydro meteorological factors -Cloud formation- Winds and their movement -types of precipitation.- Forms for precipitation- Density and Adequacy of rain gauges -Recording and non-recording gauges.

#### UNIT II

#### **Precipitation and Abstractions**

Spatial distribution – Consistency analysis – Frequency analysis – Intensity, duration, frequency relationships- Evaporation – Infiltration- Norton's equation Infiltration indices – Types of streams - Stage discharge relationships - Flow measurements - Currents meter method for velocity measurements.

#### **UNIT III**

#### Hydrograph Analysis

Factors affecting the shape of hydrograph- Components of DRH. Baseflow- Unit hydrograph -Scurve hydrograph- Synthetic unit hydrograph.

#### **UNIT IV**

#### **Ground Water Hydrology**

Occurrence of ground water - Types of aquifer - Dupuifs assumptions - Darcy's law -Estimation of aquifer parameters – Pump tests.

#### UNIT V

#### **Flood Analysis**

voir flood routing,

#### **Text Books:**

1. Subramanya K. Engineering Hydrology, Tata McGraw Hill. Publishing Company Limited, 2006

#### **References:**

1. Raghunath H M, Hydrology, Witey Eastern Limited, New Delhi 1998.

## 9

9

9

- 9

- 2. Vijay Singh P, Elementary Hydrology -Prentice Hall of India, 1998.
- 3. Mutreja K N, Applied Hydrology, Tata McGraw Hill Publications, New Delhi, 1998.
- 4. Jayaram Reddy P Hydrology, Tata McGraw Hill Publications, New Delhi, 1998.

| BCE064             | Ground Water Engineering |
|--------------------|--------------------------|
| <b>OBJECTIVES:</b> |                          |

| L | Т | Ρ | С |  |
|---|---|---|---|--|
| 3 | 0 | 0 | 3 |  |

- To introduce the student to the principles of Groundwater governing Equations and Characteristics of different aquifers,
- To understand the techniques of development and management of groundwater.

#### **COURSE OUTCOMES**

**CO01:** To learn about the basics of ground water Engineering including the hydrogeological cycle and water level fluctuations

- **CO02:**To learn about the basics of hydrology of ground water and to make a clearunderstanding of ground water flow equations of velocity equations.
- CO03: To study the basics of unsteady flow and various methods unsteady flow.
- **CO04:** To know about the various sources of ground water like collector wells, infiltration galleries.

**CO05:** To study about the ground water quality chemistry its origin and water quality standards. **CO/PO Mapping** 

#### S – Strong, M – Medium, W – Weak

| COs | Programme Outcomes (POs) |     |     |     |            |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 | S                        |     |     | М   |            |            |            |            |            | W    |      |      |
| CO2 |                          |     |     |     |            | S          |            | W          |            |      | М    |      |
| CO3 |                          |     |     | S   |            |            |            |            | М          |      |      |      |
| CO4 |                          |     |     |     |            | М          |            |            | S          | W    |      |      |
| CO5 |                          |     |     |     | М          |            |            |            |            |      |      | S    |

#### **Course Assessment Methods:**

| Direct |                           | Indirect |                   |  |
|--------|---------------------------|----------|-------------------|--|
| 1      | Internal Tests            | 1        | Course and Survey |  |
| 2      | Assignments               | 2        | Faculty Survey    |  |
| 3      | Seminar                   | 3        | Industry          |  |
| 4      | Online test               | 4        | Alumni            |  |
| 5      | Quiz                      |          |                   |  |
| 5      | End Semester Examinations |          |                   |  |

#### UNIT I

## **Fundamentals of Ground Water**

Introduction – Characteristics of Ground water – Global distribution of water – ground water column- Permeability- Darcy's Law, laboratory permeability test Types of aquifers. Hydro geological Cycle, water level fluctuations.

