Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2021

SET-X

SUBJECT: Life Sciences

12497

	Sr. No	·
Time: 11/4 Hours	Max. Marks: 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name	Date of Birth	
Father's Name	Mother's Name	
Date of Examination		
(Signature of the Candidate)	(Signature	e of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case will be considered.
- The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

- All the following may be methods for the inhibition of microbial growth by antibiotics except:
 - (1) Antibiotics disrupt cell wall synthesis.
 - (2) Antibiotics interfere with cell membrane function.
 - (3) Antibiotics prevent the release of energy from ATP.
 - (4) Antibiotics inhibit the synthesis of protein.
- 2. In which of the following would you place the plants having vascular tissue lacking seeds?
 - (1) Pteridophytes
 - (2) Gymnosperms
 - (3) Bryophytes
 - (4) Algae
- 3. Apomixis is a type of reproduction in plants in which?
 - (1) Fertilization does not take place.
 - (2) Male nucleus takes part in fertilization.
 - (3) Embryo formation does not take place.
 - (4) Generative nucleus takes part in fertilization.
- 4. From which of the following algae, agar is commercially extracted?
 - (A) Gracillaria
 - (B) Fucus
 - (C) Sargassum
 - (D) Gelidium
 - (E) Turbinaria
 - (1) C and E
 - (2) B and C
 - (3) D and E
 - (4) A and D

PTO

5.	In which	one	of	the	following	pairs	of	diseases	is	viral	as	well	as	transmitted	by
	mosquitoe														

- (1) Elephantiasis and dengue
- (2) Yellow fever and sleeping sickness
- (3) Encephalitis and sleeping sickness
- (4) Yellow fever and dengue
- 6. A free living nitrogen-fixing cyanobacterium which can also form symbiotic association with the water fern Azolla is:
 - (1) Tolypothrix

(2) Nostoc

(3) Chlorella

(4) Anabaena

7. Ionophores are:

- (1) the gating mechanisms associated with the transport of ions.
- (2) intrinsic proteins that passively transport ions.
- (3) chemicals that form pores in the plasma membrane and allow ions to cros.
- (4) intrinsic proteins that actively transport ions.
- 8. The trans Golgi network is:
 - (1) the intermediate compartment between the ER and the Golgi.
 - (2) the part of the Golgi where fusion of vesicles from the ER occurs.
 - (3) where sorting of proteins to the lysosomes, plasma membrane and cell exterior occurs.
 - (4) the network of vesicles that transport proteins between Golgi cisternae.
- 9. Most human cells are diploid with total DNA content of 2C. The DNA content increases to 4C before the onset of mitosis. At anaphase, the DNA content of each cluster will be:
 - (1) 4C
 - (2) 2C
 - (3) 1C
 - (4) 3C

- 10. Malignant cancer cells have all of the following properties except:
 - (1) unregulated cell division
 - (2) inhibition of angiogenesis
 - (3) resistance to apoptosis
 - (4) cellular immortality
- 11. Cytokines are produced by cells of the immune system in response to various physiological stimuli that:
 - (1) modulate cell function through subsequent cell differentiation or cell proliferation.
 - (2) facilitate cell lysis.
 - (3) cause glycosylation of immunoglobulins.
 - (4) cause histamine release.
- 12. In what way, if any, does the chromosomal determination of sex differ in Drosophila and humans?
 - (1) In humans, the Y-chromosome determines maleness, with female development being a default process, but in Drosophila, the presence of two X-chromosomes determines femaleness, and male development is the default process.
 - (2) In humans, the Y-chromosome determines maleness, but in Drosophila, the ratio of X-chromosomes to autosomes determines maleness or femaleness.
 - (3) In humans, it is the presence of only one X-chromosome that triggers male development and two X-chromosomes trigger female development, just as occurs in Drosophila.
 - (4) In human males, a single Y-chromosome is present in the absence of an X-chromosome, while in Drosophila, a single X-chromosome is present in the absence of a Y-chromosome.
- 13. How many generations are present in the seed of gymnosperm?

(1) 2

(2) 3

(3) 1

(4) 4

- (1) Sporophyte parasitic over gametophyte
- (2) Independent gametophyte
- (3) Absence of vascular tissues
- (4) Independent sporophyte
- 15. Stems and leaves of bryophytes are:
 - (1) Analogous to vascular plants
 - (2) Homologous to vascular plants
 - (3) Analogous to algae & fungal thallus
 - (4) None of these
- 16. The dominant photosynthetic phase in the life-cycle of pteridophyta is equivalent to the:
 - (1) Gametophytic phase of bryophyta
 - (2) Sporophytic phase of bryophyta
 - (3) Gametophytic phase of pteridophytes
 - (4) Gametophytic phase of gymnosperm
- 17. In Pteridophytes, reduction division occurs when:
 - (1) Prothallus is formed
 - (2) Sex organs are formed
 - (3) Spores are formed
 - (4) Gametes are formed
- 18. In which of the following gametophyte is not independent free living?
 - (1) Pinus
 - (2) Funaria
 - (3) Marchantia
 - (4) Pteris

- 19. Seasonal activity of vascular cambium is influenced by many factors, except:
 - (1) Geographical location of plant
 - (2) Relative humidity and temperature
 - (3) Photoperiod and water supply
 - (4) Leaf orientation
- 20. When secondary growth is initiated in dicot stem, what will happen first?
 - (1) The cells of cambium divide periclinally to form xylem mother cells
 - (2) Interfascicular cambium join with intrafascicular cambium
 - (3) Parenchymatous cells present between vascular bundles become meristematic
 - (4) Pith get obliterated
- 21. Select one of the following of important features distinguishing Gnetum from Cycas and Pinus and showing affinities with angiosperms:
 - (1) Embryo development and apical meristem
 - (2) Absence of resin duct and leaf venation
 - (3) Presence of vessel elements and absence of archegonia
 - (4) Perianth and two integuments
- 22. Which one of the following is heterosporous?
 - (1) Equisetum
 - (2) Dryopteris
 - (3) Salvinia
 - (4) Adiantum
- 23. A system of classification, in which a large number of traits are considered, is:
 - (1) Natural system
 - (2) Phylogenetic system
 - (3) Artificial system
 - (4) Synthetic system

24	. The book 'Genera plantarum' wa	s written by:
	(1) Engler & Prantl	(2) Bentham & Hooker
	(3) Bessey	(4) Hutchinson
25	. Phylogenetic classification is one	e which is based on :
	(1) Overall similarities	(2) Utilitarian system
	(3) Habits of plants	(4) Common evolutionary descent
26.	Endosperm of gymnosperm is or	togenetically similar to angiospermic:
	(1) Endosperm	(2) Embryo sac
	(3) Archegonium	(4) Megasporangia
27.	Flowering plants are more succes	ssful than other members of the plant world because
	(1) They are large and have a go	
	(2) They carry out variety of pol	
	(3) The protected plant embryo	can survive in the period of unfavourable conditions
	(4) All of these	
28.	A. Heterospory is found in all m	embers of pteropsida:
	B. Selaginella is advance among	pteridophytes as it produces seeds
		hic, pinnate compound and have sunken stomata
	D. Sporic meiosis is characteri Chlamydomonas and Ulothrix	stic of life cycle in many organisms like Volvo
	(1) All are incorrect	(2) Both B and C are correct
	(3) Only B is correct	(4) Only D is incorrect
29.	Which phytohormone is synthesis	ed in ripened fruits ?
	(1) ABA	(2) Auxin
	(3) Cytokinin	(4) Ethylene
PG-EF	E-2021/(Life Sciences)(SET-X)/(A) - CASTA (Capacina procedural Caracina

- 30. Which of the following is incorrect about ethylene?
 - (1) Promotes root hair formation
 - (2) It is natural and derivative of carotenoids
 - (3) It increases the number of female flowers
 - (4) It causes synchronisation of flowering and fruit set in pineapples
- 31. Select a correct match:
 - (1) GA, Early seed production in conifers
 - (2) Cytokinin Synchronise fruit set in pineapples
 - (3) Auxin Overcomes senescence
 - (4) Ethylene Seed maturation and development
- 32. Where is the respiratory electron transport system (ETS) located in plants?
 - (1) Intermembrane space
 - (2) Mitochondrial matrix
 - (3) Outer mitochondrial membrane
 - (4) Inner mitochondrial membrane
- 33. Respiratory Quotient (RQ) value of tripalmitin is:
 - (1) 0.9
 - (2) 0.7
 - (3) 0.07
 - (4) 0.09
- **34.** Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalyzed by :
 - (1) Aldolase
 - (2) Hexokinase
 - (3) Enolase
 - (4) Phosphofructokinase

35.	How many ATP molecules w molecule of glucose?	rill be produced in muscles by aerobic oxidation of on
	(1) 2	(2) 4
	(3) 36	(4) 34
36.	Plants, but not animals, can co	nvert fatty acids to sugars by a series of reactions called
	(1) Photosynt	
	(2) Krebs cycle	A A MANAGER OF THE PARTY OF THE
	(3) Glycolysis	
	(4) Glyoxylate cycle	
37.	Pasteurization is a process, w temperature and for how much	hich means heating of drinks. It is carried out, at what duration?
	(1) 70°C and 60 minutes	
	(2) 80°C and 30 minutes	
	(3) 120°C and 60 minutes	
*	(4) 60-70°C and 30 minutes	
38.	Lenticels are involved in:	
	(1) Gaseous exchange	(2) Food Transport
	(3) Photosynthesis	(4) Transpiration
39.	Guttation is the result of:	
	(1) Osmosis	(2) Root pressure
	(3) Diffusion	(4) Transpiration
40.	Photosynthetic Active Radiatio	on (PAR) has the following range of wavelengths:
	(1) 400-700 nm	
	(2) 450-950 nm	
	(3) 340-450 nm	
	(4) 500-600 nm	
PG-E	E-2021/(Life Sciences)(SET-X)	/(A)

	The C 4 plants are ph	atasynthetically mo	re efficient	than C3	plants	because	
41.	The C 4 plants are pri	otosynthetically me	19.11				

- (1) They have more chloroplasts
- (2) The CO₂ compensation point is more
- (3) CO₂ generated during photorespiration is trapped and recycled through PEP carboxylase
- (4) The CO₂ efflux is not prevented
- 42. The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by:
 - (1) T.H. Morgan
 - (2) Gregor J. Mendel
 - (3) Alfred Sturtevant
 - (4) Sutton Boveri
- 43. What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?
 - (1) Turner's syndrome
- (2) Klinefelter's syndrome
- (3) Edward syndrome

- (4) Down's syndrome
- 44. A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by:
 - (1) Only daughters

- (2) Only sons
- (3) Both sons and daughters
- (4) Only grandchildren
- 45. Which one of the following discoveries resulted in a Nobel Prize?
 - (1) X-rays induce sex-linked recessive lethal mutations
 - (2) Cytoplasmic inheritance
 - (3) Recombination of linked genes
 - (4) Genetic engineering

(4) Genetic engineering

10		
46.	Normally DNA molecule has A- alternative valency status owing to	T, G-C pairing. However, these bases can exist in rearrangements called:
	(1) Frame-shift mutation	(2) Tautomerisational mutation
71	(3) Analog substitution	(4) Point mutation
47.	The most striking example of poin	t mutation is found in a disease called:
	(1) Down's syndrome	(2) Sickle cell anaemia
	(3) Edward syndrome	(4) Night blindness
48.	When two genetic loci produce id considered to be:	entical phenotypes in cis and trans position, they are
	(1) Multiple alleles	
	(2) The parts of same gene	
	(3) Pseudoalleles	
	(4) Different genes	
49.	What map unit (Centimorgan) is ac	dopted in the construction of genetic maps?
		expressed genes representing 10% cross over
		expressed genes representing 100% cross over
		es an chromosomes, representing 1 % cross over
		es on chromosomes, representing 50% cross over
50.	Expressed Sequence Tags (ESTS)	refers to :
	(1) Genes expressed as RNA	(2) Polypeptide expression
*	(3) DNA polymorphism	(4) Novel DNA sequences
51.	In history of biology, human genon	ne project led to the development of:
	(1) Bioinformatics	
	(2) Eugeneics	
	(3) Biotechnology	to the state of th

52.	If there are 999 bases in an RNA that codes for a protein with 333 amino acids and the
	base at position 901 is deleted such that the length of the KNA becomes
	how many codons will bealtered?
	(4) 11

(1) 1

(2) 11

(3) 33

(4) 333

53. The final proof for DNA as the genetic material came from the experiments of:

- (1) Griffith
- (2) Hershey and Chase
- (3) Avery, Mcleod and McCarty
- (4) Hargobind Khurana

54. Which one of the following is not a gaseous biogeochemical cycle in ecosystem?

(1) Nitrogen cycle

(2) Carbon cycle

(3) Sulphur cycle

(4) Phosphorus cycle

55. Which of the following ecological pyramids is generally inverted?

- (1) Pyramid of numbers in grassland
- (2) Pyramid of energy
- (3) Pyramid of biomass in a forest
- (4) Pyramid of biomass in a sea

56. What type of ecological pyramid would be obtained with the following data?

Secondary consumer: 120 g

Primary consumer: 60g

Primary producer: 10 g

- (1) Inverted pyramid of biomass
- (2) Pyramid of energy
- (3) Upright pyramid of biomass
- (4) Upright pyramid of numbers

