MARKING SCHEME(COMPARTMENT) 2018

SET 55/1 SET 1

Q.NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
Q1.	$v = \sqrt{\frac{2eV}{m}}$	1	1
Q2.	Normal : Circular	1/2	
	At an angle of 30° it will follow helical path	1/2	1
Q3.	relative intensity position on screen	1	1
Q4.	From few MHz to 30-40 MHz	1	1
Q5.	The power of a lens equals to the reciprocal of its focal length(in meter). Also accept $p = \frac{1}{2}$	1/2	
	Do not deduct mark if student does not write the word meter. (Alternatively Power of a lens is the ability of conversion /diversion of the rays incident on the lens.) SI Unit: Dioptre(D)		1.
	SECTION B		
Q6.	SHM nature of oscillation of the wire AB Expression for instantaneous magnetic flux Expression for instantaneous induced emf Qualitative explanation 1/2 1/2 1/2 1/2		
	The wire AB would oscillate in a simple harmonic way $We can write$ $x = -a \cos \omega t$	1/2	
	(as $x = -a$ at $t = 0$) Therefore Instantaneous magnetic Flux $\phi(t) = Blx$ $(l = AB)$	1/2	
		ET EE /1 Dog	

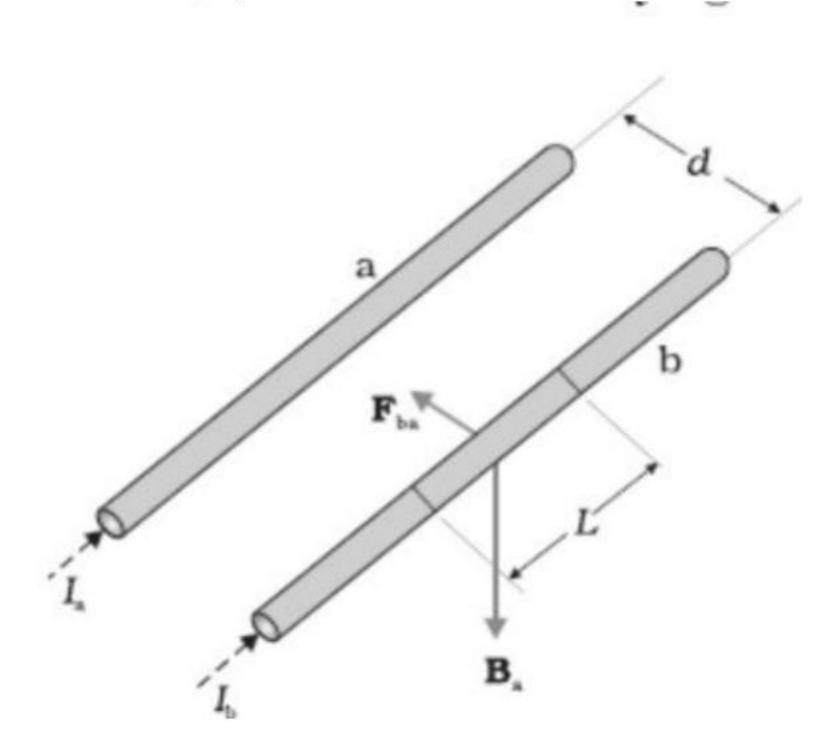
SET 55/1 Page **1** of **18**

e(t) = \frac{d\phi}{dt} = aBlw \text{ sin or } \\ The induced emf, therefore varies with time sinusoidally. (Alternatively Arm AB executes SHM under the influence of restoring force developed in the spring, consequently an induced emfis produced across the ends of moving armAB which varies sinusoidally.) (Give full credit for the above part if the student explains qualitatively without using mathematical equations) 2 Q7. [a)Definition		Instantaneous induced emf	¥	
The induced emf, therefore varies with time sinusoidally. (Alternatively Arm AB executes SHM under the influence of restoring force developed in the spring, consequently an induced emfis produced across the ends of moving armAB which varies sinusoidally.) (Give full credit for the above part if the student explains qualitatively without using mathematical equations) 2 2 27. (a) Definition		$e(t) = -\frac{d\phi}{dt} = aBl\omega \sin \omega t$	1/2	
Arm AB executes SHM under the influence of restoring force developed in the spring, consequently an induced emfis produced across the ends of moving armAB which varies sinusoidally.) (Give full credit for the above part if the student explains qualitatively without using mathematical equations) 2 Q7. (a) Definition Relation (b) Identification of A and B (a) Measure of the response of magnetic material to an external magnetic field. Also accept $x = \frac{ M }{ H }$ We have $x = (\mu, -1)$ (b) 0.96 : Diamagnetic 500 : Ferromagnetic (a) Used to destroy cancer cells (b) (i) The region, between the plates of a capacitor, connected to time varying or steady voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction			1/2	
Relation (b) Identification of A and B (a) Measure of the response of magnetic material to an external magnetic field. Also accept $ \chi = \frac{ M }{ H } $ We have $ \chi = (\mu_r - 1) $ (b) 0.96 : Diamagnetic 500 : Ferromagnetic (a) One use (b) One example each (b) One example each (c) One example each (d) Ui) The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction		Arm AB executes SHM under the influence of restoring force developed in the spring, consequently an induced emfis produced across the ends of moving armAB which varies sinusoidally.) (Give full credit for the above part if the student explains qualitatively without		2
Also accept $\chi = \frac{ M }{ H }$ We have $\chi = (\mu_r - 1)$ (b) 0.96 : Diamagnetic 500 : Ferromagnetic $500 = independent of the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction$	Q7.	Relation ½		
Q8. (a) One use (b) One example each 1/2+ 1/2 (a) used to destroy cancer cells 1 (b) (i)The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction		Also accept $\chi = \frac{ M }{ H }$ We have $\chi = (\mu_r - 1)$	1/2 1/2 1/2	
(a) used to destroy cancer cells (b) (i)The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction		(b) 0.96 : Diamagnetic 500 : Ferromagnetic	1/2	2
(b) (i)The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction	Q8.			
voltage source,has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction		(a) used to destroy cancer cells	1	
current. (Alternatively A circuit, having no capacitor in it, and carrying a current has conduction		voltage source, has a displacement current but no conduction current. (ii) The wires, connected to the plates of a capacitor, joined to a time varying		
		current.	1/2	
				2