## UNIT II

**Hydraulics of Flow** Storage coefficient, Specific yield, Heterogenetiy and AnisotrophyTransmissivity – governing equations of ground water flow - Steady state flow - DupuitForchheimer assumption. Velocity potential flow nets.

## **UNIT III**

## **Estimation of Parameters**

Transmissivity and Storativity Pumping test - Unsteady state flow- Thies method- Jacob methods - Image well theory - Effect of partial penetrations of well – collectors wells.

## **UNIT IV**

## **Ground Water Development**

Collector wells – infiltration gallery – Conjunctive use – Artificial recharge – Safe yield – Yield test – Geophysical method – Selection of pumps.

## UNIT V

## Water Quality

Ground water chemistry – origin, movement and quality – water quality standards – salt water intrusion – Environmental concern.

## **Text Books:**

1. Reghunath H.M. "Ground Water Hydrology", Wiley Eastern Ltd., Second reprint, 2000.

## **References:**

- 1. Tood D.K,"Ground Water Hydrology", Johnand Sons, 2000.
- 2. Ramakrishnan S,"Ground Water Groundwater",,Ramakrishnan Publication,Chennai 1998.
- 3. William C Walton, "Ground Water Resource Evaluation", McGraw Hill New York 1970.

#### **BCE065 COASTAL ENGINEERING OBJECTIVES:**

• To provide an overview of the analysis and design procedures used in

Total No. of Periods: 45

9

9

9

the field of coastal engineering.

- To introduce the processes of including coastal and estuarine circulation, coastal and shelf waves, surf zone hydrodynamics, sediment transport, hurricane-induced storm surge and inundation, beach nourishment etc
- To enable students apply these engineering principles to solve the problems in this environment such as shoreline erosion, natural flooding hazards, water quality deterioration and coastal habitat evanescence.

#### **OUTCOMES**

- **CO01:** To provide an overview of the fundamental principles of ocean science and technology.
- **CO02:** To provide the background needed to undertake coastal oceanographic investigations and sets them in context by incorporating case studies and sample problems based on local and global examples.
- **CO03:** To facilitate students to work across disciplinary boundaries and develop an approach that will enable them to incorporate human society in their exploration and analysis of coastal areas.
- **CO04:** To be able to "see" the features and components of the natural, engineering and human aspects of the coast, the functions of components and relationship between them.
- **CO05:** To provide students understanding of the materials and processes associated with the major natural natural and artificial harbours.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| Cos        | Programme Outcomes (Pos) |     |     |     |            |            |            |            |            |      |      |      |
|------------|--------------------------|-----|-----|-----|------------|------------|------------|------------|------------|------|------|------|
| COS        | <b>PO1</b>               | PO2 | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1        | S                        |     |     |     |            |            |            |            |            |      |      | М    |
| CO2        | S                        |     | М   |     |            |            |            |            |            |      |      | М    |
| CO3        | S                        |     |     |     |            | S          |            |            |            | М    |      | М    |
| <b>CO4</b> | S                        |     |     |     |            |            |            |            |            |      |      | М    |
| CO5        | S                        |     |     |     |            |            |            |            |            |      |      | М    |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | lirect            |
|-----|---------------------------|---|-------------------|
| 1   | Internal Tests            | 1 | Course and Survey |
| 2   | Assignments               | 2 | Faculty Survey    |
| 3   | Seminar                   | 3 | Industry          |
| 4   | Online test               | 4 | Alumni            |
| 5   | Quiz                      |   |                   |
| 6   | End Semester Examinations |   |                   |

#### UNIT I

#### Waves Generation, Propagation and Force

Definition – Wave classification – Linear theory of waves- Assumptions and derivations of relationship of wave characteristics- Pressure within progressive wave- Wave energy - Fundamental aspects of stokes theory.

#### UNIT II

#### Wave Forecasting

Need for forecasting - SMB and PNJ methods of wave forecasting.

#### UNIT III

#### Tides

Origin and classification of tides - Karwin's equilibrium theory of tides- Effects on structure - Seiches, surges and Tsunamis.

