MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) \text{ equals}$ (1) $\ln 2$ (2) $\ln \frac{3}{2}$ (3) $\ln \frac{2}{3}$ (4) 0

Answer (1)

Sol. $\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{n+r} \right)$ $\Rightarrow \quad \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left(\frac{1}{1+\frac{r}{n}} \right)$ $\Rightarrow \quad \int_{0}^{1} \frac{dx}{1+x}$ $\Rightarrow \quad \ln(1+x) \Big|_{0}^{1} = \ln 2$

2. For solution of $\frac{dy}{dx} + y \tan x = \sec x$, y(0) = 1, then

 $y\left(\frac{\pi}{6}\right) =$ (1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1+\sqrt{3}}{2}$ (3) $\frac{1}{2}$ (4) $-\frac{\sqrt{3}}{2}$

Answer (2)

Sol. IF = $e^{\int \tan x \, dx}$ = |sec x| Solution of equation is $y \cdot |\sec x| = \int \sec x |\sec x| \, dx$

$$\Rightarrow y \sec x = \tan x + C$$

at $x = 0, y = 1$
 $C = 1$
at $x = \frac{\pi}{6}$
 $y \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} + 1$
 $y = \left(\frac{1+\sqrt{3}}{\sqrt{3}}\right)\frac{\sqrt{3}}{2}$
 $= \frac{1+\sqrt{3}}{2}$
3. The sum $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \dots, \infty$ terms
equals
(1) $\frac{1}{2}$ (2) $\frac{1}{3}$
(3) $\frac{1}{4}$ (4) $\frac{1}{5}$
Answer (1)
Sol. $\sum_{r=1}^{\infty} \frac{r}{1+r^2+r^4}$
 $\Rightarrow \frac{1}{2} \sum_{r=1}^{\infty} \frac{(r^2+r+1)-(r^2-r+1)}{(r^2+r+1)\times(r^2-r+1)}$
 $\Rightarrow \frac{1}{2} \sum_{r=1}^{\infty} \left(\frac{1}{r^2-r+1} - \frac{1}{r^2+r+1}\right)$
 $\Rightarrow \frac{1}{2} \sum_{r=1}^{\infty} \left(\frac{1-\frac{1}{3}}{1-\frac{1}{7}}\right)$
 $\Rightarrow \frac{1}{2} \left(1 - \frac{1}{3}\right)$
 $\Rightarrow \frac{1}{2} \times 1 = \frac{1}{2}$

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

- The number of ways by which letter of word ASSASSINATION can be arranged such that all vowels come together is
 - (1) $\frac{8!3!}{6!}$ (2) $\frac{8!}{4!3!}$ (3) $\frac{8! \cdot 6!}{4!(2!)^2 \cdot 3!}$ (4) $\frac{8! \cdot 6!}{4!3!2!}$

Answer (3)

Sol. $A \rightarrow 3$ $S \rightarrow 4$ $l \rightarrow 2$ $N \rightarrow 2$ $T \rightarrow 1$ $O \rightarrow 1$ $\therefore A \rightarrow 3, l \rightarrow 2 \& O \rightarrow 1 \text{ are vowels}$ $\therefore \text{ Number of ways} = \frac{8!}{4!2!} \cdot \frac{6!}{3!2!}$ 5. $f(x) + f'(x) = \int_{0}^{2} f(t) dt \text{ and } f(0) = e^{-2}$, then the value of f(2) - 2f(0) is (1) 0 (2) -1 (3) 1 (4) 2

Answer (2)

Sol. $f(x) + f'(x) = \int_{0}^{2} f(t)dt = k$ (let) $\Rightarrow e^{x}f(x) + e^{x} \cdot f'(x) = k \cdot e^{x}$ $\Rightarrow \int d(f(x) \cdot e^{x}) = \int k \cdot e^{x}dx$ $\Rightarrow f(x) \cdot e^{x} = ke^{x} + c$ $f(0) = e^{-2} \Rightarrow x = 0, y = f(x) = e^{-2}$ $e^{-2} = k + c \Rightarrow c = e^{-2} - k$ $y \cdot e^{x} = k \cdot e^{x} + (e^{-2} - k)$ $\Rightarrow y = k + (e^{-2} - k)e^{-x}$ Now, $\int_{0}^{2} f(x) = k$

$$\Rightarrow \int_{0}^{2} (k + (e^{-2} - k)e^{-x}) dx = k$$

$$\Rightarrow kx|_{0}^{2} - e^{-x} (e^{-2} - k)|_{0}^{2} = k$$

$$\Rightarrow 2k - (e^{-4} - ke^{-2} - e^{-2} + k) = k$$

$$\Rightarrow 2k - e^{-4} + ke^{-2} + e^{-2} - k = k$$

$$\Rightarrow k \cdot e^{-2} = e^{-4} - e^{-2}$$

$$\Rightarrow k = e^{-2} - 1$$

$$\therefore f(x) = e^{-2} - 1 + e^{-x}$$

Now, f(2) - 2f(0)