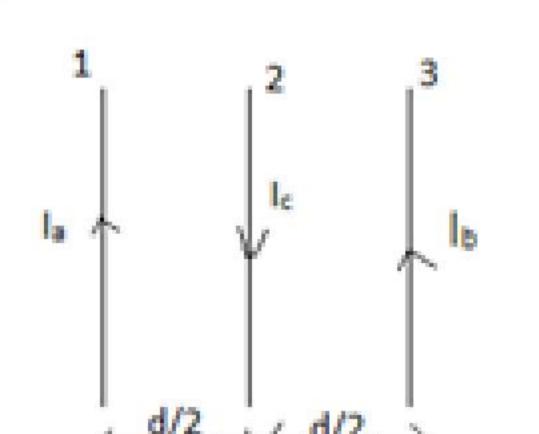
We have $W = hv_0$ = $6.63 \times 10^{-34} \times 8 \times 10^{14} J$ = $\frac{6.63 \times 10^{-29} \times 8}{1.6 \times 10^{-19}}$ = $3.315 eV$ We have $hv = W + eV_x$ = $(3.315 + 3.3) eV$	Finding the Work function Finding the Frequency of incident light 1	
$W = hv_0$ = $6.63 \times 10^{-34} \times 8 \times 10^{14} J$ = $\frac{6.63 \times 10^{-20} \times 8}{1.6 \times 10^{-19}}$ = $3.315 eV$ We have $hv = W + eV,$ = $(3.315 + 3.3) eV$ $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ = $1.596 \times 10^{15} Hz$ OR $Calculating (1) Energy of a photon (1) Number of photons emitted (1) Number of photons emitted (1) V2 + V2 = 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J = 3.978 \times 10^{-19} J \approx 2.49 eV Number of photons emitted per second = \frac{power}{energy of photon} = \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J} = 5.03 \times 10^{15} hertons/energy d$	I maing the Frequency of including the	
$W = hv_0$ = $6.63 \times 10^{-34} \times 8 \times 10^{14} J$ = $\frac{6.63 \times 10^{-20} \times 8}{1.6 \times 10^{-19}}$ = $3.315 eV$ We have $hv = W + eV,$ = $(3.315 + 3.3) eV$ $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ = $1.596 \times 10^{15} Hz$ OR $Calculating (1) Energy of a photon (1) Number of photons emitted (1) Number of photons emitted (1) V2 + V2 = 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J = 3.978 \times 10^{-19} J \approx 2.49 eV Number of photons emitted per second = \frac{power}{energy of photon} = \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J} = 5.03 \times 10^{15} hertons/energy d$	We have	
$= \frac{6.63 \times 10^{-20} \times 8}{1.6 \times 10^{-19}}$ $= 3.315 eV$ We have $hv = W + eV_s$ $= (3.315 + 3.3) eV$ $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ $= 1.596 \times 10^{15} Hz$ OR $Calculating (i) Energy of a photon Mumber of photons emitted (ii) Number of photons emitted (iii) Number of photons emitted (iii) Number of photons emitted (iv) \frac{1}{2} + $	$W = h v_0$	
$= \frac{6.63 \times 10^{-20} \times 8}{1.6 \times 10^{-19}}$ $= 3.315 eV$ We have $hv = W + eV_s$ $= (3.315 + 3.3) eV$ $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ $= 1.596 \times 10^{15} Hz$ OR $Calculating (i) Energy of a photon Mumber of photons emitted (ii) Number of photons emitted (iii) Number of photons emitted (iii) Number of photons emitted (iv) \frac{1}{2} + $	$=6.63\times10^{-34}\times8\times10^{14} J$	1/2
We have $hv = W + eV_s = (3.315 + 3.3)eV$ $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ $= 1.596 \times 10^{15} Hz$ OR Calculating (i) Energy of a photon (ii) Number of photons emitted $\frac{1}{2} + \frac{1}{2}$ $= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\cong 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of photon}$ $= \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J}$ $= 5.03 \times 10^{15} photons (con and second decay)$		
We have $hv = W + eV_s$ = $(3.315 + 3.3)eV$: $v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$ Hz = 1.596×10^{15} Hz OR Calculating (i) Energy of a photon (ii) Number of photons emitted $\frac{1/2 + 1/2}{1/2 + 1/2}$ Energy of photon $\frac{1}{2}$ $\frac{1}$	$=\frac{1.6\times10^{-19}}{1.6\times10^{-19}}$	2202
$hv = W + eV_s$ = (3.315 + 3.3)eV $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ = 1.596 × 10 ¹⁵ Hz OR Calculating (i) Energy of a photon (ii) Number of photons emitted $\frac{1/2 + 1/2}{1/2 + 1/2}$ Energy of photon= hv = 6.63 × 10 ⁻³⁴ × 6.0 × 10 ¹⁴ J = 3.978 × 10 ⁻¹⁹ J ≈ 2.49eV Number of photons emitted per second = $\frac{power}{energy of photon}$ = $\frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J}$ = 5.03 × 10 ¹⁵ photons to and	= 3.315 eV	1/2
$hv = W + eV_s$ = (3.315 + 3.3)eV $\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ = 1.596 × 10 ¹⁵ Hz OR Calculating (i) Energy of a photon (ii) Number of photons emitted $\frac{1/2 + 1/2}{1/2 + 1/2}$ Energy of photon= hv = 6.63 × 10 ⁻³⁴ × 6.0 × 10 ¹⁴ J = 3.978 × 10 ⁻¹⁹ J ≈ 2.49eV Number of photons emitted per second = $\frac{power}{energy of photon}$ = $\frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J}$ = 5.03 × 10 ¹⁵ photons to and		
$hv = W + eV_s$ = (3.315+3.3)eV ∴ $v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$ Hz = 1.596×10 ¹⁵ Hz OR Calculating (i) Energy of a photon (ii) Number of photons emitted $\frac{1}{2} + \frac{1}{2}$ = 6.63×10 ⁻³⁴ × 6.0×10 ¹⁴ J = 3.978×10 ⁻¹⁹ J ≈ 2.49eV Number of photons emitted per second = $\frac{power}{energy of photon}$ = $\frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ = 5.03×10 ¹⁵ photons (see and	We have	1/2
$\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$ $= 1.596 \times 10^{15} Hz$ OR $\begin{bmatrix} \text{Calculating} & & & & & & & & & & & & \\ & & & & & & &$	$h\nu = W + eV_s$	/2
Calculating (i) Energy of a photon (ii) Number of photons emitted $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	=(3.315+3.3)eV	
OR $Calculating (i) Energy of a photon (ii) Number of photons emitted (iii) Number of photons emitted (iv) \frac{1}{2} + \frac{1}{2} = 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J = 3.978 \times 10^{-19} J \approx 2.49eV Number of photons emitted per second = \frac{power}{energy of photon} = \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J} = 5.03 \times 10^{15} photons (coe and second)$	1/ =	A E
Calculating (i) Energy of a photon (ii) Number of photons emitted $ \frac{1/2 + 1/2}{1/2 + 1/2} $ Energy of photon= hv $ = 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $ = 3.978 \times 10^{-19} J$ $ \approx 2.49 eV $ Number of photons emitted per second = $\frac{power}{energy of photon}$ $ = \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J}$ $ = 5.03 \times 10^{15} photons / see and $	6.63×10^{-34}	1/2
Calculating (i) Energy of a photon (ii) Number of photons emitted $ \frac{1}{2} + \frac{1}{2} $ (iii) Number of photons emitted $ \frac{1}{2} + \frac{1}{2} $ $\frac{1}{2} $		
Energy of photon= hv $= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\cong 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ logo \ ond$	OR	latfor
Energy of photon= hv $= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\cong 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ logo \ ond$	Review	
Energy of photon= hV $= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\cong 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J \ / \ s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ logo \ ord$		
Energy of photon= hv $= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\approx 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons / second$		
$= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\approx 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ lose and$	adia's la	
$= 6.63 \times 10^{-34} \times 6.0 \times 10^{14} J$ $= 3.978 \times 10^{-19} J$ $\approx 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J/s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ lose and$	Energy of photon= by	
$= 3.978 \times 10^{-19} J$ $\cong 2.49 eV$ Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J \ / \ s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ / second$		1/2
Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J \ / \ s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons \ / \ soc \ and$		
Number of photons emitted per second = $\frac{power}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J / s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons / second$		1/2
Number of photons emitted per second = $\frac{1}{energy of \ photon}$ $= \frac{2.0 \times 10^{-3} \ J / s}{3.978 \times 10^{-19} \ J}$ $= 5.03 \times 10^{15} \ photons / second$	power	
$= \frac{2.0 \times 10^{-3} J/s}{3.978 \times 10^{-19} J}$ $= 5.03 \times 10^{15} \text{ photons / sec and}$	Number of photons emitted per second = $\frac{1}{1}$	1/2
$= \frac{1}{3.978 \times 10^{-19} J}$ $= 5.03 \times 10^{15} \text{ photons } l \text{ see and}$		
$=5.03\times10^{15} \ photons / \sec ond$	$=\frac{1}{3.978\times10^{-19}J}$	
	$=5.03\times10^{15} \ photons / \sec ond$	1/2
		/2