#### UNIT IV

#### **Sediment Movement**

Types of sediment movement – Types of beaches and beach profile – long shore drift and its engineering significance – Causes of coastal erosion and methods of protection.

## UNIT V

#### Harbours

Classification - types of their requirements – Requirements of modern port -Selection of site. BreakWater and their types of selection - Functional design of entrance Channel and breakwaters- Dredging - Need & types of selection of dredgers.

## Total No. of Periods : 45

## **Text Books:**

1. Garrison .T, "Oceanography", Wadsworth Publications, 4th edition, 2002.

## **References:**

- 1. Sorenson .R. M, "Coastal Zone Engineering", Chapman & Hall, 3rd edition, 2006.
- 2. Wiegal. R.L., Oceanographical Engineering Prentice Haff, Englewood Cliff's, New Jersy, 1964.

# BCE066 GEOGRAHICS INFORMATION SYSTEM OBJECTIVES:

• To introduce the students to the basic concepts and principles of various components of Geographic Information System

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

| L | 1 | Р | C |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### 10

9

9

CO1: To procure knowledge about History and development of GIS

**CO2**: Apply the concept of Data Entry, Storage & Maintenance

CO3: Apply the concepts of DBMS in GIS

CO4: Analyze raster and vector data and modeling in GIS

CO5: Apply GIS in land use, disaster management, ITS and resource information system

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| COs | Progr      | Programme Outcomes (POs) |     |     |            |            |            |            |            |      |      |      |  |
|-----|------------|--------------------------|-----|-----|------------|------------|------------|------------|------------|------|------|------|--|
| COS | <b>PO1</b> | PO2                      | PO3 | PO4 | <b>PO5</b> | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | М          |                          |     | S   | S          |            |            |            | S          |      |      |      |  |
| CO2 | М          |                          |     | S   | S          |            |            |            | S          |      |      |      |  |
| CO3 | М          |                          |     | S   | S          |            |            |            | S          |      |      |      |  |
| CO4 | М          |                          |     | S   | S          |            |            |            | S          |      |      |      |  |
| CO5 | М          |                          |     | S   | S          |            |            |            | S          |      |      |      |  |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### Introduction

Definition – Map and amp analysis – Automated carrography, History and development of GIS. Hardware requirement -system concepts Coordinate systems - Standard GIS packages.

#### UNIT II

#### Data Entry, Storage & Maintenance

Type of data. Spatial and non-spatial data – Data structure – points – Lines – polygon - Vector and raster Piles and data formats- Data compression.

#### UNIT III

#### **Data Analysis of Modeling**

Spatial analysis - Data retrival- Query Simple analysis- Record overlay- vector data analysisraster data analysis - Modeling in GIS- Digital elevation model- DIM cost and path analysis -Artificial intelligence- Expert system.

9 20

9

## UNIT IV

## Data Output & Error Analysis

Types of output data – Display on screen – Printer – Plotter – Other output devices – Sources of errors – Types of error – Elimination. Accuracies.

## UNIT V

## Application

GIS Application: Application areas – Resources management – Agriculture Soil – Water Resources management – Cadestral records and US – Integrated remote sensing application with GLS – Knowledge based techniques.

## Total No. of Periods: 45

## **Text Books:**

 Anji Reddy .M, "Remote sensing and Geographical information system", B.Publications, 2011.

## **References:**

- 1. Chester (England), Geo informational System, Application of GIS and Related Spatial Information Technologies ASTER Publication Co. 1992.
- 2. Burrough .P.A, "Principles of GIS for Land Resources Assessment", Oxford Publication,2000.
- 3. Jeffrey Star and Join Estes, "Geographical Information System An Introduction" Prentice Hall, 1990.