PG-EE-2021/(Life Sciences)(SET-X)/(A)

PTO

57	. Which ecosystem has the maxim	ium biomass ?
=4	(1) Forest ecosystem	(2) Grassland ecosystem
	(3) Pond ecosystem	(4) Lake ecosystem
58.	Limit of BOD prescribed by Condustrial and municipal waste w	Central Pollution Control Board for the discharge ater into natural surface water, is:
	(1) < 3.0 ppm	(2) < 10 ppm
	(3) < 100 ppm	(4) < 30 ppm
59.	More than 70% of world's freshw	vater is contained in :
	(1) Antarctica	
	(2) Glaciers and Mountains	
	(3) Greenland	
	(4) Polar ice	
60.	The process by which organism phenotypic adaptations in respons	s with different evolutionary history evolve similars to a common environmental challenge, is called:
	(1) Convergent evolution	
	(2) Non-random evolution	
	(3) Adaptive radiation	
	(4) Natural selection	
61.	The tendency of population to ren	nain in genetic equilibrium may be disturbed by:
	(1) Lack of migration	(2) Lack of mutations
	(3) Lack of random mating	(4) Random mating
62.	The two antibiotic resistance gene	s on vector pBR322 are for:
	(1) Tetracycline and Kanamycin	
	(2) Ampicillin and Tetracycline	THE REAL PROPERTY OF THE PARTY
	(3) Ampicillin and Chloramphenio	col

(4) Chloramphenicol and Tetracycline

- 63. Which one of the following equipments is essentially required for growing microbes on a large scale, for industrial production of enzymes?
 - (1) BOD incubator

(2) Sludge digester

(3) Industrial oven

- (4) Bioreactor
- 64. DNA precipitation out of a mixture of biomolecules can be achieved by treatment with:
 - (1) Isopropanol
 - (2) Chilled ethanol
 - (3) Methanol at room temperature
 - (4) Chilled chloroform
- 65. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement.
 - (1) The enzyme cuts DNA molecule at identified position within the DNA.
 - (2) The enzyme binds DNA at specific sites and cuts only one of the two strands.
 - (3) The enzyme cuts the sugar-phosphate backbone at specific sites on each strand.
 - (4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA.
- 66. The correct order of steps in Polymerase Chain Reaction (PCR) is:
 - (1) Extension, Denaturation, Annealing
 - (2) Annealing, Extension, Denaturation
 - (3) Denaturation, Annealing, Extension
 - (4) Denaturation, Extension, Annealing
- 67. Enzyme used in ELISA test is:
 - (1) Endonuclease
 - (2) Ligase
 - (3) Peroxidase
 - (4) Polymerase

PG-EE-2021/(Life Sciences)(SET-X)/(A)

The many and and the later with the contract of the contract o

14			A
68.	8. What will be the pCO ₂ and pO ₂ in atmos	spheric air as compared to alveoli respectively '	?
	(1) Low and high	(2) High and low	
	(3) High and high	(4) Low and low	
69.	9. In ureotelic animals, urea is formed by :		
	(1) Kreb's cycle		
	(2) EM pathway		
	(3) Ornithine cycle		
	(4) Cori's cycle		
70.	O. Which one of the following mammalian carbon-dioxide aerobically?	n cells is not capable of metabolising glucose t	o
	(1) Red blood cells		
	(2) White blood cells		
	(3) Unstriated muscle cells		
	(4) Liver cells		
71.	1. All enzymes are proteins except:	The second secon	
	(1) Trypsin		
	(2) Pepsin		
	(3) Steapsin		
	(4) Ribozyme and Ribonuclease-P		
72.	72. Which of the following is the best evaction?	vidence for the lock and key theory of enzym	ne
	(1) All isolated enzymes have been ide	entified as protein	
	(2) Compounds similar in structure to	the substrate inhibit the reaction	
	(3) Enzymes are found in living organ	sms and speed up certain reaction	
	(4) Enzymes determine the direction o	f a reaction	7

- 73. Co-enzyme is:
 - (1) Always a protein
 - (2) Often a metal
 - (3) Always an inorganic compound
 - (4) Often a vitamin
- 74. A person is eating boiled potato. His food contains:
 - (1) Cellulose, which can be digested by cellulase
 - (2) Starch, which cannot be digested
 - (3) Lactose, which cannot be digested
 - (4) DNA, which can be digested by pancreatic DNAase
- 75. Which of the following is a reducing sugar?
 - (1) Galactose
 - (2) Gluconic acid
 - (3) B-methyl galactoside
 - (4) Sucrose
- 76. Which of the following hormones is not secreted by duodenum to inhibit the gastric motility?
 - (1) GIP
 - (2) Enterogastrone
 - (3) Secretin
 - (4) Enterokinase
- 77. In case of vertebrates, lacteals are found in:
 - (1) Oesophagus
 - (2) Ear
 - (3) Small intestine
 - (4) Ischium

PTO

A
16
78. The movement of ions against the concentration gradient will be:
(1) Active transport
(2) Osmosis
(3) Diffusion
(4) All of these
79. Vomiting centre is located in the:
(1) Medulla oblongata
(2) Stomach and sometimes in duodenum
(3) GI tract
(4) Hypothalamus
(4) Hypothalamus 80. Which one of the following vitamins can be synthesised by bacteria inside the gut?
(1) D
(3) B ₁
81. Which one of the following is a protein deficiency disease?
(1) Kwashiorkor
(2) Night blindness
(3) Eczema
(4) Cirrhosis
82. Which of the following statement is incorrect wrt inbreeding?
1-mozygosity
aono inal all Cillima
(3) Inbreeding helps in accumulation of deleterious ancres
alleles (4) Inbreeding helps in developing a pure-line animal
(4) Inbreeding helps in developing and PG-EE-2021/(Life Sciences)(SET-X)/(A)
PG-EE-2021/(Elic 553

- 83. What is correct to say about the hormone action in humans?
 - (1) In females, FSH first binds with specific receptors on ovarian cell membrane
 - (2) FSH stimulates the secretion of estrogen and progesterone
 - (3) Glucagon is secreted by B-cells of Islets of langerhans and stimulates glycogenolysis
 - (4) Secretion of thymosins is stimulated with aging
- 84. Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum:
 - (1) Protozoa
 - (2) Coelenterata
 - (3) Porifera
 - (4) Mollusca
- 85. Which of the following characteristics is mainly responsible for diversification of insects on land?
 - (1) Eyes
 - (2) Segmentation
 - (3) Bilateral symmetry
 - (4) Exoskeleton
- 86. Which of the following endoparasites of humans does show viviparity?
 - (1) Ascaris lumbricoides
- (2) Ancylostoma duodenale
- (3) Enterobius vermicularis
- (4) Trichinella spiralis
- 87. Select the Taxon mentioned which represents both marine and fresh water species.
 - (1) Echinoderms
 - (2) Ctenophora
 - (3) Cephalochordata
 - (4) Cnidaria

- 88. Which one of the following living organisms completely lacks a cell wall?
 - (1) Cyanobacteria
 - (2) Sea-fan(Gorgonia)
 - (3) Saccharomyces
 - (4) Blue-green algae
- 89. Biological organisation starts with:
 - (1) Cellular level
 - (2) Organismic level
 - (3) Atomic level
 - (4) Submicroscopic molecular level
- 90. Peripatus is a connecting link between:
 - (1) Coelenterata and Porifera
 - (2) Ctenophora and Platyhelminthis
 - (3) Mollusca and Echinodermata
 - (4) Annelida and Arthropoda
- 91. Which one of the following organisms is scientifically correctly named, correctly Printed according to the International Rules of Nomenclature and correctly described?
 - (1) E.coli Full name Entamoeba coli, a commonly occuring bacterium in human intestine
 - (2) Musca domestica The common house lizard, a reptile
 - (3) Plasmodium falciparum A protozoan pathogen causing the most serious type of malaria
 - (4) Felis tigris The Indian tiger, well protected in Gir forests
 - 92. What is true for mammalia?
 - (1) Platypus is oviparous
- (2) Bats have feathers
- (3) Elephant is ovoviviparous
- (4) Diaphragm is absent in them

- 93. Which of the following character is present in all chordates?
 - (1) Diaphragm
 - (2) Vertebral column
 - (3) Pharyngeal gill clefts
 - (4) Dorsal solid nerve cord
- 94. In which of the following animal post anal tail is found?
 - (1) Earthworm
 - (2) Lower invertebrate
 - (3) Scorpion
 - (4) Snake
- 95. In which of the following notochord is present in embryonic stage?
 - (1) All chordate
 - (2) Some chordates
 - (3) Vertebrates
 - (4) Non chordates
- 96. Given below are four matches of an animal and its kind of respiratory organ:
 - A. Silver fish Trachea
 - B. Scorpion Book lung
 - C. Sea squirt Pharyngeal gills
 - D. Dolphin Skin

The correct matches are

- (1) A and B
- (2) A, B and C
- (3) B and D
- (4) C and D

PG-EE-2021/(Life Sciences)(SET-X)/(A)

- 97. Which one of the following phyla is correctly matched with its two general characteristics?
 - (1) Mollusca Normally oviparous and development through a trochophore or veliger larva
 - (2) Arthropoda Body divided into head, thorax and abdomen and respiration by tracheae
 - (3) Chordata Notochord at some stage and separate anal and urinary openings to the outside
 - (4) Echinodermata Pentamerous radial symmetry and mostly internal fertilization
 - 98. Which of the following are referred as non-vertebrate chordates?
 - (1) Ciona, Ascidia, Amphioxus
 - (2) Lamprey, Myxine, Shark
 - (3) Scoliodon, Torpedo, Trygon
 - (4) Pristis, Branchiostoma, Scyllium doutorostomes?
 - 99. Lateral line sense organs are absent in:
 - (1) Tadpole larva of frog
 - (2) Bony fishes
 - (3) Reptiles
 - (4) Cartilaginous fishes
 - 100. The termination of gastrulation is indicated by:
 - (1) closure of neural tube
 - (2) closure of blastopore
 - (3) obliteration of archenteron
 - (4) obliteration of blastocoel

10:00 a Question No		-	Subjects of	Lite Science
1	3	В	С	D
2	1	1	1	4
3	1	2	3	2
4	4	2	2	4
5	4	4	3	4
6	4	1	1	1
7	3	1	2	4
8	3	3	2	3
9	2	1	3	1
10	2	4	3	1
11	1	3	1	3
12	2	3	3	1
13	2	1	3	3
14	4	3	1	2
15	1	4	2	4
16	1	1	4	4
17	3	2	2	1
18	1	1	4	1
19	4	1	1	4
20	3	3	4	4
21	3	4	2	1
22	3	4	3	1
23	1	2	1	4
24	2	4	1	2
25	4	4	4	2
26	2	1 4	4	3
27	4	1 3	4	4
28	1	1 .	3	4
29	4	1	3	1
30	2	3	2	2
31	1	1	3	1
32	4	3		1
33	2	2	3	2
34	2	4	4	2
35	3	4	1	4
36	4	1	2	1
37	4	1	1	1
38	1	4	1	3
39	2	4	3	4
40	1	1	4	3
41	1	1	3	3
42	3	4	2	1
43	2	2	4	3
44	3	2	2	4
45	1	3	2	1
46	2	4	3	2
47	2	4	3	1
48	3	1	1	1
49	3	2	3	3
50	1	1	1	4

Wey Page 1 of 2

Alyadus 2 | Collegedunia 5 | India's largest Student Review Platform

10:00 am		Su	bjects of Life	Sciences
Question No.	A	В	C	D
51	1	3	1	3
52	3	3	4	2
53	2	1	2	4
54	4	2	2	2
55	4	4	3	2
56	1	2	4	3
57	1	4	4	3
58	4	1	1	1
59	4	4	2	3
60	1	2	1	1
61	3	1	4	1
62	2	3	2	3
63	4	2	4	1
64	2	3	4	3
65	2	1	1	4
66	3	2	4	4
67	3	2	3	4
68	1	3	1	2
69	3	3	1	4
70	1	1	3	4
71	4	3	1	1
72	2	2	3	3
73	4	4	1	2
74	4	2	3	3
75	1	2	4	1
76	4	3	4	2
77	3	, 3	4	2
78	1	1	2	
79	1	3	4	3
80	3	1	4	1
81	1	3	1	3
82	3	1	2	3
83	1	1	2	1
84	3	4	4	2
85	4	4	1	4
86	4	4	1	2
87	4	3	3	4
88	2	3	1	1
89	4	2	4	4
90	4	2	3	2
91	3	1	1	3
92	1	3	3	1
93	3	1	2	1
94	4	3	4	4
95	1	4	4	4
96	2	4		4
97	1	4	1	3
		2	-	3
98	1		4	
99 100	3 4	4	1	2

2/109/34 wint page 2 of 2

(Syadan 2)

collegedunia

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

В

PG-EE-2021

SET-X

SUBJECT: Life Sciences

12494

							Sr. N	o	
Time : 11/4 Hours		100			rks : 100	6 "	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Total Que	estions : 100
Roll No. (in figures)				_(in word	is)				
Name	9		1			Date	of Birth		
Father's Name				* *	Mother's N	lame		36.	
Date of Examination_			-	<u> </u>				(40 gr	
								*	
(Signature of the C	andidat	e)		· .:			(Signatu	ire of the In	vigilator)
CANDIDATES MU	ST RE	AD TH	E FO	LLOWI	NG INFOF	MATIO	N/INSTR	UCTIONS	BEFORE