Q10.			
V 10.	Formula 1/2		
	(i) Frequency of first case		
	(ii) Frequency of second case		
	Ratio 1/2		
	We have $h_{\mathbf{W}} = F - F$		
	$h\nu = E_f - E_i$		
	$= \frac{E_0}{n_f^2} - \frac{E_0}{n_i^2}$	1/2	
	$(i) hv_1 = E_0(\frac{1}{1^2} - \frac{1}{2^2}) = E_0 \times \frac{3}{4}$	1/2	
	$(ii) hv_2 = E_0(\frac{1}{2^2} - \frac{1}{\infty^2}) = E_0 \times \frac{1}{4}$	1/2	
	$\therefore \frac{v_1}{v_2} = 3$	1/2	2
	SECTION C	25	
		0	
Q11.	Definition of Electric flux SI unit Formula (Gauss's Law) Calculation of Charge within the cube	Latform	
	Electric Flux is the dot product of electric field and area vector. Also Accept	1	
	$\varphi = \oint \overrightarrow{E} \cdot \overrightarrow{ds}$ SI Unit : Nm ² /C or volt -meter For a given case	1/2	
	$\phi = \phi_1 + \phi_2 = \left[E_x(at \ x = 2a) - E_x(at \ x = a) \right] a^2$		
	$= \left[\alpha(2a) - \alpha(a)\right]a^2$		
	$=\alpha a^3$		
	$= 100 \times (0.1)^3 = 0.1 Nm^2 / C$	1/2	
	But		
	$\phi = \frac{q}{\mathcal{E}_0}$	1/2	
	$\therefore q = \varepsilon_0 \phi = 8.854 \times 10^{-12} \times 10^{-1} C$		
	= 0.8854 pC	1/2	
	OR Relevant formulae		
	Calculation of time taken by the electron		
	Calculation of time taken by the proton 1		
		FT 55/1 Page	- 1 of 10