## **BCE067**

## **OPERATION & MANAGEMENT OF IRRIGATION SYSTEMS**

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

## **OBJECTIVES:**

- To enable the students for a successful career as water management professionals. 2. To create a potential among students in the area of irrigation management with specific enrichment to synthesis of data and their analysis.
- To expose the students the need for an interdisciplinary approach in irrigation water management and providing a platform to work in an interdisciplinary team.
- To provide students an ability to understand the applications of mathematical and scientific concepts to analyse intricate technical, social and environmental problems in irrigation water management and finding solutions for them.
- To promote student awareness for a life-long learning process and inculcate professional ethics and codes of professional practice in water management.

## **OUTCOMES:-**

At the end of the course, the students would

- **CO01:** Understand the concepts of soil-water-plant relationship as well as to expose them to the principles and practices of crop production.
- **CO02**: Exposure to ground water, hydraulics of ground water related to drainage, drainage concepts, planning, design and management of drainage related irrigation system management
- **CO03:** The students will be able to understand an irrigation system, its components, its performance, and management of irrigation complexities to tackle different issues.
- **CO04**: Understand the various principles of irrigation management and to analyse the different types of irrigation systems and their performances based on service oriented approach.
- **CO05:** The students will acquire knowledge about the need for participatory approach and irrigation management transfer along with irrigation policy and institutional aspects.

#### **CO/PO Mapping**

#### S – Strong, M – Medium, W – Weak

| Cas | Programme Outcomes (Pos) |     |     |     |     |            |            |            |            |      |      |      |  |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|--|
| Cos | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |  |
| CO1 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | S    |  |
| CO2 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | S    |  |
| CO3 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |  |
| CO4 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |  |
| CO5 | S                        | М   | W   | S   | S   |            |            |            |            |      |      | М    |  |

#### **Course Assessment Methods:**

| Dir | Direct                    |   | Indirect          |  |  |
|-----|---------------------------|---|-------------------|--|--|
| 1   | Internal Tests            | 1 | Course and Survey |  |  |
| 2   | Assignments               | 2 | Faculty Survey    |  |  |
| 3   | Seminar                   | 3 | Industry          |  |  |
| 4   | Online test               | 4 | Alumni            |  |  |
| 5   | Quiz                      |   |                   |  |  |
| 6   | End Semester Examinations |   |                   |  |  |

## UNIT I

#### **Irrigation System Requirements**

Irrigation system – requirements – Gravity and lift irrigation – Supply and demand of water – croping pattern – Estimation of total and peak crop water requirements – Effective and dependable rainfall -allowable deficit – irrigation efficiency.

## UNIT II

#### **Irrigation Scheduling**

Frequency of irrigation – Methods of scheduling irrigation – Developing typical schedules – Case studies – Water conveyance Systems – Water measurements.

9

## UNIT III

## Management

Structural and non structural strategies in water use and management. Conductive use of surface and ground water.

## UNIT IV

## Operation

Operational plans – Main canals, laterals and field channels – Water control and regulating structures – Physical and administrative control – Water law.

## UNIT V

## **Farmers Involvement**

Farmers role in system operation – Farmers committee for water distribution, On – farm management and maintenance of the irrigation system -Government – Father Partnership in irrigation.

## **Total No. of Periods : 45**

#### **Text Books:**

1. Dilip Kumar Majumdar, "Irrigation Water Management – Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2000

#### **References:**

- 1. Hand book on Irrigation Water Requirement, R.T. Gandhi, et. al., Water management Division, Department of Agriculture, Ministry of Agriculture, New Delhi
- 2. R.T.Gandhi, et .al, Handbook on Irrigation Water Requirements, Water management Division, Defantment of Agriculture, ministry of Agriculture, New Delhi, 1989.
- 3. R.E.Robinson, control, C.M.Laurizen and D.C.Muckel, Distribution control and measurement of irrigation water on the Form USDA Mise publication No.926.1989.
- 4. W.Cly AM, Max, Lowdermilk K and Gilbert Lorey L,"A Research Development process for improvement of on Form water management" Technical Report No.47, ColoradoState, University, Colorado, USA, 1977.
- 5. Max, K. Lowdermilk Farmer Involvement Planning Guide No.11,"water management Synthesis Project", Utah state University Logan, Utah, 1981.

