## Marking scheme – 2017 (Compartment)

## CHEMISTRY (043)/ CLASS XII

## **Set 56(B)**

| Q.No | Value Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks       |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| 1    | n-type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |  |  |
| 2    | $H_3PO_2$ , $H_3PO_3$ , $HPO_3$ , $H_3PO_4$ , $H_4P_2O_6$ (any two )                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |  |  |
| 3    | SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |
| 4    | Hexaamminecobalt(III) ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |  |  |
| 5    | $(C_2H_5)_2NH > C_2H_5NH_2 > C_6H_5NH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |  |  |
| 6    | Water is hypotonic so water enters inside the egg through semi-permeable membrane whereas saturated NaCl solution is hypertonic so water flows out of the egg.                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |
| 7    | <ul> <li>(i) Order of a reaction is an experimental quantity. It can be zero and even a fraction but molecularity cannot be zero or a non integer.</li> <li>(ii) Order is applicable to elementary as well as complex reactions whereas molecularity is applicable only for elementary reactions. For complex reaction molecularity has no meaning.</li> <li>(iii) For complex reaction, order is given by the slowest step and generally, molecularity of the slowest step is same as the order of the overall reaction.</li> </ul> | 1+1<br>5.   |  |  |
| 8    | i). $2\text{NaOH} + \text{Cl}_2 \rightarrow \text{NaCl} + \text{NaOCl} + \text{H}_2\text{O}$ (cold and dilute) ii). $6 \text{ NaOH} + 3\text{Cl}_2 \rightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$ (hot and conc.)                                                                                                                                                                                                                                                                                                  | 1           |  |  |
| 0    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           |  |  |
| 8    | i). $4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |  |  |
|      | ii) Due to the formation of HCl and HOCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           |  |  |
| 9    | i. Hydrogen bonding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1           |  |  |
|      | ii. D-(+)-glucose and D-(+)-galactose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2,1/2     |  |  |
| 10.  | i) It is water soluble and is readily excreted through urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |  |  |
|      | ii) Starch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |  |  |
| 11   | i) Schottky defect- Equal number of cations and anions are missing. ii) F- centre – anionic vacancies occupied by electrons iii) Ferromagnetism – when magnetic domains are aligned in same direction.                                                                                                                                                                                                                                                                                                                               | 1<br>1<br>1 |  |  |
| 12   | $\Delta T_f = i K_f m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2         |  |  |
|      | Here, $m = w_B x 1000 / M_B X w_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2         |  |  |
|      | $2 = 3 \times 1.86 \times w_B \times 1000 / 111 \times 500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           |  |  |
|      | $w_B = 19.89 g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           |  |  |
|      | (or any other correct method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |  |  |
| 13   | $k = \frac{2.303}{t} \log \frac{[A]o}{[A]}$ $= \frac{2.303}{10} \log \frac{100}{75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2         |  |  |