SET 55/1 Page **4** of **18**


	We have Force =qE		
	aE	1/2	
	Acceleration a = $\frac{qL}{m}$		
	Also		
	$s = \frac{1}{2}at^2 as u = 0$		
	$s = -at^2 as u = 0$		
	$\sqrt{2s}$		
	$\therefore t = \sqrt{\frac{a}{a}}$	1/2	
	(i) For the electron		
	$a = \frac{eE}{}$		
	a-m		
	$3 \times 10^{-2} \times 9.1 \times 10^{-31}$	1/2	
	$\therefore t = \sqrt{\frac{1.6 \times 10^{-19} \times 2.0 \times 10^4}{1.6 \times 10^{-19} \times 2.0 \times 10^4}}$		
	=2.92ns	1/	
		1/2	
	(ii) for proton		
	$2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}$	1/2	
	$t = \sqrt{\frac{1.6 \times 10^{-19} \times 2 \times 10^4}{1.6 \times 10^{-19} \times 2 \times 10^4}}$	2 6	
	$=0.125 \mu s$	1/2	
		/2	
		latto	
	Deview.		
10	ant indent in		3
12.	Obtaining Expression for the equivalent		
	(i) resistance 1		
	(ii) emf		
	ϵ_1		
	I_1 I_2 I_3	1/2	
	$A I B_1 \qquad E_2 \qquad B_2 \qquad I C$		
	$I_2 \qquad I_2 \qquad I_3 \qquad I_4$		
	1 1 1		
	$\begin{array}{ccc} - & - & - & - \\ r & r_1 & r_2 \end{array}$		
		1/2	
	$\therefore r = \frac{r_1 r_2}{r_1 + r_2}$		
	$I_1 + I_2$ $I = I_1 + I_2$	1/_	
	$V = E_1 - I_1 r_1$ and $V = E_2 - I_2 r_2$	1/2	
	$\therefore I = \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$	1/2	
	$V = \left(\frac{E_1 r_2 + E_2 r_2}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	1/2	
	$also V = E_{eq} - Ir_{eq}$ $\Rightarrow \frac{E_{eq}}{E_{eq}} = \frac{E_1}{E_2} + \frac{E_2}{E_2}$		3
	$\Rightarrow \frac{r_{eq}}{r_{eq}} = \frac{D_1}{r_1} + \frac{D_2}{r_2}$	1/2	

SET 55/1 Page **5** of **18**



(a)	Definition of SI unit Of current	1
(b)	Explanation of the force of attraction	1/2
	Finding the resultant force acting on the third conductor	1½

- (a) The *ampere* is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would produce on each of these conductors a force equal to 2×10^{-7} newton per metre of length.
 - (b) The wire (b) experiences a force due to the magnetic field caused by the current flowing in wire (a).

The magnetic field at any point on the wire (b) due to the current in wire (a) is is perpendicular to the plane of two wires and pointing inwards and hence force on it will be towards wire (a). Similarly force on wire (a) will be towards wire (b). Hence two wires carrying currents in same direction attract each other.

Force on wire (3) due to wire (1) $= \frac{\mu_0 I_a I_c}{1}$ towards right

$$= \frac{\mu_0 I_a I_c}{2\pi \left(\frac{d}{2}\right)}$$
towards right

Force on wire 3 due to wire 2

$$\left(\frac{\mu_0 I_b I_c}{2\pi \left(\frac{d}{2}\right)}\right) \text{ towards left}$$

Net force on wire 3

$$= \frac{\mu_0 I_c}{\pi d} [I_a - I_b] \text{ towards right}$$

Also accept

$$= \frac{\mu_0 I_c}{\pi d} [I_b - I_a] \text{ towards left}$$

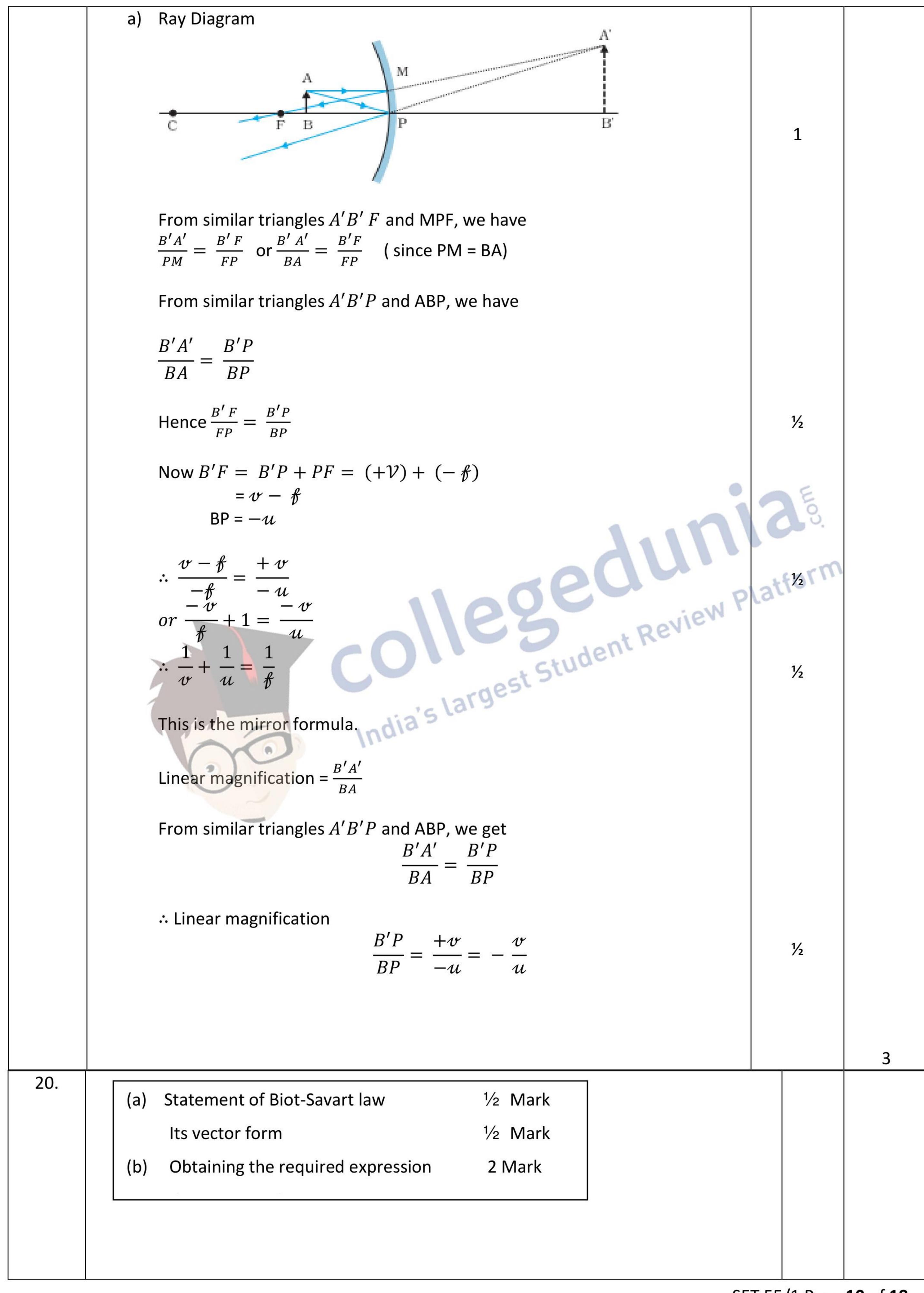
Note: please do not deduct last 1/2 mark if the student does not write the direction of force.