# BCE068 TRANSPORTATION STRUCTURES OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To introduce the students to the basic concepts and principles of transport structures such as bridges, parking facilities

## **COURSE OUTCOMES**

9

9

#### After successful completion of this course, the students should be able to

**CO1:** To learn about the IRC codes.

**CO2:** To analyze and design the Deck slab and columns in bridges.

**CO3:** Designing the substructures.

CO4: To perform the design of Steel Bridges

**CO5:** To perform the designing of parking, and different amenities related to transportation.

#### **CO/PO** Mapping

#### S – Strong, M – Medium, W – Weak

| COa | Programme Outcomes (POs) |     |     |     |     |            |            |            |     |      |      |      |
|-----|--------------------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|
| COs | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 |
| CO1 | S                        |     |     |     |     |            |            |            |     |      |      |      |
| CO2 | S                        |     |     |     |     | S          |            |            |     |      |      |      |
| CO3 |                          |     | S   |     |     |            |            |            |     |      |      |      |
| CO4 |                          |     | S   |     |     |            |            |            |     |      |      |      |
| CO5 | М                        |     | S   |     |     |            |            |            |     |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |
|-----|---------------------------|----------|-------------------|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |
| 5   | Quiz                      |          |                   |  |  |
| 6   | End Semester Examinations |          |                   |  |  |

#### UNIT I

#### General

IRC Code provision, loading standard, impact loads, theories of load distribution in bridge docks – Charts and curves for deck slab design.

#### UNIT II

#### **Balanced Cantilever Bridges**

Balanced cantilever bridges and bearing. Advantages, general proportions for spans, impact factors – Influence lines for B.M. and S.F. at critical sections. Design of main girders and articulation. Types of bearings, design of bearings for girder bridges.

#### UNIT III Bridge Substructures

10

8

Types of bridge structures-Piers abutments-shallow and deep foundations – General arrangements (descriptive study only) - Design of single and multiple vent box culverts. Moment distribution method.

#### UNIT IV

#### **Steel Bridges**

Steel bridges for highway and railway locations – Selection of Types and its advantages – Comparison with R.C.C. bridges – Design of deck and through bridges and bearing.

#### UNIT V

#### Amenities

Design of depot buildings, parking lots, terminals, box culverts.

Total No. of Periods: 45

9

9

#### **TEXT BOOKS**

1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.

#### **References:**

- JaiKrishna & Jain O.P.. "Plain and Reinforced Concrete" Vol. 1 NemChand & Bros. Roorkee. 1987
- 2. Ramachandra, "Design of Steel Structures", Standard Pub, New Delhi 2013.
- Fredrick W. Taylor E. Thompson & Edward Smulski, "Reinforced Concrete Bridges", John Wiley & Sons, Inc, New York 1939.

## BCE069 OPTIMIZATION TECHNIQUES

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

## **OBJECTIVES:**

• To introduce the students to the basic concepts and principles of optimization, linear programming and queuing theory

## **COURSE OUTCOMES**

#### After successful completion of this course, the students should be able to

- **CO1:** Understanding the Concept of optimization and classification of optimization problems.
- CO2: Formulation simplex methods variable with upper bounds
- CO3: Study the Queuing Model, poison and exponential distributions
- **CO4:** Understand the maximization and minimization of convex functions

CO5: To study equality constraints, inequality constraints

## **CO/PO Mapping**

## S – Strong, M – Medium, W – Weak

**COs Programme Outcomes (POs)** 

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 |
|------------|------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|
| CO1        |            |     |     |     |     |            | М          | S          |     |      |      | М    |
| CO2        |            |     |     |     |     |            | М          | S          |     |      |      | Μ    |
| CO3        | W          |     |     | М   |     |            | Μ          | S          |     |      |      | Μ    |
| <b>CO4</b> |            |     |     |     |     |            | М          | S          |     |      |      | Μ    |
| CO5        |            |     |     |     |     |            | М          | S          |     |      |      | Μ    |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 6   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### Introduction

Concept of optimization – classification of optimization – problems.