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case will be considered.
- The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2021/(Life Sciences)(SET-X)/(B)

S. I.V.

- 1. Cytokines are produced by cells of the immune system in response to various physiological stimuli that:
 - (1) modulate cell function through subsequent cell differentiation or cell proliferation.
 - (2) facilitate cell lysis.
 - (3) cause glycosylation of immunoglobulins.
 - (4) cause histamine release.
- 2. In what way, if any, does the chromosomal determination of sex differ in Drosophila and humans?
 - (1) In humans, the Y-chromosome determines maleness, with female development being a default process, but in Drosophila, the presence of two X-chromosomes determines femaleness, and male development is the default process.
 - (2) In humans, the Y-chromosome determines maleness, but in Drosophila, the ratio of X-chromosomes to autosomes determines maleness or femaleness.
 - (3) In humans, it is the presence of only one X-chromosome that triggers male development and two X-chromosomes trigger female development, just as occurs in Drosophila.
 - (4) In human males, a single Y-chromosome is present in the absence of an X-chromosome, while in Drosophila, a single X-chromosome is present in the absence of a Y-chromosome.
 - 3. How many generations are present in the seed of gymnosperm?
 - (1) 2

(2) 3

(3) 1

(4) 4

- 4. Bryophytes are not characterised by:
 - (1) Sporophyte parasitic over gametophyte
 - (2) Independent gametophyte
 - (3) Absence of vascular tissues
 - (4) Independent sporophyte

- 5. Stems and leaves of bryophytes are:
 - (1) Analogous to vascular plants
 - (2) Homologous to vascular plants
 - (3) Analogous to algae & fungal thallus
 - (4) None of these
- 6. The dominant photosynthetic phase in the life-cycle of pteridophyta is equivalent to the:
 - (1) Gametophytic phase of bryophyta
 - (2) Sporophytic phase of bryophyta
 - (3) Gametophytic phase of pteridophytes
 - (4) Gametophytic phase of gymnosperm
- 7. In Pteridophytes, reduction division occurs when:
 - (1) Prothallus is formed
 - (2) Sex organs are formed
 - (3) Spores are formed
 - (4) Gametes are formed
- 8. In which of the following gametophyte is not independent free living?
 - (1) Pinus
 - (2) Funaria
 - (3) Marchantia
 - (4) Pteris
- 9. Seasonal activity of vascular cambium is influenced by many factors, except :
 - (1) Geographical location of plant
 - (2) Relative humidity and temperature
 - (3) Photoperiod and water supply
 - (4) Leaf orientation

- 10. When secondary growth is initiated in dicot stem, what will happen first?
 - (1) The cells of cambium divide periclinally to form xylem mother cells
 - (2) Interfascicular cambium join with intrafascicular cambium
 - (3) Parenchymatous cells present between vascular bundles become meristematic
 - (4) Pith get obliterated
- 11. Which one of the following organisms is scientifically correctly named, correctly Printed according to the International Rules of Nomenclature and correctly described?
 - (1) E.coli Full name Entamoeba coli, a commonly occuring bacterium in human intestine
 - (2) Musca domestica The common house lizard, a reptile
 - (3) Plasmodium falciparum A protozoan pathogen causing the most serious type of malaria
 - (4) Felis tigris The Indian tiger, well protected in Gir forests
- 12. What is true for mammalia?
 - (1) Platypus is oviparous
- (2) Bats have feathers
- (3) Elephant is ovoviviparous
- (4) Diaphragm is absent in them
- 13. Which of the following character is present in all chordates?
 - (1) Diaphragm
 - (2) Vertebral column
 - (3) Pharyngeal gill clefts
 - (4) Dorsal solid nerve cord
- 14. In which of the following animal post anal tail is found?
 - (1) Earthworm
 - (2) Lower invertebrate
 - (3) Scorpion
 - (4) Snake

- 15. In which of the following notochord is present in embryonic stage?
 - (1) All chordate
 - (2) Some chordates
 - (3) Vertebrates
 - (4) Non chordates
- 16. Given below are four matches of an animal and its kind of respiratory organ:
 - A. Silver fish Trachea
 - B. Scorpion Book lung
 - C. Sea squirt Pharyngeal gills
 - D. Dolphin Skin

The correct matches are

- (1) A and B
- (2) A, B and C
- (3) B and D
- (4) C and D
- 17. Which one of the following phyla is correctly matched with its two general characteristics?
 - (1) Mollusca Normally oviparous and development through a trochophore or veliger larva
 - (2) Arthropoda Body divided into head, thorax and abdomen and respiration by tracheae
 - (3) Chordata Notochord at some stage and separate anal and urinary openings to the outside
 - (4) Echinodermata Pentamerous radial symmetry and mostly internal fertilization

18.	Which of the following are referred as non-vertebrate chordates?
	(1) Ciona, Ascidia, Amphioxus
	(2) Lamprey, Myxine, Shark
	(3) Scoliodon, Torpedo, Trygon
	(4) Pristis, Branchiostoma, Scyllium doutorostomes?
19.	Lateral line sense organs are absent in :
	(1) Tadpole larva of frog
	(2) Bony fishes
	(3) Reptiles
	(4) Cartilaginous fishes
20.	The termination of gastrulation is indicated by:
	(1) closure of neural tube (2) closure of blastopore
	(3) obliteration of archenteron (4) obliteration of blastocoel
21.	All enzymes are proteins except:
	(1) Trypsin
	(2) Pepsin
	(3) Steapsin
· ·	(4) Ribozyme and Ribonuclease-P
22.	Which of the following is the best evidence for the lock and key theory of enzyme action?
	(1) All isolated enzymes have been identified as protein
	(2) Compounds similar in structure to the substrate inhibit the reaction

(3) Enzymes are found in living organisms and speed up certain reaction

(4) Enzymes determine the direction of a reaction

- 23. Co-enzyme is:
 - (1) Always a protein
 - (2) Often a metal
 - (3) Always an inorganic compound
 - (4) Often a vitamin
- 24. A person is eating boiled potato. His food contains:
 - (1) Cellulose, which can be digested by cellulase
 - (2) Starch, which cannot be digested
 - (3) Lactose, which cannot be digested
 - (4) DNA, which can be digested by pancreatic DNAase
- 25. Which of the following is a reducing sugar?
 - (1) Galactose
 - (2) Gluconic acid
 - (3) B-methyl galactoside
 - (4) Sucrose
- 26. Which of the following hormones is not secreted by duodenum to inhibit the gastric motility?
 - (1) GIP
 - (2) Enterogastrone
 - (3) Secretin
 - (4) Enterokinase
- 27. In case of vertebrates, lacteals are found in:
 - (1) Oesophagus
 - (2) Ear
 - (3) Small intestine
 - (4) Ischium

(1) Active transport

	(2) Osmosis		
	(3) Diffusion		
	(4) All of these		
29.	Vomiting centre is located in the:		
	(1) Medulla oblongata		
	(2) Stomach and sometimes in duoden	um	
	(3) GI tract	X)	
	(4) Hypothalamus		
30.	Which one of the following vitamins ca	an be synthesised by bacteria inside t	he gut?
	(1) D	(2) A	
	(3) B ₁	(4) C	
31.	In history of biology, human genome p	project led to the development of:	
	(1) Bioinformatics		
	(2) Eugeneics		
	(3) Biotechnology		
	(4) Genetic engineering		
32.	If there are 999 bases in an RNA that base at position 901 is deleted such thow many codons will bealtered?		
	(1) 1	(2) 11	
	(3) 33	(4) 333	
PG-EI	E-2021/(Life Sciences)(SET-X)/(B)		P. T. O.

The movement of ions against the concentration gradient will be:

8		
	λ	a the experiments of
33.	The final proof for DNA as the genetic	material came from the experiments of
	(1) Griffith	•
	(2) Hershey and Chase	
	(3) Avery, Mcleod and McCarty	
	(4) Hargobind Khurana	
34.	Which one of the following is not a gas	seous biogeochemical cycle in ecosyster
2	(1) Nitrogen cycle	(2) Carbon cycle
2 1	(3) Sulphur cycle	(4) Phosphorus cycle
35.	Which of the following ecological pyra	amids is generally inverted?
	(1) Pyramid of numbers in grassland	
	(2) Pyramid of energy	
	(3) Pyramid of biomass in a forest	
	(4) Pyramid of biomass in a sea	•
36.	What type of ecological pyramid would	d be obtained with the following data?
	Secondary consumer: 120 g	
	Primary consumer: 60g	
	Primary producer: 10 g	5 5 8
	(1) Inverted pyramid of biomass	
	(2) Pyramid of energy	
	(3) Upright pyramid of biomass	92
	(4) Upright pyramid of numbers	
37	Which ecosystem has the maximum bi	omass?
	(1) Forest ecosystem	(2) Grassland ecosystem
	(3) Pond ecosystem	(4) Lake ecosystem

38.	Limit of BOD prescribed by Central Pollution Control Board for the discharge of
	industrial and municipal waste water into natural surface water, is:

(1) < 3.0 ppm

(2) < 10 ppm

(3) < 100 ppm

(4) < 30 ppm

39. More than 70% of world's freshwater is contained in:

- (1) Antarctica
- (2) Glaciers and Mountains
- (3) Greenland
- (4) Polar ice

40. The process by which organisms with different evolutionary history evolve similar phenotypic adaptations in response to a common environmental challenge, is called:

- (1) Convergent evolution
- (2) Non-random evolution
- (3) Adaptive radiation
- (4) Natural selection

41. Select a correct match:

- (1) GA, Early seed production in conifers
- (2) Cytokinin Synchronise fruit set in pineapples
- (3) Auxin Overcomes senescence
- (4) Ethylene Seed maturation and development

42. Where is the respiratory electron transport system (ETS) located in plants?

- (1) Intermembrane space
- (2) Mitochondrial matrix
- (3) Outer mitochondrial membrane
- (4) Inner mitochondrial membrane

collegedunia

India's largest Student Review Platform

43. Respiratory Quotient (RQ) value of tripalmitin is:

	(1) 0.9				
	(2) 0.7				
	(3) 0.07	17 in 15		9	
	(4) 0.09				t:an
44.	Conversion of glucose to gluglycolysis, is catalyzed by:	icose-6-phosphate,	the first	irreversible	reaction of
	(1) Aldolase				
	(2) Hexokinase		¥		
	(3) Enolase	*			
	(4) Phosphofructokinase	2 2			V
		he meduced in m	nuccles by	aerobic oxic	lation of one
45.	How many ATP molecules will molecule of glucose?	be produced in ii	luscies by	acrosic one	
*	(1) 2	(2) 4	*		140
11 15	(3) 36	(4) 34	= 8		1.0
46.	Plants, but not animals, can conv	ert fatty acids to su	igars by a	series of reac	tions called:
	(1) Photosynt	,			
	(2) Krebs cycle				<i>w</i>
	(3) Glycolysis				***
	(4) Glyoxylate cycle				
47.	Pasteurization is a process, whitemperature and for how much d		of drinks.	It is carried	out, at wha
	(1) 70°C and 60 minutes				200
	(2) 80°C and 30 minutes'				
	(3) 120°C and 60 minutes				
				e pe	2 2
	(4) 60-70°C and 30 minutes		*,		
CE	-2021/(Life Sciences)(SET-X)/(B)			

48.	Lenticels are involved in:		*
	(1) Gaseous exchange	(2) Food Transport	10 100
	(3) Photosynthesis	(4) Transpiration	
49.	Guttation is the result of:		
	(1) Osmosis	(2) Root pressure	
	(3) Diffusion	(4) Transpiration	gall a
50.	Photosynthetic Active Radiation (PAR)	has the following range of waveleng	gths :
	(1) 400-700 nm		
	(2) 450-950 nm	4 29 29 28	
	(3) 340-450 nm		
EI	(4) 500-600 nm		
51.	Select one of the following of importa and Pinus and showing affinities with a		from Cycas
	(1) Embryo development and apical me	eristem	
	(2) Absence of resin duct and leaf vena	ation	
	(3) Presence of vessel elements and ab	sence of archegonia	
	(4) Perianth and two integuments		
52.	Which one of the following is heterosp	orous ?	9 (e)
	(1) Equisetum		
	(2) Dryopteris		
	(3) Salvinia		
	(4) Adiantum		
53	. A system of classification, in which a l	arge number of traits are considered,	is:
	(1) Natural system		