1/2

14	a) Intensity of linearly polarized light – ½ Dependence on orientation – ½ Explanation - 1 b) Graphical representation - 1		
	a) The intensity of the linearly polarized light would be $^{I_0}/_2$. No; it does not depend on the orientation. Explanation : The polaroid will let the component of the unpolarized light, parallel to its pass axis, to pass through it irrespective of its orientation.	1/2 1/2	1/2
	b) We have $I = I_0 cos^2 \theta$ \therefore The graph is as shown below	1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1
	->6	atform	3
15	Statement of equation with explanation of symbols – 1 Expression for i. Planck's constant ii. Work function Einstein's photoelectric equation is		
	$hv = hv_0 (= W) + \frac{1}{2} mv_{max}^2$ v = frequency of incident light $v_0 = threshold frequency of photo sensitive material$ W = work function	1/2	
	$\frac{1}{2}mv_{max}^2 = max.$ kinetic energy of the emitted photoelectrons	1/2	
	(Also accept if the student writes $\hbar v = W + eV_{\!\scriptscriptstyle S}$		
	W = work function of photosensitive material V_{s} = Stopping Potential)		
	From Einstein's photoelectric equation, we have $h\nu = W + \frac{1}{2} m\nu_{max}^2$ $\therefore \nu_{max}^2 = \frac{2}{m} (h\nu - W)$ $= \left(\frac{2h}{m}\right)\nu + \left(\frac{-2W}{m}\right)$		

SET 55/1 Page **7** of **18**

V	Slope of the given graph = $\frac{l}{n}$	1/2	
	Intercept on the y – axis = $-l$	1/2	
	$\therefore \frac{2h}{m} = \frac{\ell}{n} \text{ or } h = \frac{m\ell}{2n}$	1/2	
	$\frac{1}{m} - \frac{1}{n} \text{ or } \mathcal{U} - \frac{1}{2n}$ and $-\ell = \frac{-2\mathcal{W}}{m} \text{ or } \mathcal{W} = \frac{m\ell}{m}$	1/2	3
	m 2		
16	a) Drawing the plot -1		
	Marking the relevant regions $-\frac{1}{2} + \frac{1}{2}$ b) Finding values of a and b $-\frac{1}{2} + \frac{1}{2}$		
	a) =		
	energy (MeV)		
	Potential er		
	-100	1	
	r (fm)		
	For $r > r_0$, the force is attractive	1/20	
	For $r < r_0$, the force is repulsive	1/2	
	a) We have,	latforni	
	$1 + 235 = a + 94 + 2 \times 1$	1,	
	∴ a = 236 – 96 = 140	1/2	
	Also		
	$0 + 92 = 54 + b + 2 \times 0$ b = 92 - 54 = 38	1/2	3
17	a) Writing the truth table -1		
	b) Photodiode and its operation – 1 + 1		
	a) The inputs of the third gate are \overline{A} and \overline{B} . Hence the truth table is as given		
	below.		
	$oxed{A} oxed{B} oxed{C}$	1	
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		
	1 1 0 0 1		
	(Note: The student need not write the columns for $ar{A}$ and $ar{ m B}$ in her/ his answer)		
	(b) A photodiode is a special purpose $p-n$ junction diode fabricated with a transparent window to allow light to fall on the diode.	1/2	
	Incident light, with photon energy greater than the energy gap of the semi-	1,	
	conductor, generates electron -hole pairs. The magnitude of the photo current depends on the intensity of intensity of incident light.	1/2	
	S	ET 55/1 Page	e 8 of 18



SET 55/1 Page **8** of **18**

17	The photodiode is usually operated under reverse bias conditions.	1/2	
	This is because this makes it easier to detect changes in light intensity and makes the photodiode work as a detector of optical signals.	1/2	3
18	Labelled circuit diagram -1 Working as a voltage amplifier -2 Working as a voltage amplifier:	1	
	When a small sinusoidal voltage (with amplitude v_s) is connected in series with the dc bias voltage supply, V_{BB} , the base current will have sinusoidal variations super imposed on the value of I_B . As a result, the collector current will also have sinusoidal variations super imposed on the value of I_c . This results in corresponding sinusoidal variations in the value of the output voltage V_o . These sinusoidal variations in output voltage are an amplified version of the corresponding variations in the input voltage. This implies that the transistor can be used as a voltage amplifier. (Note: Give 1 mark to those students also who only draw either this circuit diagram or the circuit diagram given below:	1/2 of the state o	
	I_{B} I_{B} I_{B} I_{B} I_{B} I_{B} I_{B} I_{B} I_{C} I_{B} I_{C} I_{C		3
19	a) Ray diagram -1 b) Obtaining i. mirror formula -1½ ii. expression for liner magnification -½		
		FT 55/1 Page	0 (10