|                        | $=\frac{2.303}{10} \times 0.125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                        | = 0.0288 min <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2          |
|                        | $t_{1/2} = 0.693/k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2          |
|                        | = 0.693/ 0.0288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                        | $t_{1/2} = 24.06 \text{ min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2          |
|                        | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| 13                     | Log $k_2/k_1 = \frac{Ea}{2.303 R} \left[ \frac{T2-T1}{T2.T1} \right]$<br>Log $12.5 \times 10^{-2}/2.5 \times 10^{-2} = \frac{Ea}{2.303 R} \left[ \frac{20}{12.5 \times 10^{-2}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |
|                        | Log 12.5 × 10 <sup>-2</sup> /2.5 × 10 <sup>-2</sup> = $\frac{Ea}{2.303 \times 8.314}$ [ $\frac{20}{300 \times 320}$ ]<br>Log 5 = $\frac{Ea}{40.147}$ [ $\frac{20}{20000}$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            |
|                        | Ea= 64242 J/ mol = 64.242 kJ / mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            |
| 14                     | i) the impurities are more soluble in the melt than in the solid state of the metal.  ii) The metal is converted into its volatile compound and collected elsewhere. It is then decomposed to get the pure metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.          |
| 15                     | ii) Different components of a mixture are differently adsorbed on an adsorbent a) Because of high bond dissociation enthalpy of H-O bond than H-S bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tu           |
| 13                     | b) Bi is more stable in +3 state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |
|                        | c) It has strong affinity for water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            |
| 16                     | a) sp <sup>3</sup> , paramagnetic<br>b) SCN <sup>-</sup> / NO <sub>2</sub> <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1<br>  1   |
| 17                     | a) C <sub>2</sub> H <sub>5</sub> Cl + Nal acetone C <sub>2</sub> H <sub>5</sub> I + NaCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |
|                        | b) 2 Na Ether + 2NaX where X= Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1        |
| 18.                    | c) CH <sub>3</sub> Cl + KNO <sub>2</sub> CH <sub>3</sub> -ONO + KCl<br>A: CH <sub>3</sub> -CO-CH <sub>2</sub> -CH <sub>3</sub> ; B: CH <sub>3</sub> -CH(OH)-CH <sub>2</sub> -CH <sub>3</sub> ; C: CH <sub>3</sub> -CH=CH-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, ½, ½,     |
| 10.                    | CH <sub>3</sub> O CH <sub>3</sub> , B. Ol ig Ol i(Ol i) Ol i <sub>2</sub> Ol ig ol i = Ol i o | 1, /2 , /2 , |
| 19.                    | i) Due to –I effect of chlorine ii) Due to absence of α-hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1          |
| 5 <u>00</u> 0058884500 | iii) It forms crystalline addition product with carbonyl compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |
| 20.                    | A: C <sub>6</sub> H <sub>5</sub> COOH B: C <sub>6</sub> H <sub>5</sub> CONH <sub>2</sub> C: C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,1        |
| 21                     | i) $CH_2$ = $CH$ - $CH$ = $CH_2$ and $CH_2$ = $CH$ ii) Thermosetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2, 1/2     |
|                        | iii) Addition polymerisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
| 22                     | i) Medicines used to treat hyper-acidity. ii) Substances used to kill / prevent the growth of micro organisms when applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |
|                        | to living tissues. iii) Medicines used for the treatment of stress and mental disorders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |
| <b>7</b> 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/ 1/        |
| 23                     | i) Caring, Responsible, helpful, kindness (any two)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2, 1/2     |