(2) Phylogenetic system

(3) Artificial system

54.	The book 'Genera plantarum' was writt	en by :
	(1) Engler & Prantl	(2) Bentham & Hooker
	(3) Bessey	(4) Hutchinson
55.	Phylogenetic classification is one which	h is based on :
	(1) Overall similarities	(2) Utilitarian system
	(3) Habits of plants	(4) Common evolutionary descent
56.	Endosperm of gymnosperm is ontogen	etically similar to angiospermic :
	(1) Endosperm	(2) Embryo sac
	(3) Archegonium	(4) Megasporangia
57.	Flowering plants are more successful the	han other members of the plant world because:
	(1) They are large and have a good vas	scular tissue system
100	(2) They carry out variety of pollination	
S.	(3) The protected plant embryo can su	rvive in the period of unfavourable conditions
	(4) All of these	reside of diffavourable conditions
58.	A. Heterospory is found in all membe	rs of nteronside .
	B. Selaginella is advance among pteri	
	C. Pinus leaves are monomorphic, padaptation against transpiration	pinnate compound and have sunken stomata as
		of life cycle in many organisms like Volvox,
	(1) All are incorrect	(2) Both B and C are correct
	(3) Only B is correct	(4) Only D is incorrect
59.	Which phytohormone is synthesised in	
	(1) ABA	(2) Auxin
,	(3) Cytokinin	(4) Ethylene
PG-E	E-2021/(Life Sciences)(SET-X)/(B)	

60.	Which of the following is incorrect about ethylene?
	(1) Promotes root hair formation

- (2) It is natural and derivative of carotenoids
- (3) It increases the number of female flowers
- (4) It causes synchronisation of flowering and fruit set in pineapples
- 61. The C 4 plants are photosynthetically more efficient than C 3 plants because :
 - (1) They have more chloroplasts
 - (2) The CO₂ compensation point is more
 - (3) CO₂ generated during photorespiration is trapped and recycled through PEP carboxylase
 - (4) The CO₂ efflux is not prevented
- **62.** The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by :
 - (1) T.H. Morgan
 - (2) Gregor J. Mendel
 - (3) Alfred Sturtevant
 - (4) Sutton Boveri
- **63.** What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?
 - (1) Turner's syndrome

(2) Klinefelter's syndrome

(3) Edward syndrome

- (4) Down's syndrome
- **64.** A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by :
 - (1) Only daughters

- (2) Only sons
- (3) Both sons and daughters
- (4) Only grandchildren

collegedunia

65.	Which one of the following discoverie	s resulted in a Nobel Prize ?
	(1) X-rays induce sex-linked recessive	e lethal mutations
	(2) Cytoplasmic inheritance	
	(3) Recombination of linked genes	
	(4) Genetic engineering	
66.	Normally DNA molecule has A-T, alternative valency status owing to rea	G-C pairing. However, these bases can exist in arrangements called:
(4)	(1) Frame-shift mutation	(2) Tautomerisational mutation
	(3) Analog substitution	(4) Point mutation
67.	The most striking example of point m	autation is found in a disease called:
	(1) Down's syndrome	(2) Sickle cell anaemia
	(3) Edward syndrome	(4) Night blindness
68. When two genetic loci produce identical phenotypes in cis and trans posi considered to be:		tical phenotypes in cis and trans position, they are
	(1) Multiple alleles	
	(2) The parts of same gene	
	(3) Pseudoalleles	
	(4) Different genes	
69	. What map unit (Centimorgan) is add	opted in the construction of genetic maps?
		expressed genes representing 10% cross over
		expressed genes representing 100% cross over
	(3) A unit of distance between gene	es an chromosomes, representing 1 % cross over
	(4) A unit of distance between gene	es on chromosomes, representing 50% cross over
70). Expressed Sequence Tags (ESTS) r	efers to:
	(1) Genes expressed as RNA	(2) Polypeptide expression
	(3) DNA polymorphism	(4) Novel DNA sequences
	EF 2021/(Life Sciences)(SET-X)/(B)	

71.	The tendency of population to remain in genetic equilibrium may be disturbed by :		
	(1) Lack of migration	(2) Lack of mutations	
	(3) Lack of random mating	(4) Random mating	
72.	The two antibiotic resistance genes on v	ector pBR322 are for:	
	(1) Tetracycline and Kanamycin		
	(2) Ampicillin and Tetracycline		
	(3) Ampicillin and Chloramphenicol	es es	
	(4) Chloramphenicol and Tetracycline		
73.	Which one of the following equipments a large scale, for industrial production of	is essentially required for growing microbes on enzymes?	
	(1) BOD incubator	(2) Sludge digester	
	(3) Industrial oven	(4) Bioreactor	
74.	DNA precipitation out of a mixture of with:	f biomolecules can be achieved by treatment	
	(1) Isopropanol		
	(2) Chilled ethanol		
	(3) Methanol at room temperature		
	(4) Chilled chloroform		
75.	Following statements describe the Endonuclease. Identify the incorrect state	characteristics of the enzyme Restriction	
	(1) The enzyme cuts DNA molecule at ic	dentified position within the DNA.	
	(2) The enzyme binds DNA at specific s	ites and cuts only one of the two strands.	
	(3) The enzyme cuts the sugar-phosphate	e backbone at specific sites on each strand.	

(4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA.

PG-EE-2021/(Life Sciences)(SET-X)/(B)

P. T. O.

collegedunia

	(1) Extension, Denaturation, Annealing	
	(2) Annealing, Extension, Denaturation	
	(3) Denaturation, Annealing, Extension	
	(4) Denaturation, Extension, Annealing	
77.	Enzyme used in ELISA test is:	
	(1) Endonuclease	
5	(2) Ligase	
Tip Control	(3) Peroxidase	
	(4) Polymerase	
78.	What will be the pCO ₂ and pO ₂ in atmo	spheric air as compared to alveoli respectively?
	(1) Low and high	(2) High and low
	(3) High and high	(4) Low and low
79.	In ureotelic animals, urea is formed by :	
	(1) Kreb's cycle	
	(2) EM pathway	
	(3) Ornithine cycle	
	(4) Cori's cycle	
80.	Which one of the following mammalian carbon-dioxide aerobically?	cells is not capable of metabolising glucose to
	(1) Red blood cells	
	(2) White blood cells	
	(3) Unstriated muscle cells	
	(4) Liver cells	
PG-EI	E-2021/(Life Sciences)(SET-X)/(B)	
X X		

76. The correct order of steps in Polymerase Chain Reaction (PCR) is:

- 81. All the following may be methods for the inhibition of microbial growth by antibiotics except:
 - (1) Antibiotics disrupt cell wall synthesis.
 - (2) Antibiotics interfere with cell membrane function.
 - (3) Antibiotics prevent the release of energy from ATP.
 - (4) Antibiotics inhibit the synthesis of protein.
- 82. In which of the following would you place the plants having vascular tissue lacking seeds?
 - (1) Pteridophytes
 - (2) Gymnosperms
 - (3) Bryophytes
 - (4) Algae
- 83. Apomixis is a type of reproduction in plants in which?
 - (1) Fertilization does not take place.
 - (2) Male nucleus takes part in fertilization.
 - (3) Embryo formation does not take place.
 - (4) Generative nucleus takes part in fertilization.
- 84. From which of the following algae, agar is commercially extracted?
 - (A) Gracillaria
 - (B) Fucus
 - (C) Sargassum
 - (D) Gelidium
 - (E) Turbinaria
 - (1) C and E
 - (2) B and C
 - (3) D and E
 - (4) A and D

3	В
85.	In which one of the following pairs of diseases is viral as well as transmitted by mosquitoes?
	(1) Elephantiasis and dengue (2) Yellow fever and sleeping sickness
	(3) Encephalitis and sleeping sickness (4) Yellow fever and dengue
86.	A free living nitrogen-fixing cyanobacterium which can also form symbiotic association with the water fern Azolla is :
	(1) Tolypothrix (2) Nostoc
	(3) Chlorella (4) Anabaena
87.	Ionophores are:
	(1) the gating mechanisms associated with the transport of ions.
	(2) intrinsic proteins that passively transport ions.
	(3) chemicals that form pores in the plasma membrane and allow ions to cros.
	(4) intrinsic proteins that actively transport ions.
88.	The trans Golgi network is:
	(1) the intermediate compartment between the ER and the Golgi.
	(2) the part of the Golgi where fusion of vesicles from the ER occurs.
	(3) where sorting of proteins to the lysosomes, plasma membrane and cell exterior occurs.
	(4) the network of vesicles that transport proteins between Golgi cisternae.
89.	Most human cells are diploid with total DNA content of 2C. The DNA content increases to 4C before the onset of mitosis. At anaphase, the DNA content of each cluster will be:
	(1) 4C
	(2) 2C

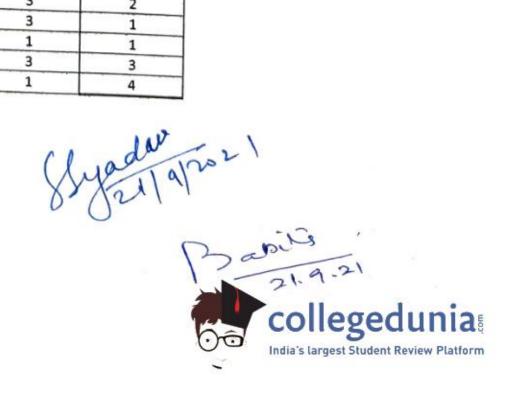
PG-EE-2021/(Life Sciences)(SET-X)/(B)

(3) 1C

(4) 3C

collegedunia

	90.	Malignant cancer cells have all of the following properties except:		
		(1) unregulated cell division	(2) inhibition of angiogenesis	
		(3) resistance to apoptosis	(4) cellular immortality	
	91.	Which one of the following is a protein	deficiency disease ?	
		(1) Kwashiorkor	(2) Night blindness	
35		(3) Eczema	(4) Cirrhosis	
	92.	Which of the following statement is inco	orrect wrt inbreeding?	
		(1) Inbreeding increases homozygosity		
		(2) Inbreeding exposes harmful recessive	re gene that are eliminated by selection	
		(3) Inbreeding helps in accumulation of alleles	deleterious alleles and elimination of desirable	
		(4) Inbreeding helps in developing a pur	re-line animal	
93. What is correct to say about the hormone action in humans?				
(1) In females, FSH first binds with specific receptors on ovarian ce			cific receptors on ovarian cell membrane	
		(2) FSH stimulates the secretion of estro	ogen and progesterone	
		(3) Glucagon is secreted by B-cell glycogenolysis	s of Islets of langerhans and stimulates	
		(4) Secretion of thymosins is stimulated	with aging	
	94.	Body having meshwork of cells, internated and indirect development are the characteristics.	al cavities lined with food filtering flagellated aracteristics of phylum:	
		(1) Protozoa	(2) Coelenterata	
		(3) Porifera	(4) Mollusca	
	95.	Which of the following characteristics insects on land?	is mainly responsible for diversification of	
		(1) Eyes	(2) Segmentation	
		(3) Bilateral symmetry	(4) Exoskeleton	
	PG-EE	2-2021/(Life Sciences)(SET-X)/(B)	P. T. O.	
			· · · · · · · · · · · · · · · · · · ·	


96.	Which of the following endoparasites of humans does show viviparity?		
	(1) Ascaris lumbricoides	(2) Ancylostoma duodenale	
	(3) Enterobius vermicularis	(4) Trichinella spiralis	
97.	Select the Taxon mentioned which	represents both marine and fresh water species.	
	(1) Echinoderms		
*	(2) Ctenophora		
	(3) Cephalochordata		
	(4) Cnidaria		
98.	Which one of the following living	organisms completely lacks a cell wall?	
	(1) Cyanobacteria	organisms completely lacks a cell wan ?	
	(2) Sea-fan(Gorgonia)		
	(3) Saccharomyces		
	(4) Blue-green algae		
99.	Biological organisation starts with		
	(1) Cellular level	•	
	(2) Organismic level		
	(3) Atomic level		
	(4) Submicroscopic molecular leve	.1	
100.	Peripatus is a connecting link betw	een:	
	(1) Coelenterata and Porifera		
	(2) Ctenophora and Platyhelminth	is	
	(3) Mollusca and Echinodermata		
	(4) Annelida and Arthropoda		

PG-EE-2021/(Life Sciences)(SET-X)/(B)

10:00 am			Subjects of Life Science		
uestion No.	A	В	С	D	
1	3	1	1	4	
2	1	2	3	2	
3	1	2	2	4	
4	4	4	3	4	
5	4	1	1	1	
6	4	1	2	4	
7	3	3	2	3	
8	3	1	3	1	
9	2	4	3	1	
10	2	3	1	3	
11	1	3	3	1	
12	2	1	3	3	
13	2	3	1	2	
14	4	4	2	4	
15	1	1	4	4	
16	1	2	2	1	
17	3	1	4	1	
18	1	1	1	4	
19	4	3	4	4	
20	3	4	2	1	
21	3	4	3	1	
22	3	2	1	4	
23	1	4	1	2	
24	2	4	4	2	
25	4	1	4	3	
26	2	4	4	4	
27	4	3	3	4	
28	1	1 .	3	1	
29	4	1	2	2	
30	2	3	2	1	
31	1	1	3	1	
32	4	3	1	2	
33	2	2	3	2	
34	2	4	4	4	
35	3	4	1	1	
36	4	1	2	1	
37	4	1	1	3	
38	1	4	1	1	
39	2	4	3	4	
40	1	1	4	3	
41	1	1	3	3	
42	3	4	2	1	
43	2	2	4	3	
44	3	2	2	4	
45	1	3	2	1	
46	2	4	3	2	
47	2	4	3	1	
48	3	1	1	1	
49	3	2	3	3	
50	1	1	1	4	