India's largest Student Review Platform

		1
(a) According to Biot Savart law : The magnitude of magnetic field $d\vec{B}$, due to a current element $d\vec{1}$, is	1/2	
(i) proportional to current I and element length, dl(ii) inversely proportional to the square of the distance r.		
Its direction is perpendicular to the plane containing $d\vec{l}$ and \vec{r} .		
In vector notation,		
	4,	
$\overrightarrow{dB} = \frac{\mu_0}{I} I \frac{d\overrightarrow{l} \times \overrightarrow{r}}{3}$	1/2	
4π r ³		
(b)		
\mathbf{v}		
di d		
$I \left(\begin{array}{c} R \\ O \end{array} \right) \qquad X \qquad P \ d\mathbf{B}_{\mathbf{x}} > X$	1/2	
$\left\langle \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\rangle_{\mathrm{d}l}$		
	10	
$1 \to -1$		
We have $\overrightarrow{dB} = \frac{\mu_0}{4\pi} I \frac{ dl \times \overrightarrow{r} }{3}$	form	
$r^2 = x^2 + R^2$ $4\pi r^3$		
ant Review	1.7	
$\therefore dB = \frac{\mu_0 I}{4\pi} \frac{dl}{(x^2 + R^2)^{3/2}}$	1/2	
We need to add only the components of $d\vec{B}$ along the axis of the coil.		
C U Gdi		
Hence, $B = \int \frac{R\theta}{4\pi} \frac{16R}{(x^2 + R^2)^{3/2}} \cos\theta$.		
$= \int \frac{\mu_0}{I dl} R$	1/2	
$= \int \frac{1}{4\pi} \frac{1}{(x^2 + R^2)^{3/2}}.$	72	
$= \frac{\mu_0 I R^2}{}$		
$= \frac{1}{2(x^2 + R^2)^{3/2}}.$		
$\therefore \mathbf{B} = \frac{\mu_0 \mathbf{I} \mathbf{R}^2}{2 \pi^2 \mathbf{n}^2} \hat{\mathbf{i}}$	1/2	3
$2(x^2 + R^2)^{3/2}$		
21. Writing the two loop equations ½ + ½ Mark		
Finding the current through DB 1½ Marks		
Finding the p.d. between B and D 1/2 Mark		
Using Kirchoff's voltage rule, we have :		
For loop DABD		
$I_1 \times 1 + (1) + (-2) + 2I_1 + 2(I_1 + I_2) = 0$ Or $5I_1 + 2I_2 = 1$ (i)	1/2	
For loop DCBD		
$+ I_2 \times 3 + (3) + (-1) + I_2 + 2(I_1 + I_2) = 0$ Or $2I_1 + 6I_2 = -2$ (ii)	1/2	
	/1 Page	11 of 18

	Solving (i) and (ii), we get		
	$I_1 = \frac{5}{10} A$		
	13	1/2	
	$I_2 = \frac{-6}{13} A$	1/	
	• Current through DP $_{-}$ L $_{-}$ L $_{-}$ $_{-}$ A	1/2	
	∴ Current through DB = $I_1 + I_2 = \frac{-1}{13}$ A	1/2	
	∴ P.D. between B and D = 0.154 V	1/2	
			3
22.	(a) Two points of difference ½ + ½ Mark		
	(b) Formula ½ Marks		
	(b) Formula 72 Ivianos		
	Calculation of wavelength 1½ Mark		
	(a)		
	Any two point of difference :	NE O	
		J. 0.	
	Interference Diffraction	1/2 +	
	Fringes are equally spaced. Intensity is same for all maxima Intensity falls as we go to successive	10/2	
	Intensity is same for all maxima Intensity falls as we go to successive maxima away from the centre.		
	Superposition of two waves Superposition of a continuous family		
	originating from two narrow slits. of waves originating from each point		
	narrow slits separated by a single slit of width a.		
	distance a.		
	(b)		
	Let D be the distnce of the screen from the plane of the slits. We have		
	Fring width $\beta = \frac{\lambda D}{d}$		
	In the first case	1/2	
	$\lambda \mathbf{D}$		
	$\beta = \frac{\lambda B}{d}$ or $\beta d = \lambda D$ (i)	1/2	
	In the second case $(AD = 0.05)$		
	$(\beta - 30 \times 10^{-6}) = \frac{\lambda(D - 0.05)}{d}$ or $(\beta - 30 \times 10^{-6})d = \lambda(D - 0.05)$ (ii)		
	Subtracting (ii) from (i) we get	1/2	
	$30 \times 10^{-6} \times d = \lambda \times 0.05$		
	$\therefore \lambda = \frac{30 \times 10^{-6} \times 10^{-3}}{5 \times 10^{-2}} \text{m}$		
	$\lambda = 6 \times 10^{-7} \text{m} = 600 \text{ nm}$	1/2	3
23.	SECTION - D	, 2	
25.	JECTION - D		