#### UNIT II

#### **Linear Programming**

Examples of linear programming problems – formulation simplex methods variable with upper bounds – principle- duality -dual simplex method - sensitivity analysis – revised simplex procedure – solution of the transportation problem – assignment – network minimization – shortest route problem – maximal two problem – L.P.representation of networks.

#### UNIT III

#### **Queuing Theory**

Queuing Model, poison and exponential distributions -Queues with combined arrivals and departures- random and series queues.

#### UNIT IV

#### **Unconstrained Optimization**

Maximization and minimization of convex functions. Necessary and sufficient conditions for local minima – speed and order of convegence – unibariate search – steepest and desent methods- metcher reeves method -conjugate gradient method.

## UNIT V

#### **Constrained Optimization**

10

8

9

9

Necessary and sufficient condition – equality constraints, inequality constraints -kuhu – tucker conditions – gradient projection method – penalty function methods – cutting plane methods of sibel directions.

#### **Total No. of Periods: 45**

## 1. Rao S.S,"Optimization – Theory and applications", Wiley Easter Ltd., 1979.

#### **References:**

**Text Books:** 

- 1. David G.Luerbeggan, "Introduction to linear and non linear programming", Addison Wesley Publishing Co. 1973.
- 2. Hadley G. "Nonlinear and dynamic programming" Addison Wesley Publishing Co. 1964.
- 3. Cordan C.C. Beveridge and Robert S. Schedther, "optimization, theory and practice" McGraw Hill Co.1970.
- 4. HarndyA.Tahh. "operations Research, An Introduction", Macmillan Publishers Co.NewYork,1982.
- 5. Beightferand S. others, "Foundations of optimization pill", New Delhi, 1979.

## BCE070 PRESTRESSED CONCRETE STRUCTURES OBJECTIVES:

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

• To introduce the students to the basic concepts and principles of Prestressed concrete structures

#### **COURSE OUTCOMES:**

**CO1:** To design prestressed concrete beam

CO2: To design prestressed composite beams

CO3: To design flexural members with partial prestressing

**CO4:** To design prestressed concrete tanks, poles and sleepers

**CO5:** To design prestressed concrete bridges

## **CO/PO Mapping**

## S-Strong, M-Medium, W-Weak

| COs | Programme Outcomes (POs) |     |     |            |     |            |            |            |            |      |      |      |
|-----|--------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|
| COS | <b>PO1</b>               | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
| CO1 |                          |     | S   | S          |     |            |            |            |            |      |      |      |
| CO2 |                          |     | S   | S          |     |            |            |            |            |      |      |      |
| CO3 |                          |     | S   | S          |     |            |            |            |            |      |      |      |
| CO4 |                          |     | S   | S          |     |            |            |            |            |      |      |      |
| CO5 |                          |     | S   | S          |     |            |            |            |            |      |      |      |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### **Introduction – Theory and Behaviour**

Basic concepts - Advantages - Materials required - Systems and methods of prestressing. Analysis of sections. Stress concept, Strength concept, Load balancing concept -. Effect of loading on the tensile stresses in tendons - Effect of tendon profile on deflections - Factors influencing deflections - Calculation of deflections - Short term and long term deflections -Losses of prestress – Estimation of crack width.

#### UNIT II

#### **Design of End Block**

Flexural strength – Simplified procedures as per codes – strain compability method – Basic concepts in selection of cross section for bending – stress distribution in end block- Design of anchorage zone reinforcement – Limit state design criteria – Partial prestressing- Applications.

#### **UNIT III**

#### **Circular Prestressing**

Design of prestressed concrete tanks – Poles and sleepers

#### **UNIT IV**

#### **Composite Construction**

Analysis for stresses - Estimate for deflections - Flexural and shear strength of composite members.