2 2 2 Page 1 of 2

10:00 an			Subjects of Life Sciences		
Question No.	Α	В	С	D	
51	1	3	1	3	
52	3	3	4	2	
53	2	1	2	4	
54	4	2	2	2	
55	4	4	3	2	
56	1	2	4	3	
57	1	4	4	3	
58	4	1	1	1	
59	4	4	2	3	
60	1	2	1	1	
61	3	1	4	1	
62	2	3	2	3	
63	4	2	4	1	
64	2	3	4	3	
65 66	2	1	1	4	
	3	2	4	4	
67 68	3	2	3	4	
69	1	3	1	2	
70	3	3	1	4	
71	1	1	3	4	
72	2	3	1	1	
73	4	2	3	3	
74	4	4	1	2	
75	1	2	3	3	
76	4	3	4	1	
77	3	3	4	2	
78	1	1	2	2	
79	1	3	4	3	
80	3	1	4	3	
81	1	3	1	3	
82	3	1	2	3	
83	1	1	2	1	
84	3	4	4	2	
85	4	4	1	4	
86	4	4	1	2	
87	4	3	3	4	
88	2	3	1	1	
89	4	2	4	4	
90	4	2	3	2	
91	3	1	1	3	
92	1	3	3	1	
93	3	1	2	1	
94	4	3	4	4	
95	1	4	4	4	
96	2	4	1	4	
97	1	4	1	3	
98	1	2	4	3	
99	3	4	4	2	
100	4	4	1	2	

1091s

*

Page 2 of 2

(Syadan)

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

C

ARE ASKED TO DO SO)

SET-X

SUBJECT: Life Sciences

PG-EE-2021

12491

	,	S	r. No
Time: 1¼ Hours Roll No. (in figures)		Max. Marks : 100 (in words)	Total Questions : 100
Name		Date of Birth	1
Father's Name		Mother's Name	
Date of Examination_			± 91
			e e
(Signature of the Ca	andidate)	(Sign	nature of the Invigilator)
		TO LOWING INFORMATION/INC	TRUCTIONS BEFORE

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case will be considered.
- The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2021/(Life Sciences)(SET-X)/(C)

- 1. The C 4 plants are photosynthetically more efficient than C 3 plants because :
 - (1) They have more chloroplasts
 - (2) The CO₂ compensation point is more
 - (3) CO₂ generated during photorespiration is trapped and recycled through PEP carboxylase
 - (4) The CO₂ efflux is not prevented
- 2. The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by:
 - (1) T.H. Morgan
 - (2) Gregor J. Mendel
 - (3) Alfred Sturtevant
 - (4) Sutton Boveri
- 3. What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?
 - (1) Turner's syndrome

(2) Klinefelter's syndrome

(3) Edward syndrome

- (4) Down's syndrome
- 4. A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by:
 - (1) Only daughters

- (2) Only sons
- (3) Both sons and daughters
- (4) Only grandchildren
- 5. Which one of the following discoveries resulted in a Nobel Prize?
 - (1) X-rays induce sex-linked recessive lethal mutations
 - (2) Cytoplasmic inheritance
 - (3) Recombination of linked genes
 - (4) Genetic engineering

	6.	Normally DNA molecule has A-T, G- alternative valency status owing to rearr	C pairing. However, these bases can exist in angements called:
		(1) Frame-shift mutation	(2) Tautomerisational mutation
		(3) Analog substitution	(4) Point mutation
	7.	The most striking example of point muta	ation is found in a disease called:
		(1) Down's syndrome	(2) Sickle cell anaemia
		(3) Edward syndrome	(4) Night blindness
	8.	When two genetic loci produce identical considered to be:	l phenotypes in cis and trans position, they are
		(1) Multiple alleles	22
		(2) The parts of same gene	
		(3) Pseudoalleles	
		(4) Different genes	
	9.	What map unit (Centimorgan) is adopted	in the construction of genetic maps?
		(1) A unit of distance between two expre	
		(2) A unit of distance between two expre	
			chromosomes, representing 1 % cross over
		The second secon	chromosomes, representing 50% cross over
1	0.	Expressed Sequence Tags (ESTS) refers t	
		(1)	(2) Polypeptide expression
			(4) Novel DNA sequences
1	1.		features distinguishing Gnetum from Cycas
		(1) Embryo development and apical meris	stem
		(2) Absence of resin duct and leaf venation	n
750		(3) Presence of vessel elements and absen	ce of archegonia
		(4) Perianth and two integuments	
PG-	EE-	-2021/(Life Sciences)(SET-X)/(C)	

12.	Which one of the following is heterosporous?
	(1) Equisetum
	(2) Dryopteris
	(3) Salvinia
	(4) Adiantum
13.	A system of classification, in which a large number of traits are considered, is :
	(1) Natural system
	(2) Phylogenetic system
	(3) Artificial system
	(4) Synthetic system
14.	The book 'Genera plantarum' was written by:
14.	(1) Engler & Prantl (2) Bentham & Hooker
15.	Phylogenetic classification is one which is based on:
	(1) Overall similarities (2) Utilitarian system
	(3) Habits of plants (4) Common evolutionary descent
16.	Endosperm of gymnosperm is ontogenetically similar to angiospermic :
	(1) Endosperm (2) Embryo sac
	(3) Archegonium (4) Megasporangia
17	
17.	(1) They are large and have a good vascular tissue system
	(2) They carry out variety of pollination mechanism
	(3) The protected plant embryo can survive in the period of unfavourable conditions
	(4) All of these
C.F	F-2021/(Life Sciences)(SET-X)/(C)

- 18. A. Heterospory is found in all members of pteropsida:
 - B. Sclaginella is advance among pteridophytes as it produces seeds
 - C. Pinus leaves are monomorphic, pinnate compound and have sunken stomata as adaptation against transpiration
 - D. Sporic meiosis is characteristic of life cycle in many organisms like Volvox, Chlamydomonas and Ulothrix.
 - (1) All are incorrect

(2) Both B and C are correct

(3) Only B is correct

- (4) Only D is incorrect
- 19. Which phytohormone is synthesised in ripened fruits?
 - (1) ABA

(2) Auxin

(3) Cytokinin

- (4) Ethylene
- 20. Which of the following is incorrect about ethylene?
 - (1) Promotes root hair formation
 - (2) It is natural and derivative of carotenoids
 - (3) It increases the number of female flowers
 - (4) It causes synchronisation of flowering and fruit set in pineapples
- 21. All the following may be methods for the inhibition of microbial growth by antibiotics except:
 - (1) Antibiotics disrupt cell wall synthesis.
 - (2) Antibiotics interfere with cell membrane function.
 - (3) Antibiotics prevent the release of energy from ATP.
 - (4) Antibiotics inhibit the synthesis of protein.
- 22. In which of the following would you place the plants having vascular tissue lacking seeds?
 - (1) Pteridophytes
 - (2) Gymnosperms
 - (3) Bryophytes
 - (4) Algae

			5
23.	Apomixis is a type of reproduction in pl	lants in which ?	
	(1) Fertilization does not take place.		
	(2) Male nucleus takes part in fertilizat	tion.	
	(3) Embryo formation does not take pla	ace.	
	(4) Generative nucleus takes part in fer	rtilization.	
24.	From which of the following algae, aga	ar is commercially extracted?	
	(A) Gracillaria		
	(B) Fucus		
	(C) Sargassum		
	(D) Gelidium	*	
	(E) Turbinaria		
	(1) C and E		
	(2) B and C		*
	(3) D and E		
	(4) A and D		
25.	In which one of the following pairs mosquitoes?	of diseases is viral as well as transmitted by	y
	(1) Elephantiasis and dengue		
	(2) Yellow fever and sleeping sickness	S .	
	(3) Encephalitis and sleeping sickness	3	
	(4) Yellow fever and dengue		
26.	. A free living nitrogen-fixing cyanobact with the water fern Azolla is:	terium which can also form symbiotic associatio	n
	(1) Tolypothrix	(2) Nostoc	
	(3) Chlorella	(4) Anabaena	

27. Ionophores are:

- (1) the gating mechanisms associated with the transport of ions.
- (2) intrinsic proteins that passively transport ions.
- (3) chemicals that form pores in the plasma membrane and allow ions to cros.
- (4) intrinsic proteins that actively transport ions.

28. The trans Golgi network is:

- (1) the intermediate compartment between the ER and the Golgi.
- (2) the part of the Golgi where fusion of vesicles from the ER occurs.
- (3) where sorting of proteins to the lysosomes, plasma membrane and cell exterior occurs.
- (4) the network of vesicles that transport proteins between Golgi cisternae.
- 29. Most human cells are diploid with total DNA content of 2C. The DNA content increases to 4C before the onset of mitosis. At anaphase, the DNA content of each cluster will be:
 - (1) 4C
 - (2) 2C
 - (3) 1C
 - (4) 3C
- 30. Malignant cancer cells have all of the following properties except:
 - (1) unregulated cell division
 - (2) inhibition of angiogenesis
 - (3) resistance to apoptosis
 - (4) cellular immortality

- 31. Which one of the following organisms is scientifically correctly named, correctly Printed according to the International Rules of Nomenclature and correctly described?
 - (1) E.coli Full name Entamoeba coli, a commonly occuring bacterium in human intestine
 - (2) Musca domestica The common house lizard, a reptile
 - (3) Plasmodium falciparum A protozoan pathogen causing the most serious type of malaria
 - (4) Felis tigris The Indian tiger, well protected in Gir forests
- 32. What is true for mammalia?
 - (1) Platypus is oviparous
- (2) Bats have feathers
- (3) Elephant is ovoviviparous
- (4) Diaphragm is absent in them
- 33. Which of the following character is present in all chordates?
 - (1) Diaphragm
 - (2) Vertebral column
 - (3) Pharyngeal gill clefts
 - (4) Dorsal solid nerve cord
- 34. In which of the following animal post anal tail is found?
 - (1) Earthworm
 - (2) Lower invertebrate
 - (3) Scorpion
 - (4) Snake
- 35. In which of the following notochord is present in embryonic stage?
 - (1) All chordate
 - (2) Some chordates
 - (3) Vertebrates
 - (4) Non chordates

collegedunia India's largest Student Review Platform

- 36. Given below are four matches of an animal and its kind of respiratory organ:
 - A. Silver fish Trachea
 - B. Scorpion Book lung
 - C. Sea squirt Pharyngeal gills
 - D. Dolphin Skin

The correct matches are

- (1) A and B
- (2) A, B and C
- (3) B and D
- (4) C and D
- 37. Which one of the following phyla is correctly matched with its two general characteristics?
 - (1) Mollusca Normally oviparous and development through a trochophore or veliger larva
 - (2) Arthropoda Body divided into head, thorax and abdomen and respiration by tracheae
 - (3) Chordata Notochord at some stage and separate anal and urinary openings to the outside
 - (4) Echinodermata Pentamerous radial symmetry and mostly internal fertilization
- 38. Which of the following are referred as non-vertebrate chordates?
 - (1) Ciona, Ascidia, Amphioxus
 - (2) Lamprey, Myxine, Shark
 - (3) Scoliodon, Torpedo, Trygon
 - (4) Pristis, Branchiostoma, Scyllium doutorostomes?

PG-EE-2021/(Life Sciences)(SET-X)/(C)

39	Lateral line sense organs are absent in :
	(1) Tadpole larva of frog
1150	(2) Bony fishes
	(3) Reptiles
	(4) Cartilaginous fishes
40	The termination of gastrulation is indicated by:
¥.	(1) closure of neural tube
	(2) closure of blastopore
	(3) obliteration of archenteron
	(4) obliteration of blastocoel
41.	The tendency of population to remain in genetic equilibrium may be disturbed by :
	(1) Lack of migration (2) Lack of mutations
	(3) Lack of random mating (4) Random mating
42.	The two antibiotic resistance genes on vector pBR322 are for:
	(1) Tetracycline and Kanamycin
	(2) Ampicillin and Tetracycline
	(3) Ampicillin and Chloramphenicol
	(4) Chloramphenicol and Tetracycline
43.	Which one of the following equipments is essentially required for growing microbes on
	a large scale, for industrial production of enzymes?
	(1) BOD incubator (2) Sludge digester
	(3) Industrial oven (4) Bioreactor
PG-E	E-2021/(Life Sciences)(SET-X)/(C) P. T. O.