$$= (e^{-2} - 1 + e^{-2}) - 2(e^{-2} - 1 + 1)$$

$$\Rightarrow 2e^{-2} - 1 - 2e^{-2}$$

$$= -1$$

5. If set $S = \left\{ (\sqrt{3} + \sqrt{2})^{x^{2} - 4} + (\sqrt{3} - \sqrt{2})^{x^{2} - 4} = 10 \right\}$
then n(S) equals
(1) 2 (2) 3
(3) 4 (4) 6
Answer (1)
Sol. Let $(\sqrt{2} + \sqrt{3})^{x^{2} - 4} = t$

$$\therefore t + \frac{1}{t} = 10$$

$$\Rightarrow t^{2} - 10t + 1 = 0$$

$$\Rightarrow (t - 5)^{2} = 24$$

$$\Rightarrow (\sqrt{2} + \sqrt{3})^{x^{2} - 4} = 5 \pm 2\sqrt{6}$$

then $x^{2} - 4 = 2 \Rightarrow x = \pm\sqrt{6}$
if $(\sqrt{2} + \sqrt{3})^{x^{2} - 4} = 5 - 2\sqrt{6}$
then $x^{2} - 4 = -2 \Rightarrow x^{2} = -2$ not possible

\bigotimes	
	JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning
7. 1, 3, 5, <i>x</i> , <i>y</i> are 5 observations. Mean of the	9. Let $R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is irrational}\}$
observations is 5 and variance is 8. The sum of the cubes of the two missing number equals	(1) <i>R</i> is an equivalence relation
(1) 1072 (2) 513	(2) R is symmetric but not reflexive
(3) 1079 (4) 516	(3) R is reflexive but not symmetric
Answer (1)	(4) <i>R</i> is reflexive and symmetric but not transitive
Sol. $\overline{x} = 5$	Answer (3)
$\Rightarrow 1+3+5+x+y=25$	Sol. For reflexive
$\Rightarrow x + y = 16$	$3a - 3b + \sqrt{7} = \sqrt{7}$ is irrational
$\sigma^2 = 8 = \frac{\sum x_i^2}{5} - \left(\overline{x}\right)^2$	∴ (a, a) ∈ R
5 5 (1)	∴ reflexive
$\Rightarrow 8 = \frac{1^2 + 3^2 + 5^2 + x^2 + y^2}{5} - 25$	For symmetric
3	$(a, b) \in R$
$\Rightarrow 165 = 35 + x^2 + y^2$ $\Rightarrow x^2 + y^2 = 130$	\Rightarrow 3a - 3b + $\sqrt{7}$ is irrational
$\Rightarrow x^2 + y^2 = 130$ $\Rightarrow (x + y)^2 - 2xy = 130$	$\Rightarrow 3b - 3a + \sqrt{7}$ is irrational
$\Rightarrow xy = 63$	\Rightarrow (b, a) $\in R$
$\Rightarrow x = 7, y = 9$	∴ Not symmetric
Now, $x^3 + y^3$	For transitive
$\Rightarrow 7^3 + 9^3$	$(a, b) \in R$ and $(b, c) \in R$
⇒ 343 + 729	
\Rightarrow 1072	\Rightarrow 3a-3b+ $\sqrt{7}$ is irrational
8. Sum of series	$3b-3c+\sqrt{7}$ is irrational
$\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{5!0!}$ equals	$3a - 3c + \sqrt{7}$ is irrational
1!50! 3!48! 5!46! 51!0!	\therefore R is not transitive
(1) $\frac{2^{51}}{50!}$ (2) 2^{51}	10. Negation of the statement $p \lor (p \land \neg q)$ is
	(1) <i>p</i>
(3) $51 \cdot 2^{50}$ (4) $\frac{2^{50}}{51!}$	(2) ~p
Answer (4)	(3) q
Sol. $\frac{1}{51!} \left(\frac{51!}{1!50!} + \frac{51!}{3!48!} + \frac{51!}{5!46!} + \dots + \frac{51!}{5!10!} \right)$	(4) ~q
$51! \left(\frac{1}{1!50!} + \frac{3!48!}{3!46!} + \frac{5!46!}{5!46!} + \frac{51!0!}{51!0!} \right)$	Answer (2)
$=\frac{1}{51!}\left({}^{51}C_1+{}^{51}C_3+\ldots+{}^{51}C_{51}\right)$	Sol. $p \lor (p \land \neg q)$
$1(2^{51}) 2^{50}$	$\equiv p$
$=\frac{1}{51!}\left(\frac{2^{51}}{2}\right)=\frac{2^{50}}{51!}$	$\sim (p \lor (p \land \thicksim q)) \equiv \sim p$
- 15 -	