SET 55/1 Page **12** of **18**

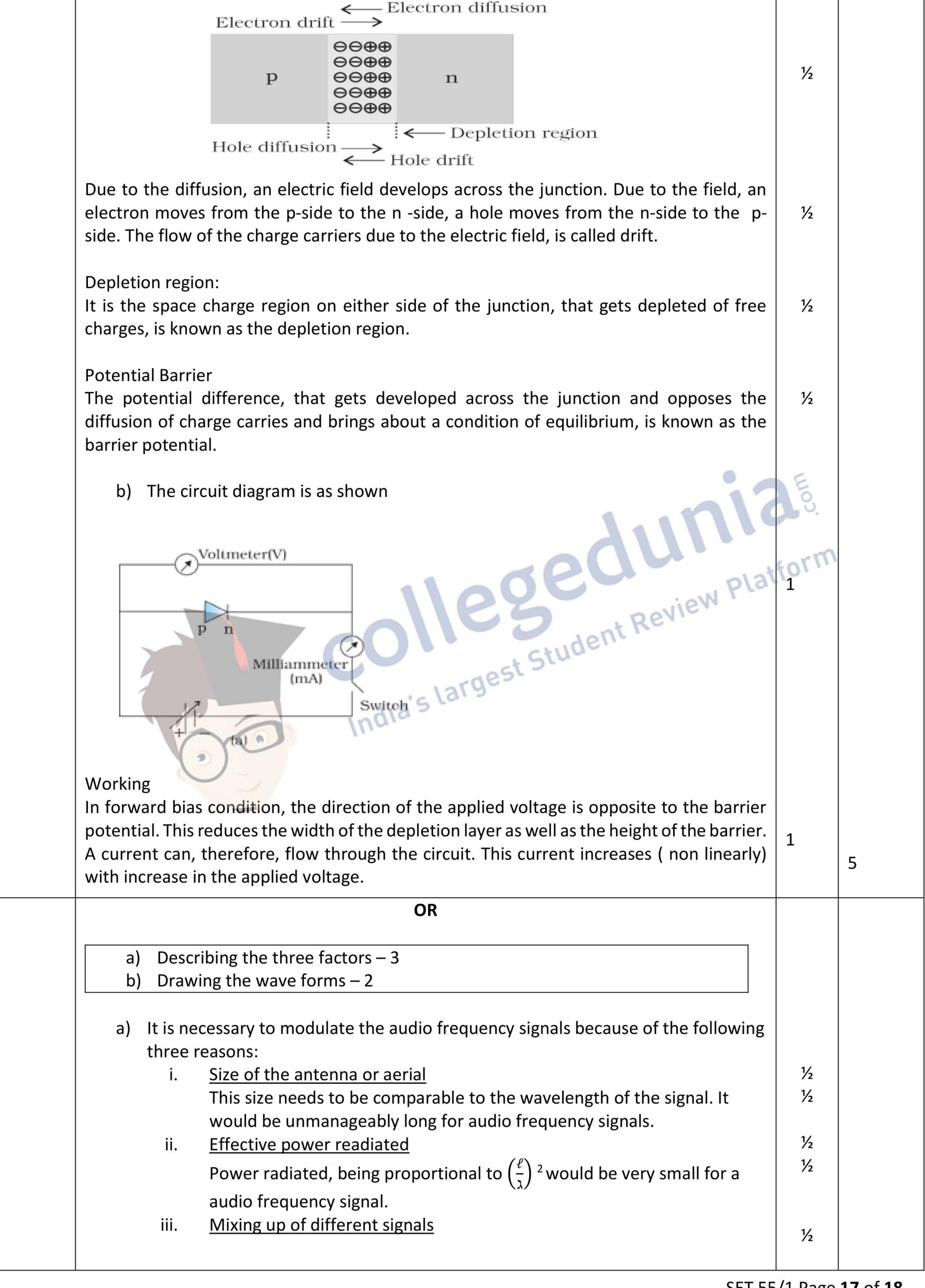
(a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark (c) Range of wavelength 1 Mark (d) Two values 1 + 1 Marks		
(a) X-rays(b) By using X-ray tubes(Alternatively: By bombarding a metal target with high energy electrons)	½ ½	
(c) Wave length range of X-rays is from about (10 nm to 10 ⁻⁴ nm)	1	
(d) Alertness, empathy; concern for her mother, knowledgeable (any two)	(1 + 1)	4
24. SECTION - E		
(a) Finding the electrostatic potential 2 Marks (b) Finding the work done 1 Mark (c) Effect of change of path 1 Mark (d) Potential energy of the system 1 Mark (with justification in each case)	A E	
(a) We have, for a point charge, $V = \frac{1}{4\pi} \frac{q}{\epsilon_0} \frac{q}{r}$ (i) At point (0, 0, z):	form	
Potential due to the charge (+q), $V_{+} = \frac{1}{4\pi \in_{0}} \frac{q}{(z+a)}$ Potential due to the charge (-q), $V_{-} = \frac{1}{4\pi \in_{0}} \frac{(-q)}{(z-a)}$	1/2	
Total potential at (0, 0, z) = $\frac{q}{4\pi \in 0} \left[\frac{1}{z+a} - \frac{1}{z-a} \right]$ = $\frac{-2 q a}{4\pi \in 0} (z^2 - a^2)$	1/2	
(ii) At point (x, y, 0) Potential due to the charge + q $V_{+} = \frac{1}{4\pi \in 0} \frac{q}{\sqrt{x^2 + y^2 + a^2}}$		
Potential due to the charge (-q) $V_{-} = \frac{1}{4\pi \in_{0}} \frac{-q}{\sqrt{x^{2} + y^{2} + a^{2}}}$ Total potential at (x, y, 0)	1/2	