- 44. DNA precipitation out of a mixture of biomolecules can be achieved by treatment with:
 - (1) Isopropanol
 - (2) Chilled ethanol
 - (3) Methanol at room temperature
 - (4) Chilled chloroform
- 45. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement.
 - (1) The enzyme cuts DNA molecule at identified position within the DNA.
 - (2) The enzyme binds DNA at specific sites and cuts only one of the two strands.
 - (3) The enzyme cuts the sugar-phosphate backbone at specific sites on each strand.
 - (4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA.
- 46. The correct order of steps in Polymerase Chain Reaction (PCR) is:
 - (1) Extension, Denaturation, Annealing
 - (2) Annealing, Extension, Denaturation
 - (3) Denaturation, Annealing, Extension
 - (4) Denaturation, Extension, Annealing
- 47. Enzyme used in ELISA test is:
 - (1) Endonuclease
 - (2) Ligase
 - (3) Peroxidase
 - (4) Polymerase
- 48. What will be the pCO₂ and pO₂ in atmospheric air as compared to alveoli respectively?
 - (1) Low and high

(2) High and low

(3) High and high

(4) Low and low

- 49. In ureotelic animals, urea is formed by:
 - (1) Kreb's cycle
 - (2) EM pathway
 - (3) Ornithine cycle
 - (4) Cori's cycle
- 50. Which one of the following mammalian cells is not capable of metabolising glucose to carbon-dioxide aerobically?
 - (1) Red blood cells
 - (2) White blood cells
 - (3) Unstriated muscle cells
 - (4) Liver cells
- 51. Select a correct match:
 - (1) GA, Early seed production in conifers
 - (2) Cytokinin Synchronise fruit set in pineapples
 - (3) Auxin Overcomes senescence
 - (4) Ethylene Seed maturation and development
- 52. Where is the respiratory electron transport system (ETS) located in plants?
 - (1) Intermembrane space
 - (2) Mitochondrial matrix
 - (3) Outer mitochondrial membrane
 - (4) Inner mitochondrial membrane
- 53. Respiratory Quotient (RQ) value of tripalmitin is:
 - (1) 0.9
 - (2) 0.7
 - (3) 0.07
 - (4) 0.09

collegedunia India's largest Student Review Platform

and the same			- 2				
					4)		
	12			8 8	147	86 - 27 E	С
	54.	Conversion of glucos glycolysis, is catalyzed		6-phosphate	, the first in	eversible rea	ction of
	• .	(1) Aldolase					
		(2) Hexokinase	7 5 ¹ on			81	
		(3) Enolase				A.	
1 (i.e.)		(4) Phosphofructokinas	e :			94 J. T. T.	
	55.	How many ATP molec molecule of glucose?	ules will be pr	roduced in r	nuscles by aer	obic oxidation	of one
	3.2	(1) 2		(2) 4			
	¹⁹⁶⁶ -	(3) 36		(4) 34			
	56.	Plants, but not animals,	can convert fat	ty acids to su	agars by a serie	es of reactions	called:
		(1) Photosynt	E				2
		(2) Krebs cycle		π.			
		(3) Glycolysis	,	350 81			
		(4) Glyoxylate cycle			*		
		Pasteurization is a proce temperature and for how			of drinks. It i	s carried out,	at what
		(1) 70°C and 60 minutes			9	*	
		(2) 80°C and 30 minutes		3.			
	(3) 120°C and 60 minute	S				
	(4) 60-70°C and 30 minu	tes			,	0.02
							·
		enticels are involved in			_		
	(1) Gaseous exchange		en me	Transport		
	(.	3) Photosynthesis		(4) Transp	oiration	*	
	59. G	attation is the result of:					28 =
	(1) Osmosis		(2) Root p	ressure		
	(3) Diffusion		(4) Transp	oiration	2 2 y	
		021/(Life Sciences)(SE	Γ-X)/(C)				
	I G-EE-E		/ (-/				

- 60. Photosynthetic Active Radiation (PAR) has the following range of wavelengths:
 - (1) 400-700 nm
 - (2) 450-950 nm
 - (3) 340-450 nm
 - (4) 500-600 nm
- **61.** All enzymes are proteins except:
 - (1) Trypsin
 - (2) Pepsin
 - (3) Steapsin
 - (4) Ribozyme and Ribonuclease-P
- **62.** Which of the following is the best evidence for the lock and key theory of enzyme action?
 - (1) All isolated enzymes have been identified as protein
 - (2) Compounds similar in structure to the substrate inhibit the reaction
 - (3) Enzymes are found in living organisms and speed up certain reaction
 - (4) Enzymes determine the direction of a reaction
- **63.** Co-enzyme is:
 - (1) Always a protein
 - (2) Often a metal
 - (3) Always an inorganic compound
 - (4) Often a vitamin
- 64. A person is eating boiled potato. His food contains:
 - (1) Cellulose, which can be digested by cellulase
 - (2) Starch, which cannot be digested
 - (3) Lactose, which cannot be digested
 - (4) DNA, which can be digested by pancreatic DNAase

PG-EE-2021/(Life Sciences)(SET-X)/(C)

P. T. O.

	w)	
65	5. Which of the following is a reducing sugar?	
	(1) Galactose	
	(2) Gluconic acid	
	(3) B-methyl galactoside	
T.	(4) Sucrose	
66	Which of the following hormones is not secreted by duodenum to inhibit the gamentility?	stric
	(1) GIP	
	(2) Enterogastrone	
	(3) Secretin	
	(4) Enterokinase	
67.	In case of vertebrates, lacteals are found in :	
	(1) Oesophagus	
	(2) Ear	
	(3) Small intestine	
	(4) Ischium	
68.	The movement of ions against the concentration gradient will be:	
	(1) Active transport	
	(2) Osmosis	
	(3) Diffusion	
	(4) All of these	
69.	Vomiting centre is located in the:	
	(1) Medulla oblongata	

(2) Stomach and sometimes in duodenum

(3) GI tract

(4) Hypothalamus

PG-EE-2021/(Life Sciences)(SET-X)/(C)

70.	Which one of the following vitamins can be synthesised by bacteria inside the gut?
	(1) D (2) A
	(3) B_1 (4) C
71.	Which one of the following is a protein deficiency disease?
	(1) Kwashiorkor
	(2) Night blindness
	(3) Eczema
	(4) Cirrhosis
72.	Which of the following statement is incorrect wrt inbreeding?
	(1) Inbreeding increases homozygosity
	(2) Inbreeding exposes harmful recessive gene that are eliminated by selection
	(3) Inbreeding helps in accumulation of deleterious alleles and elimination of desirable
	alleles
	(4) Inbreeding helps in developing a pure-line animal
73.	What is correct to say about the hormone action in humans?
	(1) In females, FSH first binds with specific receptors on ovarian cell membrane
	(2) FSH stimulates the secretion of estrogen and progesterone
	(3) Glucagon is secreted by B-cells of Islets of langerhans and stimulates glycogenolysis
	(4) Secretion of thymosins is stimulated with aging
74.	Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum:
	(1) Protozoa
	(2) Coelenterata
	(3) Porifera
	(4) Mollusca

75.	Which of the following characteristics is mainly responsible for diversification of insects on land?
	(1) Eyes
	(2) Segmentation
	(3) Bilateral symmetry
	(4) Exoskeleton
76.	Which of the following endoparasites of humans does show viviparity?
	(1) Ascaris lumbricoides (2) Ancylostoma duodenale
20	(3) Enterobius vermicularis (4) Trichinella spiralis
77.	Select the Taxon mentioned which represents both marine and fresh water species.
	(1) Echinoderms
	(2) Ctenophora
	(3) Cephalochordata
	(4) Cnidaria
78.	Which one of the following living organisms completely lacks a cell wall?
	(1) Cyanobacteria
	(2) Sea-fan(Gorgonia)
	(3) Saccharomyces

- 79. Biological organisation starts with:
 - (1) Cellular level
 - (2) Organismic level

(4) Blue-green algae

- (3) Atomic level
- (4) Submicroscopic molecular level PG-EE-2021/(Life Sciences)(SET-X)/(C)

- 80. Peripatus is a connecting link between:
 - (1) Coelenterata and Porifera
 - (2) Ctenophora and Platyhelminthis
 - (3) Mollusca and Echinodermata
 - (4) Annelida and Arthropoda
- 81. Cytokines are produced by cells of the immune system in response to various physiological stimuli that:
 - (1) modulate cell function through subsequent cell differentiation or cell proliferation.
 - (2) facilitate cell lysis.
 - (3) cause glycosylation of immunoglobulins.
 - (4) cause histamine release.
- 82. In what way, if any, does the chromosomal determination of sex differ in Drosophila and humans?
 - (1) In humans, the Y-chromosome determines maleness, with female development being a default process, but in Drosophila, the presence of two X-chromosomes determines femaleness, and male development is the default process.
 - (2) In humans, the Y-chromosome determines maleness, but in Drosophila, the ratio of X-chromosomes to autosomes determines maleness or femaleness.
 - (3) In humans, it is the presence of only one X-chromosome that triggers male development and two X-chromosomes trigger female development, just as occurs in Drosophila.
 - (4) In human males, a single Y-chromosome is present in the absence of an X-chromosome, while in Drosophila, a single X-chromosome is present in the absence of a Y-chromosome.
- 83. How many generations are present in the seed of gymnosperm?

(1) 2

(2) 3

(3) 1

(4) 4

84.	Bryophytes are <i>not</i> characterised by :	
	(1) Sporophyte parasitic over gametopl	nyte
d)	(2) Independent gametophyte	
	(3) Absence of vascular tissues	
*	(4) Independent sporophyte	
85.	Stems and leaves of bryophytes are:	
	(1) Analogous to vascular plants	(2) Homologous to vascular plants
	(3) Analogous to algae & fungal thallus	s (4) None of these
86.	The dominant photosynthetic phase in the :	the life-cycle of pteridophyta is equivalent to
	(1) Gametophytic phase of bryophyta	
	(2) Sporophytic phase of bryophyta	
	(3) Gametophytic phase of pteridophytic	es ·
	(4) Gametophytic phase of gymnospern	n
87.	In Pteridophytes, reduction division occ	urs when :
	(1) Prothallus is formed	(2) Sex organs are formed
	(3) Spores are formed	(4) Gametes are formed
88.	In which of the following gametophyte i	s not independent free living 2
	(1) Pinus	(2) Funaria
	(3) Marchantia	(4) Pteris
	Seasonal activity of vascular cambium is	
	(1) Geographical location of plant	
((2) Relative humidity and temperature	
(3) Photoperiod and water supply	
(4) Leaf orientation	
PG-EE-2	2021/(Life Sciences)(SET-X)/(C)	
		collegedu

9	90. When secondary growth is initiated i	n dicot stem, what will happen first?			
	(1) The cells of cambium divide peri	clinally to form xylem mother cells			
	(2) Interfascicular cambium join with intrafascicular cambium				
	(3) Parenchymatous cells present bet	ween vascular bundles become meristematic			
	(4) Pith get obliterated				
9	1. In history of biology, human genome	project led to the development of:			
	(1) Bioinformatics				
	(2) Eugeneics				
	(3) Biotechnology				
	(4) Genetic engineering				
92	AND THE RESIDENCE OF THE PARTY	codes for a protein with 333 amino acids and the that the length of the RNA becomes 998 bases,			
	(1) 1	(2) 11			
	(3) 33	(4) 333			
93.	The final proof for DNA as the genetic	material came from the experiments of:			
	(1) Griffith	(2) Hershey and Chase			
	(3) Avery, Mcleod and McCarty	(4) Hargobind Khurana			
94.	Which one of the following is not a gas	seous biogeochemical cycle in ecosystem?			
	(1) Nitrogen cycle	(2) Carbon cycle			
	(3) Sulphur cycle	(4) Phosphorus cycle			
95.	Which of the following ecological pyra	mids is generally inverted?			
	(1) Pyramid of numbers in grassland				
	(2) Pyramid of energy	•			
	(3) Pyramid of biomass in a forest				
	(4) Pyramid of biomass in a sea				
PG-EE	E-2021/(Life Sciences)(SET-X)/(C)	P. T. O.			

96.	What type of ecological pyramid would be obtained with the following data?				
	Secondary consumer: 120 g				
	Primary consumer: 60g				

Primary producer: 10 g

(1) Inverted pyramid of biomass

- (2) Pyramid of energy
- (3) Upright pyramid of biomass
- (4) Upright pyramid of numbers
- 97. Which ecosystem has the maximum biomass?
 - (1) Forest ecosystem

(2) Grassland ecosystem

(3) Pond ecosystem.