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

11. Let S be solution set for values of x satisfying $\cos^{-1}(2x) + \cos^{-1}\sqrt{1-x^2} = \pi \text{ then } \sum_{x \in S} 2\sin^{-1}(x^2 - 1)$

is equal to

(1) 0 (2)
$$-\sin^{-1}\left(\frac{24}{25}\right)$$

(3)
$$\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
 (4) $\pi - \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$

Answer (2)

Sol.
$$\frac{\pi}{2} - \sin^{-1}(2x) + \frac{\pi}{2} - \sin^{-1}\sqrt{1 - x^2} = \pi$$
$$\Rightarrow \quad \sin^{-1}(2x) + \sin^{-1}\sqrt{1 - x^2} = 0$$
$$\Rightarrow \quad \sin^{-1}(-2x) = \sin^{-1}\sqrt{1 - x^2}$$
$$\Rightarrow \quad -2x = \sqrt{1 - x^2}$$
$$4x^2 = 1 - x^2$$
$$\Rightarrow \quad x = \pm \sqrt{\frac{1}{5}}$$
$$\boxed{x = -\frac{1}{\sqrt{5}}} \text{ is only possible solution}$$
$$\sum_{x \in S} 2 \sin^{-1}(x^2 - 1) = 2\sin^{-1}\left(-\frac{4}{5}\right)$$
$$= -2\sin^{-1}\frac{4}{5}$$

$$=-\sin^{-1}\left(\frac{24}{25}\right)$$

- 12. A triangle be such that cos2*A* + cos2*B* + cos2*C* is minimum. If inradius of the triangle is 3 then which of the following is CORRECT?
 - (1) Area of Δ is $\frac{6\sqrt{3}}{2}$
 - (2) Perimeter of Δ is $18\sqrt{3}$
 - (3) $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B \sin C$
 - (4) Perimeter of triangle is $9\sqrt{3}$

Answer (2)

Sol. If
$$k = \cos 2A + \cos 2B + \cos 2C$$
 is minimum then

$$k = \frac{-3}{2}$$
 and $A = B = C = \frac{\pi}{3}$

$$\therefore r = \frac{\Lambda}{s} = 3 = \frac{\sqrt{3}a^2 \cdot 2}{4 \cdot 3a}$$

$$\Rightarrow a = 6\sqrt{3}$$

$$\therefore \text{ Area} = \frac{\sqrt{3}}{4} \cdot 36.3 = 27\sqrt{3}$$
Perimeter is $18\sqrt{3}$
3. ?
4. ?
5. ?
6. ?
7. ?
8. ?

19. ? 20. ?

1 1 1

1 1 1

.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. Area bounded by y = x|x - 3| and *x*-axis between x = -1 and x = 2 is *A* then 12*A* equals

Sol.
$$y = \begin{cases} x(x-3) & x > 3 \\ -x(x-3) & x \le 3 \end{cases}$$

 $A = \int_{-1}^{2} -x(x-3) dx = \int_{-1}^{2} (-x^{2} + 3x) dx$
 $= \frac{-x^{3}}{3} + \frac{3x^{2}}{2} \Big|_{-1}^{2}$
 $= \left(-\frac{8}{3} + \frac{3}{2} \cdot 4\right) - \left(\frac{1}{3} + \frac{3}{2}\right)$
 $= \frac{-8}{3} + 6 - \frac{11}{6}$
 $= 6 - \frac{27}{6} = \frac{9}{6}$
 $12A = 18$

22. Remainder when $23^{200} + 19^{200}$ divided by 49 equals

Answer (02.00)

- Sol. $23^{200} + 19^{200} = (21+2)^{200} + (21-2)^{200}$ = $2 \Big[{}^{200}C_0 21^{200} + {}^{200}C_2 21^{198} + {}^{200}C_4 21^{196} + ... + {}^{200}C_{198} 21^2 + {}^{200}C_{200} 21^0 \Big]$ = 2(49K + 1)Remainder = 2
- 23. 8, *a*₁, *a*₂ ... *a_n* are terms *m* A.P. Sum of first 4 terms of series is 50 and sum of last 4 terms of series is 170. Find product of middle terms of series

Answer (754)