SET 55/1 Page **13** of **18**

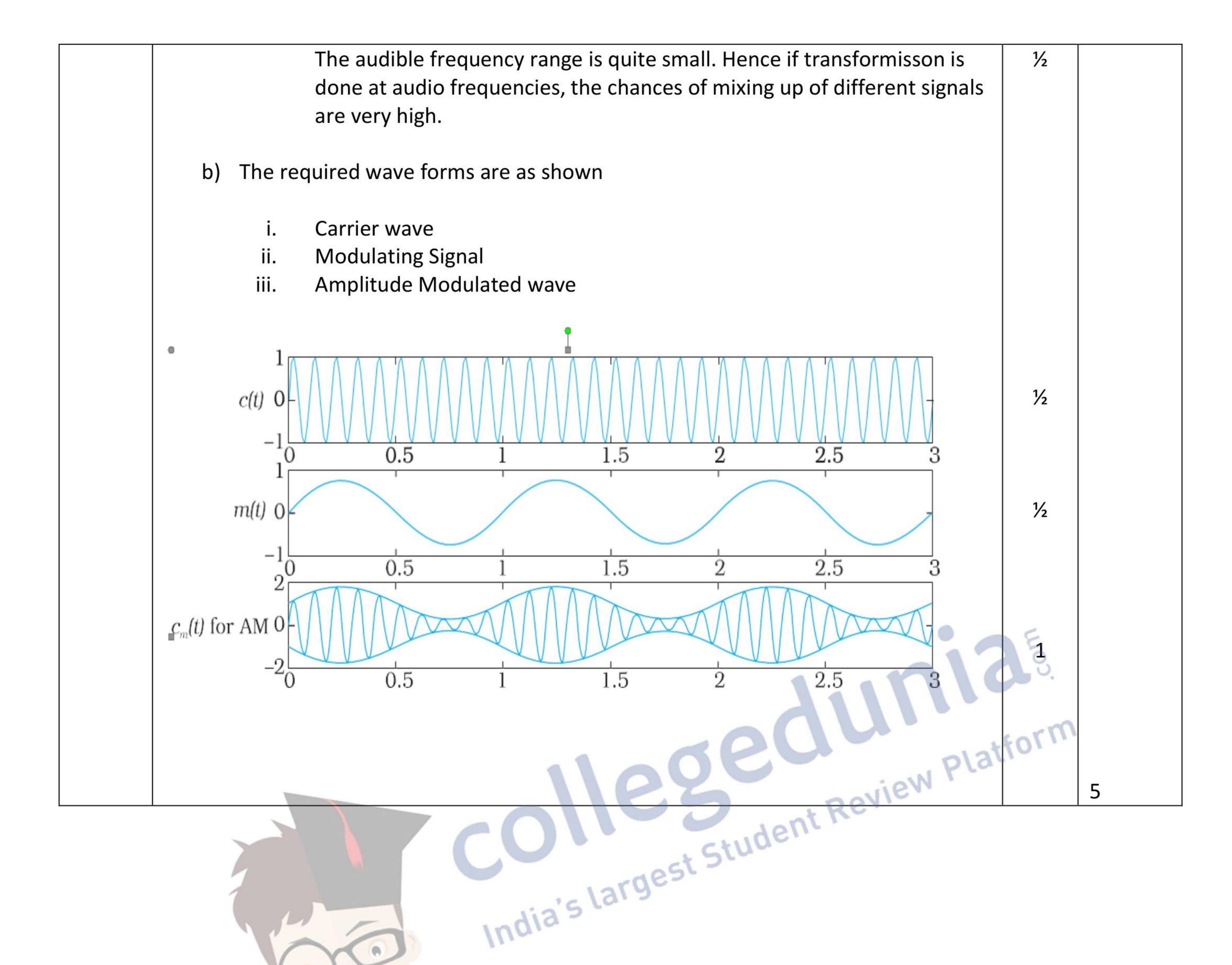
$= \frac{q}{4\pi \in 0} \left(\frac{1}{\sqrt{x^2 + y^2 + a^2}} - \frac{1}{\sqrt{x^2 + y^2 + a^2}} \right) = 0$	1/2	
Note: Give full credit of part (ii) if a student writes that the point $(x,y,0)$ is equidistant from charges $+q$ and $-q$, Hence total potential due to them at the given point will be zero.		
(b) Work done = $q [V_1 - V_2]$ $V_1 = 0$ and $V_2 = 0$ \therefore work done = 0 Where V_1 and V_2 are the total potential due to dipole at point (5,0,0) and (-7,0,0)	1/ ₂ 1/ ₂	
(c) There would be no change This is because the electrostatic field is a conservative field.	½ ½	
(Alternatively: The work done, in moving a test charge between two given points is independent of the path taken)		
(d) The two given charges make an electric dipole of dipole moment $\vec{p}=q.\overline{2a}$ P.E. in position of unstable equilibrium (where \vec{p} and \vec{E} are antiparallel to each other) = + pE = 2 aq E	1/2	5
OR OR	form	
(a) Finding the total energy before the capacitors are connected 1 Mark (b) Finding the total energy in the parallel combination 3 Marks (c) Reason for difference 1 Mark		
(a) We have Energy Stored in a capacitor = $\frac{1}{2}CV^2$	1/2	
∴ Energy stored in the charged capacitors $E_1 = \frac{1}{2}C_1V_1^2$ And $E_2 = \frac{1}{2}C_2V_2^2$	/2	
Total energy stored = $\frac{1}{2}C_1V_1^2 + C_2V_2^2$ (b)Let V be the potential difference across the parallel combination. Equivalent capacitance = $(C_1 + C_2)$	1/2	
Since charge is a conserved quantity, we have	1/2	
$\Rightarrow \qquad (C_1 + C_2)V = C_1V_1 + C_2V_2 \\ \Rightarrow \qquad V = \left[\frac{C_1V_1 + C_2V_2}{(C_1 + C_2)} \right]$	1/2	
∴ Total energy stored in the parallel combination		
$= \frac{1}{2}(C_1 + C_2)V^2$	1/2	
$= \frac{1}{2} \frac{(C_1 V_1 + C_2 V_2)^2}{(C_1 + C_2)}$	1/2	5

SET 55/1 Page **14** of **18**

	(c) The total energy of the parallel combination is different (less) from the total energy before the capacitors are connected. This is because some energy gets used up due to the movement of charges during sharing of charge.	1	
25.	a) Drawing the two graphs		
	Capacitive Reactance (Ohm) Frequency (Hz) Frequency (Hz)	1/2 +1/2	
	b) (The current leads the voltage by an angle Θ where $0 < \Theta < \frac{\pi}{2}$). The required phaser diagram is as shown. [Here Θ = $\tan^{-1}[(^1/_{\omega CR})]$	ASO.	
	(C) In device X: Current lags behind the voltage by $\frac{\pi}{2}$ \therefore X is an inductor. In device Y:	1/2	
	Current is in phase with the applied voltage ∴ X is a resistor.	1/2	
	We are given that $0.25 = \frac{220}{X_L}$ or $X_L = \frac{220}{0.25}\Omega = 880\Omega$	1/2	
	Also $0.25 = 0.25 = \frac{220}{X_R}$ $\therefore X_R = \frac{220}{0.25} \Omega = 880\Omega$	1/2	
	For the series combination of X and Y,		
	Equivalent impedance = $\sqrt{X_L^2 + X_R^2} = (880\sqrt{2})\Omega$	1/2	
	$\therefore \text{ Current flowing} = \frac{220}{880\sqrt{2}} A = 0.177 A$	1/2	5



OR		
a) Principal of working – 1 b) Defining efficiency – 1 c) Any two factor – ½ + ½ d) Calculating the current drawn - 2		
 a) A transformer works on the principle of mutual induction. (Alternatively – an emf is induced in the secondary coil when the magnetic flux, linked with it changes with time due to ta (time) changing magnetic flux linked with the primary coil). 	1	
b) The efficiency of a transformer equals the ratio of the output power to the input power. $ (Alteratively: \\ Efficiency = \frac{output\ power}{input\ power} \\ or\ Efficiency\ \frac{V_S\ I_S}{V_P\ I_P}) $	1	
c) i) Eddy current losses ii) joule heat losses iii) hysteresis losses iv) magnetic flux leakage losses (Any two)	1/2 +1/2	
We have $\frac{V_S I_S}{V_P I_P} = 90\% = 0.9$ $\therefore \frac{220}{22} \frac{I_S}{I_P} = 0.9$ India's largest Student	1/2	
ightharpoonup Triangle of the content of the cont	1/2	
= 0.0056A	1/2	5
26 a) Explaining the two processes- Defining the two terms - ½ + ½ b) Circuit diagram -1 Working -1		
a) The two important processes are diffusion and drift Due to concentration gradient, the electrons diffuse from the n side to the p side and holes diffuse from the ρ side to the n side.	1/2	
SFT 55	/1 Page	16 of 18



SET 55/1 Page **17** of **18**