- (4) Lake ecosystem
- 98. Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste water into natural surface water, is:
 - (1) < 3.0 ppm

(2) < 10 ppm

(3) < 100 ppm

- (4) < 30 ppm
- 99. More than 70% of world's freshwater is contained in :
 - (1) Antarctica
 - (2) Glaciers and Mountains
 - (3) Greenland
 - (4) Polar ice
- 100. The process by which organisms with different evolutionary history evolve similar phenotypic adaptations in response to a common environmental challenge, is called :
 - (1) Convergent evolution
 - (2) Non-random evolution
 - (3) Adaptive radiation
 - (4) Natural selection

PG-EE-2021/(Life Sciences)(SET-X)/(C)

10:00 am	1		Subjects of Li	fe Scienc
uestion No.	A	В	С	D
1	3	1	1	4
2	1	2	3	2
3	1	2	2	4
4	4	4	3	4
5	4	1	1	1
6	4	1	2	4
7	3	3	2	3
8	3	1	3	1
9	2	4	3	1
10	2	3	1	3
11	1	3	3	1
12	2	1	3	3
13	2	3	1	2
14	4	4	2	4
15	1	1	4	4
16	1	2	2	1
17	3	1	4	1
18	1	1	1	4
19	4	3	4	4
20	3	4	2	1
21	3	4	3	1
22	3	2	1	4
23	1	4	1	2
24	2	4	4	3
25	4	1	4	3
26	2	4	4	4
27	4	3	3	4
28	1	1 .	3	1 2
29	4	1	2	2
30	1	3	2	1
31		1	3	1
32	4	3		2
33	2	2	3	2
34	2	4	4	4
35	3	4	1	1
36	4	1	2	1
37	4	1	1	3
38	1	4	1	1
39	2	4	3	4
40	1	1	4	3
41	1	1	3	3
42	3	4	2	1
43	2	2	4	3
44	3	2	2	4
45	1	3	2	1
46	2	4	3	2
47	2	4	3	
48	3	1	3	3
49	3	2		1 3

Page 1 of 2

Myadwansz | Collegedunias | Stargest Student Review Platfor

10:00 am		S	ubjects of Life	Sciences
Question No.	Α	В	С	D
51	1	3	1	3
52	3	3	4	2
53	2	1	2	4
54	4	2	2	2
55	4	4	3	2
56	1	2	4	3
57	1	4	4	3
58	4	1	1	1
59	4	4	2	3
60	1	2	1	1
61	3	1	4	1
62	2	3	2	3
63	4	2	4	1
64	2	3	4	3
65	2	1	1	4
66	3	2	4	4
67	3	2	3	4
68	1	3	1	2
69	3	3	1	4
70	1	1	3	4
71	4	3	1	1
72	2	2	3	3
73	4	4	1	2
74	4	2	3	3
75	1	2	4	1
76	4	3	4	2
77	3	3	4	2
78	1	1	2	3
79	1	3	4	3
80	3	1	4	1
81	1	3	1	3
82	3	1	2	3
83	1	1	2	1
84	3	4	4	2
85	4	4	1	4
86	4	4	1	2
87	4	3	3	4
88	2	3	1	1
89	4	2	4	4
90	4	2	3	2
91	3	1	1	3
92	1	3	3	1
93	3	1	2	1
94	4	3	4	4
95	1	4	4	4
96	2	4	1	4
97	1	4	1	3
98	1	2	4	3
99	3	4	4	2
100	4	4	1	2

2/09/2

Page 2 of 2

(Syadan 2)

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2021

SET-X

SUBJECT: Life Sciences

12492

		Sr. No
Time: 11/4 Hours	Max. Marks: 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name		e of Birth
Father's Name		
Date of Examination	100 mg	
(Signature of the Candidate)		(Signature of the Invigilator)
CANDIDATES MUST READ TH	E FOLLOWING INFORMATION	

STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case will be considered.
- 5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2021/(Life Sciences)(SET-X)/(D)

- 1. All enzymes are proteins except:
 - (1) Trypsin
 - (2) Pepsin
 - (3) Steapsin
 - (4) Ribozyme and Ribonuclease-P
- 2. Which of the following is the best evidence for the lock and key theory of enzyme action?
 - (1) All isolated enzymes have been identified as protein
 - (2) Compounds similar in structure to the substrate inhibit the reaction
 - (3) Enzymes are found in living organisms and speed up certain reaction
 - (4) Enzymes determine the direction of a reaction
- 3. Co-enzyme is:
 - (1) Always a protein
 - (2) Often a metal
 - (3) Always an inorganic compound
 - (4) Often a vitamin
- 4. A person is eating boiled potato. His food contains:
 - (1) Cellulose, which can be digested by cellulase
 - (2) Starch, which cannot be digested
 - (3) Lactose, which cannot be digested
 - (4) DNA, which can be digested by pancreatic DNAase
- 5. Which of the following is a reducing sugar?
 - (1) Galactose
 - (2) Gluconic acid
 - (3) B-methyl galactoside
 - (4) Sucrose

PG-EE-2021/(Life Sciences)(SET-X)/(D)

6.	Which of the following hormones is not secreted by duodenum to inhibit the gastric motility?
	(1) GIP
	(2) Enterogastrone
	(3) Secretin
	(4) Enterokinase
7.	In case of vertebrates, lacteals are found in:
	(1) Oesophagus
	(2) Ear
	(3) Small intestine
	(4) Ischium
8.	The movement of ions against the concentration gradient will be :
	(1) Active transport
	(2) Osmosis
	(3) Diffusion
	(4) All of these
9.	Vomiting centre is located in the :
	(1) Medulla oblongata
	(2) Stomach and sometimes in duodenum
æ	(3) GI tract
	(4) Hypothalamus
10.	Which one of the following vitamins can be synthesised by bacteria inside the gut?
	(1) D (2) A
	(3) B_1 (4) C
PG-EE-2021/(Life Sciences)(SET-X)/(D)	

11.	In history of biology, human genome pro	ject led to the development of:	
	(1) Bioinformatics		
	(2) Eugeneics		
	(3) Biotechnology		
	(4) Genetic engineering		
12.	If there are 999 bases in an RNA that co base at position 901 is deleted such that how many codons will bealtered?	des for a protein with 333 amino acids a at the length of the RNA becomes 998	2
	(1) 1	(2) 11	
	(3) 33	(4) 333	
13.	The final proof for DNA as the genetic n	naterial came from the experiments of:	
	(1) Griffith		
	(2) Hershey and Chase		
	(3) Avery, Mcleod and McCarty		
	(4) Hargobind Khurana		
14.	Which one of the following is not a gase	ous biogeochemical cycle in ecosystem?)
	(1) Nitrogen cycle	(2) Carbon cycle	
	(3) Sulphur cycle	(4) Phosphorus cycle	
15.	Which of the following ecological pyran	nids is generally inverted?	
	(1) Pyramid of numbers in grassland		
	(2) Pyramid of energy		
•	(3) Pyramid of biomass in a forest		
	(4) Pyramid of biomass in a sea		
PG-EF	E-2021/(Life Sciences)(SET-X)/(D)		P. T. O.

16	What type of ecological	pyramid would be obtained	I with the following data?	
----	-------------------------	---------------------------	----------------------------	--

Secondary consumer: 120 g

Primary consumer: 60g

Primary producer: 10 g

- (1) Inverted pyramid of biomass
- (2) Pyramid of energy
- (3) Upright pyramid of biomass
- (4) Upright pyramid of numbers
- 17. Which ecosystem has the maximum biomass?
 - (1) Forest ecosystem

(2) Grassland ecosystem

(3) Pond ecosystem

- (4) Lake ecosystem
- 18. Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste water into natural surface water, is:
 - (1) < 3.0 ppm

(2) < 10 ppm

(3) < 100 ppm

- (4) < 30 ppm
- 19. More than 70% of world's freshwater is contained in :
 - (1) Antarctica
 - (2) Glaciers and Mountains
 - (3) Greenland
 - (4) Polar ice
- 20. The process by which organisms with different evolutionary history evolve similar phenotypic adaptations in response to a common environmental challenge, is called:
 - (1) Convergent evolution
 - (2) Non-random evolution
 - (3) Adaptive radiation
 - (4) Natural selection

)		5
21	. Select a correct match:	
	(1) GA, - Early seed production in conifers	
	(2) Cytokinin – Synchronise fruit set in pineapples	
	(3) Auxin – Overcomes senescence	
	(4) Ethylene – Seed maturation and development	
22.	. Where is the respiratory electron transport system (ETS) located in plants?	3
	(1) Intermembrane space	
	(2) Mitochondrial matrix	
	(3) Outer mitochondrial membrane	
	(4) Inner mitochondrial membrane	
23.	Respiratory Quotient (RQ) value of tripalmitin is :	
	(1) 0.9	
	(2) 0.7	
	(3) 0.07	
	(4) 0.09	
24.	Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalyzed by :	of
	(1) Aldolase	8
	(2) Hexokinase	
	(3) Enolase	
	(4) Phosphofructokinase	
25.	How many ATP molecules will be produced in muscles by aerobic oxidation of or molecule of glucose?	ne
	(1) 2 (2) 4	

(4) 34

(3) 36

20.	Plants, but not animals, can convert fatty	acids to sugars by a series of reactions cancu.
	(1) Photosynt	(2) Krebs cycle
	(3) Glycolysis	(4) Glyoxylate cycle
27.	Pasteurization is a process, which mean temperature and for how much duration	ns heating of drinks. It is carried out, at what?
	(1) 70°C and 60 minutes	
	(2) 80°C and 30 minutes	
	(3) 120°C and 60 minutes	
	(4) 60-70°C and 30 minutes	
28.	Lenticels are involved in:	
	(1) Gaseous exchange	(2) Food Trongment
	(3) Photosynthesis	(2) Food Transport
-		(4) Transpiration
29.	Guttation is the result of:	
	(1) Osmosis	(2) Root pressure
	(3) Diffusion	(4) Transpiration
30.	Photosynthetic Active Radiation (PAR)	has the following range of wavelengths:
	(1) 400-700 nm	
	(2) 450-950 nm	
	(3) 340-450 nm	
	(4) 500-600 nm	
31.	Cytokines are produced by cells of physiological stimuli that:	the immune system in response to various
2	(1) modulate cell function through subs	sequent cell differentiation or cell proliferation.
	(2) facilitate cell lysis.	1
	(3) cause glycosylation of immunoglob	pulins.
(2)	(4) cause histamine release.	
PG-EF	E-2021/(Life Sciences)(SET-X)/(D)	

- 32. In what way, if any, does the chromosomal determination of sex differ in Drosophila and humans?
 - (1) In humans, the Y-chromosome determines maleness, with female development being a default process, but in Drosophila, the presence of two X-chromosomes determines femaleness, and male development is the default process.
 - (2) In humans, the Y-chromosome determines maleness, but in Drosophila, the ratio of X-chromosomes to autosomes determines maleness or femaleness.
 - (3) In humans, it is the presence of only one X-chromosome that triggers male development and two X-chromosomes trigger female development, just as occurs in Drosophila.
 - (4) In human males, a single Y-chromosome is present in the absence of an X-chromosome, while in Drosophila, a single X-chromosome is present in the absence of a Y-chromosome.
- 33. How many generations are present in the seed of gymnosperm?
 - (1) 2

(2) 3

(3) 1

(4) 4

- 34. Bryophytes are not characterised by:
 - (1) Sporophyte parasitic over gametophyte
 - (2) Independent gametophyte
 - (3) Absence of vascular tissues
 - (4) Independent sporophyte
- 35. Stems and leaves of bryophytes are:
 - (1) Analogous to vascular plants
 - (2) Homologous to vascular plants
 - (3) Analogous to algae & fungal thallus
 - (4) None of these

- **36.** The dominant photosynthetic phase in the life-cycle of pteridophyta is equivalent to the :
 - (1) Gametophytic phase of bryophyta
 - (2) Sporophytic phase of bryophyta
 - (3) Gametophytic phase of pteridophytes
 - (4) Gametophytic phase of gymnosperm
- 37. In Pteridophytes, reduction division occurs when:
 - (1) Prothallus is formed
 - (2) Sex organs are formed
 - (3) Spores are formed
 - (4) Gametes are formed
- 38. In which of the following gametophyte is not independent free living?
 - (1) Pinus
 - (2) Funaria
 - (3) Marchantia
 - (4) Pteris
- 39. Seasonal activity of vascular cambium is influenced by many factors, except :
 - (1) Geographical location of plant
 - (2) Relative humidity and temperature
 - (3) Photoperiod and water supply
 - (4) Leaf orientation
- 40. When secondary growth is initiated in dicot stem, what will happen first?
 - (1) The cells of cambium divide periclinally to form xylem mother cells
 - (2) Interfascicular cambium join with intrafascicular cambium
 - (3) Parenchymatous cells present between vascular bundles become meristematic
 - (4) Pith get obliterated

- 41. Which one of the following organisms is scientifically correctly named, correctly Printed according to the International Rules of Nomenclature and correctly described?
 - (1) E.coli Full name Entamoeba coli, a commonly occuring bacterium in human intestine
 - (2) Musca domestica The common house lizard, a reptile
 - (3) Plasmodium falciparum A protozoan pathogen causing the most serious type of malaria
 - (4) Felis tigris The Indian tiger, well protected in Gir forests
- **42.** What is true for mammalia?
 - (1) Platypus is oviparous
- (2) Bats have feathers
- (3) Elephant is ovoviviparous
- (4) Diaphragm is absent in them
- 43. Which of the following character is present in all chordates?
 - (1) Diaphragm
 - (2) Vertebral column
 - (3) Pharyngeal gill clefts
 - (4) Dorsal solid nerve cord
- 44. In which of the following animal post anal tail is found?
 - (1) Earthworm
 - (2) Lower invertebrate
 - (3) Scorpion
 - (4) Snake
- 45. In which of the following notochord is present in embryonic stage?
 - (1) All chordate
 - (2) Some chordates
 - (3) Vertebrates
 - (4) Non chordates

P. T. O.

- 46. Given below are four matches of an animal and its kind of respiratory organ:
 - A. Silver fish Trachea
 - B. Scorpion Book lung
 - C. Sea squirt Pharyngeal gills
 - D. Dolphin Skin

The correct matches are

- (1) A and B
- (2) A, B and C
- (3) B and D
- (4) C and D
- 47. Which one of the following phyla is correctly matched with its two general characteristics?
 - (1) Mollusca Normally oviparous and development through a trochophore or veliger larva
 - (2) Arthropoda Body divided into head, thorax and abdomen and respiration by tracheae
 - (3) Chordata Notochord at some stage and separate anal and urinary openings to the outside
 - (4) Echinodermata Pentamerous radial symmetry and mostly internal fertilization
- 48. Which of the following are referred as non-vertebrate chordates?
 - (1) Ciona, Ascidia, Amphioxus
 - (2) Lamprey, Myxine, Shark
 - (3) Scoliodon, Torpedo, Trygon
 - (4) Pristis, Branchiostoma, Scyllium doutorostomes?