|            | ii) Due to coagulation                                                                                                                                                                               | 1         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            | iii) Due to greater charge of Fe <sup>3+</sup>                                                                                                                                                       | 1         |
|            | iv) Process of converting freshly prepared precipitate into sol by shaking it with                                                                                                                   | 1         |
| 2 (-27) 19 | dispersion medium along with a small amount of suitable electrolyte.                                                                                                                                 | 1 10000   |
| 24         | $\int_{-\infty}^{\infty} \Lambda_{\text{HCOOH}} = \lambda_{\text{HCOO-}}^{\circ} + \lambda_{\text{H+}}^{\circ}$                                                                                      | 1         |
|            | $= 54.6 + 349.6 = 404.2 \text{ S cm}^2/\text{mol}$                                                                                                                                                   | 1         |
|            | Now, $\Lambda_{\rm m} = k \times 1000/M$ S cm <sup>2</sup> /mol                                                                                                                                      | 1/2       |
|            | = 1.152 × 10 <sup>-3</sup> ×1000/0.025                                                                                                                                                               |           |
|            | $\Lambda_{\rm m} = 46.1~{\rm S~cm^2/mol}$                                                                                                                                                            | 1         |
|            | $\alpha = \Lambda_m / \Lambda_m^o$                                                                                                                                                                   | 1/2       |
|            | = 46.1 / 404.2 = 0.114                                                                                                                                                                               | 1         |
|            | OR                                                                                                                                                                                                   |           |
| 24         | a) i)Magnesium prevents the oxidation of steel by transfering the excess of                                                                                                                          | 1         |
|            | electrons to steel.                                                                                                                                                                                  |           |
|            | ii) Because Zn²⁺ ions forms complex ion with NH₃                                                                                                                                                     | 1         |
|            | b) $\Lambda^{\circ}_{NaCl} = \lambda^{\circ}_{Cl} + \lambda^{\circ}_{Na+}$                                                                                                                           |           |
|            | $= 76.5 + 50.1 = 126.6 \text{ S cm}^2/\text{mol}$                                                                                                                                                    | 1         |
|            | Now, $\Lambda_m = k \times 1000/M$ S cm <sup>2</sup> /mol                                                                                                                                            | E         |
|            | $= 1.06 \times 10^{-2} \times 1000/0.1$                                                                                                                                                              | 18        |
|            | $\Lambda_{\rm m} = 106~\rm S~cm^2/mol$                                                                                                                                                               | 1         |
|            | $\alpha = \Lambda_{\rm m} / \Lambda_{\rm m}^{\rm o}$                                                                                                                                                 | ~m        |
|            | = 106 / 126.6 = 0.837                                                                                                                                                                                | 9, ,,     |
| 25         | a) Due to strong inter-atomic metallic bonding, Zn                                                                                                                                                   | 1,1       |
|            | b) The steady decrease of atomic radii with increase in atomic number due to                                                                                                                         | 1         |
|            | poor sheilding by 4f electrons.                                                                                                                                                                      |           |
|            | Consequences: Similar size of elements of 4d and 5d series, their separation                                                                                                                         | 1/2,1/2   |
|            | becomes difficult                                                                                                                                                                                    | 1         |
|            | c) Because of variable oxidation states                                                                                                                                                              |           |
| 25         |                                                                                                                                                                                                      | 1 1       |
| 25         | A: Cr <sub>2</sub> O <sub>3</sub> ; B: Na <sub>2</sub> CrO <sub>4</sub> ; C: Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> ; D: (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> b) 4 | 1 ×4      |
|            |                                                                                                                                                                                                      | 1         |
| 26         | a) i) CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH conc. H2SO4, Heat CH <sub>3</sub> -CH=CH <sub>2</sub> HBr CH <sub>3</sub> -CH(Br)-CH <sub>3</sub> AqKOH                                     | 1         |
|            | CH <sub>3</sub> -CH(OH)-CH <sub>3</sub>                                                                                                                                                              |           |
|            | ii) .                                                                                                                                                                                                |           |
|            | OH ONa OH                                                                                                                                                                                            |           |
|            | NaOH (i) CO <sub>2</sub> COOH                                                                                                                                                                        | 1         |
|            | $\frac{\text{NaOH}}{\text{(ii) H}^+}$                                                                                                                                                                |           |
|            | b) i) Heat both the compounds with NaOH and I <sub>2</sub> , pentan-2-ol forms yellow ppt of                                                                                                         | Section 2 |
|            | iodoform while pentan-3-ol does not.                                                                                                                                                                 | 1         |
|            |                                                                                                                                                                                                      |           |
|            | ii) Add neutral FeCL₃ to both the compounds, phenol gives violet complex while cyclohexanol does not.                                                                                                | 1         |
|            | c) 2-methylprop-2-en-1-ol                                                                                                                                                                            |           |
|            | c) Z-methylprop-z-en-1-01                                                                                                                                                                            | 1         |
|            |                                                                                                                                                                                                      |           |
|            | OR                                                                                                                                                                                                   |           |
| 26         | a) .                                                                                                                                                                                                 |           |
|            |                                                                                                                                                                                                      |           |
|            |                                                                                                                                                                                                      |           |
|            |                                                                                                                                                                                                      |           |
|            |                                                                                                                                                                                                      | I         |



| Formation of protonated alcohol.                                                                                               |         |
|--------------------------------------------------------------------------------------------------------------------------------|---------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                          |         |
| Ethanol Protonated alcohol (Ethyl oxonium ion)                                                                                 | 1       |
| Formation of carbocation: It is the slowest step and hence, the rate determining step of the reaction.                         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                          | 1       |
| Formation of ethene by elimination of a proton.                                                                                | <u></u> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           |         |
| b) i)Due to resonance / sp² hybridised carbon ii) Resonance stabilisation of phenoxide ion imparts acidic character to phenol. | 1       |
|                                                                                                                                | 1       |
|                                                                                                                                | 1       |

| 1     | Dr. (Mrs.) Sangeeta Bhatia | 6              | Sh. Rakesh Dhawan    |           |
|-------|----------------------------|----------------|----------------------|-----------|
| , a a |                            |                | - O ( ) V            | * FOrm    |
| 2     | Dr. K.N. Uppadhya          | 7              | Dr. (Mrs.) Sunita    | blar,     |
|       |                            |                | Ramrakhiani          | $M_{A}$ , |
|       |                            |                | Dudent Rev.          |           |
| 3     | Prof. R.D. Shukla          | 8              | Mrs. Preeti Kiran    |           |
|       |                            | India's Large: |                      |           |
| 4     | Sh. S.K. Munjal            | 9              | Dr. Azhar Aslam Khan |           |
|       |                            |                |                      |           |
| 5     | Sh. D.A. Mishra            | 10             | Ms. Garima Bhutani   |           |
|       |                            |                |                      |           |
|       |                            |                |                      |           |