- Sol. $\frac{4}{2}[16+3d] = 50$ $\Rightarrow d = 3$ $\frac{4}{2}[2a_n + 3(-d)] = 170$ $2a_n - 3d = 85$ $2a_n = 94$ $a_n = 47$ 8 + (n-1)d = 47 $\boxed{n = 14}$ So 7th and 8th are middle terms $T_7 = 8 + 6.3 = 26$ $T_8 = 8 + 7.3 = 29$ $T_7.T_8 = 754$
- 24. A circle is represented by $\frac{|z-2|}{|z-3|} = 2$. Its radius is γ units and centre is (α, β) then find $3(\alpha + \beta + \gamma)$ Answer (12.00)

Sol. Let
$$z = x + iy$$

 $(x-2)^2 + y^2 = 4(x-3)^2 + 4y^2$
 $x^2 + y^2 - 4x + 4 = 4x^2 - 24x + 36 + 4y^2$
 $\Rightarrow 3x^2 + 3y^2 - 20x + 32 = 0$

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

or
$$x^{2} + y^{2} - \frac{20x}{3} + \frac{32}{3} = 0$$

centre $= \left(\frac{10}{3}, 0\right)$
 $\gamma = \sqrt{\left(\frac{10}{3}\right)^{2} + 0^{2} - \frac{32}{3}} = \frac{2}{3}$

25. If
$$f(x) = x^2 + g'(1)x + g''(2)$$
 and $g(x) = 2x + f'(1)$, then $f(4) - g(4)$ equals

Answer (12.00)

 $3(\alpha + \beta + \gamma) = 12$

Sol.
$$g(x) = 2x + f'(1)$$

 $\Rightarrow g'(x) = 2 \Rightarrow g'(1) = 2 \text{ and } g''(x) = 0$
Now,
 $f(x) = x^2 + g'(1)x + g''(1)$
 $f(x) = x^2 + 2x$
 $f'(x) = 2x + 2 \Rightarrow f'(1) = 4$
 $\therefore g(x) = 2x + 4$
 $f(4) - g(4) = (16 + 8) - (8 + 4)$
 $= 24 - 12 = 12$
26. For some values of λ , system of equations
 $\lambda x + y + z = 1$
 $x + \lambda y + z = 1$
 $x + \lambda y + z = 1$
has no solution, then $\sum (|\lambda|^2 + |\lambda|)$ equal
Answer (06.00)
Sol. $\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$
 $\Rightarrow \lambda(\lambda^2 - 1) - 1(\lambda - 1) + 1(1 - \lambda) = 0$
 $\Rightarrow (\lambda - 1)(\lambda^2 + \lambda - 1 - 1) = 0$
 $\Rightarrow \lambda = 1, -2$
For $\lambda = 1$ there are infinite solution
for $\lambda = -2$, system has no solution

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning Normal at $Q x + y = 3 \Rightarrow S \equiv (3, 0)$ $\frac{dy}{dx} + \frac{(x+a)}{y-2} = 0$ is a circle and 27. If solution of ∴ *R*S = 4 y(0) = 1, area of circle is $= 2\pi$. *P* and *Q* are point of 28. Find number of 3-digit number which are divisible intersection of circle with y-axis. Normals at P and by 2 or 3 but not divisible by 7. Q intersect x-axis at R and S. The length of RS is Answer (536.00) Answer (0, 4) **Sol.** Numbers divisible by 2 = 450 = n(A)**Sol.** (y-2)dy + (x+a)dx = 0Numbers divisible by 3 = 300 = n(B) $\Rightarrow \frac{y^2}{2} - 2y + \frac{x^2}{2} + ax = c$ Numbers divisible by 6 = 150 $\Rightarrow x^2 + y^2 + 2ax - 4y + 3 = 0$ Numbers divisible by 2 and 7 = 64 $\Rightarrow (x+a)^2 + (y-2)^2 = a^2 + 1$ Numbers divisible by 3 and 7 = 42Numbers divisible by 2, 3 and 7 = 21 Also $\sqrt{a^2 + 1} = \sqrt{2}$ (as area is 2π sq. units) $\therefore \quad \mathbf{C} \equiv (\mathbf{x} \pm \mathbf{1})^2 + (\mathbf{y} - \mathbf{2})^2 = \mathbf{2}$ 129 For *P* and *Q* put x = 021 \Rightarrow y - 2 = 1 or - 1 \Rightarrow P = (0, 3) and Q = (0, 1) 43 21 If $C = (x + 1)^2 + (y - 2)^2 = 2$ then normal at P $y = x + 3 \Longrightarrow R \equiv (-3, 0)$ and normal at Q C (divisible by 7) $x + y = 1 \Rightarrow S \equiv (1, 0)$ Total numbers = 450 + 300 - 150 - 43 - 21 $\therefore RS = 4$ = 600 - 64 = 536 If $C \equiv (x-1)^2 + (y-2)^2 = 2$ 29. ? Normal at $P y = x + 1 \Rightarrow R \equiv (-1, 0)$ 30. ? \square