	49.	Lateral line sense organs are absent in :	
		(1) Tadpole larva of frog	(2) Bony fishes
	X0	(3) Reptiles	(4) Cartilaginous fishes
	50.	The termination of gastrulation is indicate	ted by :
		(1) closure of neural tube	(2) closure of blastopore
		(3) obliteration of archenteron	(4) obliteration of blastocoel
	51.	The tendency of population to remain in	genetic equilibrium may be disturbed by :
		(1) Lack of migration	(2) Lack of mutations
		(3) Lack of random mating	(4) Random mating
	52.	The two antibiotic resistance genes on ve	ector pBR322 are for :
		(1) Tetracycline and Kanamycin	
		(2) Ampicillin and Tetracycline	
×		(3) Ampicillin and Chloramphenicol	
	±5	(4) Chloramphenicol and Tetracycline	
	53.	Which one of the following equipments a large scale, for industrial production of	is essentially required for growing microbes on enzymes?
		(1) BOD incubator	(2) Sludge digester
		(3) Industrial oven	(4) Bioreactor
	54.	DNA precipitation out of a mixture of with:	biomolecules can be achieved by treatment
		(1) Isopropanol	
		(2) Chilled ethanol	
		(3) Methanol at room temperature	
9	90	(4) Chilled chloroform	
P(G-EE	E-2021/(Life Sciences)(SET-X)/(D)	P. T. O.

- 55. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement.
 - (1) The enzyme cuts DNA molecule at identified position within the DNA.
 - (2) The enzyme binds DNA at specific sites and cuts only one of the two strands.
 - (3) The enzyme cuts the sugar-phosphate backbone at specific sites on each strand.
 - (4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA.
- 56. The correct order of steps in Polymerase Chain Reaction (PCR) is:
 - (1) Extension, Denaturation, Annealing
 - (2) Annealing, Extension, Denaturation
 - (3) Denaturation, Annealing, Extension
 - (4) Denaturation, Extension, Annealing
- 57. Enzyme used in ELISA test is:
 - (1) Endonuclease
 - (2) Ligase
 - (3) Peroxidase
 - (4) Polymerase
- 58. What will be the pCO₂ and pO₂ in atmospheric air as compared to alveoli respectively?
 - (1) Low and high

(2) High and low

(3) High and high

(4) Low and low

- **59.** In ureotelic animals, urea is formed by:
 - (1) Kreb's cycle
 - (2) EM pathway
 - (3) Ornithine cycle
 - (4) Cori's cycle

- **60.** Which one of the following mammalian cells is not capable of metabolising glucose to carbon-dioxide aerobically?
 - (1) Red blood cells
 - (2) White blood cells
 - (3) Unstriated muscle cells
 - (4) Liver cells
- **61.** Which one of the following is a protein deficiency disease?
 - (1) Kwashiorkor
 - (2) Night blindness
 - (3) Eczema
 - (4) Cirrhosis
- **62.** Which of the following statement is incorrect wrt inbreeding?
 - (1) Inbreeding increases homozygosity
 - (2) Inbreeding exposes harmful recessive gene that are eliminated by selection
 - (3) Inbreeding helps in accumulation of deleterious alleles and elimination of desirable alleles
 - (4) Inbreeding helps in developing a pure-line animal
- 63. What is correct to say about the hormone action in humans?
 - (1) In females, FSH first binds with specific receptors on ovarian cell membrane
 - (2) FSH stimulates the secretion of estrogen and progesterone
 - (3) Glucagon is secreted by B-cells of Islets of langerhans and stimulates glycogenolysis
 - (4) Secretion of thymosins is stimulated with aging

P. T. O.

14	timed with food filtering flagellated
64.	Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum:
	(1) Protozoa
	(2) Coelenterata
	(3) Porifera
	(4) Mollusca
65.	Which of the following characteristics is mainly responsible for diversification of insects on land?
	(1) Eyes
	(2) Segmentation
	(3) Bilateral symmetry
	(4) Exoskeleton
66.	Which of the following endoparasites of humans does show viviparity?
	(1) Ascaris lumbricoides (2) Ancylostoma duodenale
	(3) Enterobius vermicularis (4) Trichinella spiralis
67.	Select the Taxon mentioned which represents both marine and fresh water species.
	(1) Echinoderms
	(2) Ctenophora
	(3) Cephalochordata
	(4) Cnidaria
68.	Which one of the following living organisms completely lacks a cell wall?
	(1) Cyanobacteria
	(2) Sea-fan(Gorgonia)
	(3) Saccharomyces
	(4) Blue-green algae

69.	Biological	organisation	starts	with	:
-----	------------	--------------	--------	------	---

- (1) Cellular level
- (2) Organismic level
- (3) Atomic level
- (4) Submicroscopic molecular level

70. Peripatus is a connecting link between:

- (1) Coelenterata and Porifera
- (2) Ctenophora and Platyhelminthis
- (3) Mollusca and Echinodermata
- (4) Annelida and Arthropoda

71. The C 4 plants are photosynthetically more efficient than C 3 plants because :

- (1) They have more chloroplasts
- (2) The CO₂ compensation point is more
- (3) CO₂ generated during photorespiration is trapped and recycled through PEP carboxylase
- (4) The CO₂ efflux is not prevented

72. The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by:

- (1) T.H. Morgan
- (2) Gregor J. Mendel
- (3) Alfred Sturtevant
- (4) Sutton Boveri
- 73. What is the genetic disorder in which an individual has an overall masculine development gynaecomastia, and is sterile?
 - (1) Turner's syndrome

(2) Klinefelter's syndrome

(3) Edward syndrome

(4) Down's syndrome

PG-EE-2021/(Life Sciences)(SET-X)/(D)

P. T. O.

74.	A woman has an X-linked condition on can be inherited by :	one of her X chromosomes. This chromosome
	(1) Only daughters	(2) Only sons
	(3) Both sons and daughters	(4) Only grandchildren
75.	Which one of the following discoveries	esulted in a Nobel Prize?
	(1) X-rays induce sex-linked recessive l	ethal mutations
	(2) Cytoplasmic inheritance	
	(3) Recombination of linked genes	
	(4) Genetic engineering	71
76.	Normally DNA molecule has A-T, G- alternative valency status owing to rearr	C pairing. However, these bases can exist in angements called:
	(1) Frame-shift mutation	(2) Tautomerisational mutation
	(3) Analog substitution	(4) Point mutation
77.	The most striking example of point muta	ation is found in a disease called:
	(1) Down's syndrome	(2) Sickle cell anaemia
	(3) Edward syndrome	(4) Night blindness
78.	When two genetic loci produce identications considered to be:	al phenotypes in cis and trans position, they are
	(1) Multiple alleles	(2) The parts of same gene
	(3) Pseudoalleles	(4) Different genes
79.	What map unit (Centimorgan) is adopte	d in the construction of genetic maps?
	(1) A unit of distance between two exp	ressed genes representing 10% cross over
	(2) A unit of distance between two exp	ressed genes representing 100% cross over
	(3) A unit of distance between genes ar	chromosomes, representing 1 % cross over
	(4) A unit of distance between genes of	n chromosomes, representing 50% cross over
PG-EI	E-2021/(Life Sciences)(SET-X)/(D)	

collegedunia India's largest Student Review Platform

Expressed Sequence Tags (ESTS) refers	to:	
(1) Genes expressed as RNA	(2) Polypeptide expression	
(3) DNA polymorphism	(4) Novel DNA sequences	
	nt features distinguishing Gnetum from Cycas giosperms :	
(1) Embryo development and apical me	ristem	
(2) Absence of resin duct and leaf venas	tion	
(3) Presence of vessel elements and abs	ence of archegonia	
(4) Perianth and two integuments		
Which one of the following is heterospo	prous ?	
(1) Equisetum		
(2) Dryopteris		
(3) Salvinia		
(4) Adiantum		
3. A system of classification, in which a l	arge number of traits are considered, is:	
(1) Natural system		
(2) Phylogenetic system		
(3) Artificial system		
(4) Synthetic system		
34. The book 'Genera plantarum' was writ	ten by:	
(1) Engler & Prantl	(2) Bentham & Hooker	
(3) Bessey	(4) Hutchinson	
85. Phylogenetic classification is one whi	ch is based on :	
(1) Overall similarities	(2) Utilitarian system	
(3) Habits of plants	(4) Common evolutionary descent	
G-EE-2021/(Life Sciences)(SET-X)/(D)	P. T. O.	
	(3) DNA polymorphism Select one of the following of importar and Pinus and showing affinities with an (1) Embryo development and apical me (2) Absence of resin duct and leaf venat (3) Presence of vessel elements and abs (4) Perianth and two integuments Which one of the following is heterospo (1) Equisetum (2) Dryopteris (3) Salvinia (4) Adiantum 3. A system of classification, in which a language (1) Natural system (2) Phylogenetic system (3) Artificial system (4) Synthetic system (4) Synthetic system (5) Phylogenetic system (6) Phylogenetic system (7) Engler & Prantl (7) Engler & Prantl (8) Bessey 85. Phylogenetic classification is one which (1) Overall similarities	

86.	En	dosperm of gymnosperm is ontogenet	tically similar to angiospermic :
40		Endosperm	(2) Embryo sac
	(3)	Archegonium	(4) Megasporangia
87.	Flo	wering plants are more successful that	an other members of the plant world because:
	(1)	They are large and have a good vasc	cular tissue system
	(2)	They carry out variety of pollination	n mechanism
	(3)	The protected plant embryo can surv	vive in the period of unfavourable conditions
	(4)	All of these	
88.	A.	Heterospory is found in all members	s of pteropsida:
	B.	Selaginella is advance among pteride	lophytes as it produces seeds
	C.	Pinus leaves are monomorphic, pir adaptation against transpiration	nnate compound and have sunken stomata as
	D.	Sporic meiosis is characteristic of Chlamydomonas and Ulothrix.	f life cycle in many organisms like Volvox,
	(1)	All are incorrect	(2) Both B and C are correct
	(3)	Only B is correct	(4) Only D is incorrect
89.	Wh	ich phytohormone is synthesised in ri	ripened fruits?
	(1)	ABA	(2) Auxin
	(3)	Cytokinin	(4) Ethylene
90.	Wh	ich of the following is incorrect abou	at ethylene?
	(1)	Promotes root hair formation	
	(2)	It is natural and derivative of caroter	noids
	(3)	It increases the number of female flo	owers
	(4)	It causes synchronisation of flowering	ng and fruit set in pineapples

91.	All the following may be methods for t except:	he inhibition of microbial growth by ant	ibiotics
	(1) Antibiotics disrupt cell wall synthes	is.	
	(2) Antibiotics interfere with cell members	orane function.	
	(3) Antibiotics prevent the release of er	nergy from ATP.	
	(4) Antibiotics inhibit the synthesis of p	protein.	
92.	In which of the following would you seeds?	place the plants having vascular tissue	lacking
	(1) Pteridophytes	(2) Gymnosperms	
	(3) Bryophytes	(4) Algae	
93.	Apomixis is a type of reproduction in pl	ants in which?	
	(1) Fertilization does not take place.		
	(2) Male nucleus takes part in fertilizati	on.	
	(3) Embryo formation does not take pla	ce.	
	(4) Generative nucleus takes part in fer	tilization.	
94.	From which of the following algae, again	is commercially extracted?	
	(A) Gracillaria		
	(B) Fucus	* * * * * * * * * * * * * * * * * * *	
	(C) Sargassum		
	(D) Gelidium		
	(E) Turbinaria	17 😠	
	(1) C and E	(2) B and C	
	(3) D and E	(4) A and D	
95.	In which one of the following pairs of mosquitoes?	of diseases is viral as well as transmi	tted by
	(1) Elephantiasis and dengue	(2) Yellow fever and sleeping sickness	S
	(3) Encephalitis and sleeping sickness	(4) Yellow fever and dengue	
PG-EE	C-2021/(Life Sciences)(SET-X)/(D)		P. T. O.

96.	A free living nitrogen-fixing cyanobacte with the water fern Azolla is:	rium which can also form symbiotic association
	(1) Tolypothrix	(2) Nostoc
	(3) Chlorella	(4) Anabaena
97.	lonophores are:	
	(1) the gating mechanisms associated w	ith the transport of ions.
	(2) intrinsic proteins that passively trans	sport ions.
	(3) chemicals that form pores in the pla	
	(4) intrinsic proteins that actively transp	
98.	The trans Golgi network is:	
	(1) the intermediate compartment between	een the ER and the Golgi.
	(2) the part of the Golgi where fusion o	
		sosomes, plasma membrane and cell exterior
	(4) the network of vesicles that transport	rt proteins between Golgi cisternae.
99.	Most human cells are diploid with to increases to 4C before the onset of mocluster will be:	otal DNA content of 2C. The DNA content itosis. At anaphase, the DNA content of each
	(1) 4C	(2) 2C
	(3) 1C	(4) 3C
100.	Malignant cancer cells have all of the fo	ollowing properties except .
	(1) unregulated cell division	о.
	(2) inhibition of angiogenesis	
	(3) resistance to apoptosis	
	(4) cellular immortality	