#### **UNIT V**

#### **Prestressed Concrete Bridges**

General aspects pretensioned prestressed bridge decks - Post tensioned prestressed bridge decks -Advantages over R.C.bridges - Principles of design only.

#### **Total No. of Period: 45**

## **Text Books:**

1. Krishna Raju N. "Prestressed concrete", Tata McGraw Hill Company, New Delhi 2007 **References:** 

1. MallieS.K.and Gupta A.P. "Prestressed concrete", Oxford and VB publishing Co. Pvt Ltd., 1987.

## 10

8

8

9

## BBA071 PROFESSIONAL ETHICS

#### **OBJECTIVES:**

To introduce the students to the concepts and principles of ethics of engineering

#### **Course Outcomes**

#### After successful completion of this course, the students should be able to

**CO1:** understand the ethical theories and concepts

CO2: understanding an engineer"s work in the context of its impact on society

CO3: understand and analyze the concepts of safety and risk

CO4: understand the professional responsibilities and rights of Engineers

CO5: understand the concepts of ethics in the global context

## **CO/PO Mapping**

#### $S-Strong,\,M-Medium,\,W-Weak$

| COa | Progr      | amme | Outco | mes (P | Os) |     |            |            |     |      |      |      |
|-----|------------|------|-------|--------|-----|-----|------------|------------|-----|------|------|------|
| COs | <b>PO1</b> | PO2  | PO3   | PO4    | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 |
| CO1 |            |      |       |        |     |     | М          | S          |     |      |      | М    |
| CO2 |            |      |       |        |     |     | М          | S          |     |      |      | М    |
| CO3 |            |      |       |        |     |     | М          | S          |     |      |      | М    |
| CO4 |            |      |       |        |     |     | М          | S          |     |      |      | М    |
| CO5 |            |      |       |        |     |     | М          | S          |     |      |      | М    |

#### **Course Assessment Methods:**

| Dir | ect                       | Indirect |                   |  |  |  |
|-----|---------------------------|----------|-------------------|--|--|--|
| 1   | Internal Tests            | 1        | Course and Survey |  |  |  |
| 2   | Assignments               | 2        | Faculty Survey    |  |  |  |
| 3   | Seminar                   | 3        | Industry          |  |  |  |
| 4   | Online test               | 4        | Alumni            |  |  |  |
| 5   | Quiz                      |          |                   |  |  |  |
| 5   | End Semester Examinations |          |                   |  |  |  |

#### UNIT I

#### **Engineering Ethics**

Senses of Engineering Ethics – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professional and Professionalism – Professional ideals and virtues – Theories about right action – Self – interest – Customs and religion – Use of Ethical Theories.

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### UNIT II

## **Engineering as Social Experimentation**

Engineering as experimentation – Engineers as responsible experiments – Codes of Ethics – A Balanced Outlook on law – The Challenger Case Study.

## UNIT III

## Engineer's Responsibility for Safety

Safety and risk – Assessment of safety and risk – Risk Benefit Analysis – Reducing risk – The Three Mile Island and Chemobyl Case Studies.

## UNIT IV

## **Responsibilities and Rights**

Collegiality and loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Discrimination.

## UNIT V

## **Global Issues**

Multinational Corporations - Environmental Ethics - Computer Ethics - Weapons Development

- Engineers as Managers - Consulting Engineers - Engineers as Expert Witnesses and Advisors

- Moral Leadership - Sample code of conduct.

## Total No. of Periods: 45

## **Text Books:**

1. Mike Martin and Roland Schinzinger, Ethics in Engineering McGraw Hill, New York 1983.

## **References:**

- 1. Charles Fleddeman D, "Engineering Ethics", Prentice Hall, New Mexico, 1999.
- 2. Laura Schlesinger, "How Could You Do That: The Abdication of Character, Courage, and Consciente", Harper Collins, New York, 1996.

9

9

9