MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right)$ equals
(1) $\ln 2$
(2) $\ln \frac{3}{2}$
(3) $\ln \frac{2}{3}$
(4) 0

Answer (1)

Sol. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{1}{n+r}\right)$
$\Rightarrow \lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n}\left(\frac{1}{1+\frac{r}{n}}\right)$
$\Rightarrow \int_{0}^{1} \frac{d x}{1+x}$
$\left.\Rightarrow \ln (1+x)\right|_{0} ^{1}=\ln 2$
2. For solution of $\frac{d y}{d x}+y \tan x=\sec x, y(0)=1$, then $y\left(\frac{\pi}{6}\right)=$
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1+\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $-\frac{\sqrt{3}}{2}$

Answer (2)

Sol. $\mathrm{IF}=e^{\int \tan x d x}=|\sec x|$
Solution of equation is
$y \cdot|\sec x|=\int \sec x|\sec x| d x$
$\Rightarrow y \sec x=\tan x+C$
at $x=0, y=1$
$C=1$
at $x=\frac{\pi}{6}$
$y \cdot \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}}+1$
$y=\left(\frac{1+\sqrt{3}}{\sqrt{3}}\right) \frac{\sqrt{3}}{2}$
$=\frac{1+\sqrt{3}}{2}$
3. The sum $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\ldots \infty$ terms equals
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{4}$
(4) $\frac{1}{5}$

Answer (1)

Sol. $\sum_{r=1}^{\infty} \frac{r}{1+r^{2}+r^{4}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \sum_{r=1}^{\infty} \frac{\left(r^{2}+r+1\right)-\left(r^{2}-r+1\right)}{\left(r^{2}+r+1\right) \times\left(r^{2}-r+1\right)} \\
& \Rightarrow \frac{1}{2} \sum_{r=1}^{\infty}\left(\frac{1}{r^{2}-r+1}-\frac{1}{r^{2}+r+1}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{1}{2}\left(\begin{array}{c}
1-\frac{1}{3} \\
+\frac{1}{3}-\frac{1}{7} \\
+\frac{1}{7}-\frac{1}{13} \\
\vdots
\end{array}\right)
$$

$$
\Rightarrow \quad \frac{1}{2} \times 1=\frac{1}{2}
$$

4. The number of ways by which letter of word ASSASSINATION can be arranged such that all vowels come together is
(1) $\frac{8!3!}{6!}$
(2) $\frac{8!}{4!3!}$
(3) $\frac{8!\cdot 6!}{4!(2!)^{2} \cdot 3!}$
(4) $\frac{8!\cdot 6!}{4!3!2!}$

Answer (3)

Sol. A $\rightarrow 3$
$S \rightarrow 4$
I $\rightarrow 2$
$N \rightarrow 2$
$\mathrm{T} \rightarrow 1$
$\mathrm{O} \rightarrow 1$
$\therefore \mathrm{A} \rightarrow 3, \mathrm{I} \rightarrow 2 \& \mathrm{O} \rightarrow 1$ are vowels
$\therefore \quad$ Number of ways $=\frac{8!}{4!2!} \cdot \frac{6!}{3!2!}$
5. $f(x)+f^{\prime}(x)=\int_{0}^{2} f(t) d t$ and $f(0)=e^{-2}$, then the value of $f(2)-2 f(0)$ is
(1) 0
(2) -1
(3) 1
(4) 2

Answer (2)
Sol. $f(x)+f^{\prime}(x)=\int_{0}^{2} f(t) d t=k($ let $)$

$$
\begin{aligned}
& \Rightarrow \quad e^{x} f(x)+e^{x} \cdot f^{\prime}(x)=k \cdot e^{x} \\
& \Rightarrow \quad \int d\left(f(x) \cdot e^{x}\right)=\int k \cdot e^{x} d x \\
& \Rightarrow f(x) \cdot e^{x}=k e^{x}+c \\
& f(0)=e^{-2} \Rightarrow x=0, y=f(x)=e^{-2} \\
& e^{-2}=k+c \Rightarrow c=e^{-2}-k \\
& y \cdot e^{x}=k \cdot e^{x}+\left(e^{-2}-k\right) \\
& \Rightarrow \quad y=k+\left(e^{-2}-k\right) e^{-x}
\end{aligned}
$$

Now, $\int_{0}^{2} f(x)=k$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{2}\left(k+\left(e^{-2}-k\right) e^{-x}\right) d x=k \\
& \left.\Rightarrow k x\right|_{0} ^{2}-\left.e^{-x}\left(e^{-2}-k\right)\right|_{0} ^{2}=k \\
& \Rightarrow 2 k-\left(e^{-2}-k\right)\left(e^{-2}-1\right)=k \\
& \Rightarrow 2 k-\left(e^{-4}-k e^{-2}-e^{-2}+k\right)=k \\
& \Rightarrow 2 k-e^{-4}+k e^{-2}+e^{-2}-k=k \\
& \Rightarrow k \cdot e^{-2}=e^{-4}-e^{-2} \\
& \Rightarrow k=e^{-2}-1 \\
& \therefore f(x)=e^{-2}-1+e^{-x}
\end{aligned}
$$

Now, f(2) $-2 f(0)$

$$
\begin{aligned}
& =\left(e^{-2}-1+e^{-2}\right)-2\left(e^{-2}-1+1\right) \\
& \Rightarrow 2 e^{-2}-1-2 e^{-2} \\
& =-1
\end{aligned}
$$

6. If set $S=\left\{(\sqrt{3}+\sqrt{2})^{x^{2}-4}+(\sqrt{3}-\sqrt{2})^{x^{2}-4}=10\right\}$ then $n(S)$ equals
(1) 2
(2) 3
(3) 4
(4) 6

Answer (1)
Sol. Let $(\sqrt{2}+\sqrt{3})^{x^{2}-4}=t$
$\therefore \quad t+\frac{1}{t}=10$
$\Rightarrow \quad t^{2}-10 t+1=0$
$\Rightarrow \quad(t-5)^{2}=24$
$\Rightarrow(\sqrt{2}+\sqrt{3})^{x^{2}-4}=5 \pm 2 \sqrt{6}$
\therefore if $(\sqrt{2}+\sqrt{3})^{x^{2}-4}=5+2 \sqrt{6}$
then $x^{2}-4=2 \Rightarrow x= \pm \sqrt{6}$
if $(\sqrt{2}+\sqrt{3})^{x^{2}-4}=5-2 \sqrt{6}$
then $x^{2}-4=-2 \Rightarrow x^{2}=-2$ not possible $\therefore 2$ solutions

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning
7. $1,3,5, x, y$ are 5 observations. Mean of the observations is 5 and variance is 8 . The sum of the cubes of the two missing number equals
(1) 1072
(2) 513
(3) 1079
(4) 516

Answer (1)
Sol. $\bar{x}=5$
$\Rightarrow 1+3+5+x+y=25$
$\Rightarrow x+y=16$
$\sigma^{2}=8=\frac{\sum x_{i}^{2}}{5}-(\bar{x})^{2}$
$\Rightarrow \quad 8=\frac{1^{2}+3^{2}+5^{2}+x^{2}+y^{2}}{5}-25$
$\Rightarrow 165=35+x^{2}+y^{2}$
$\Rightarrow x^{2}+y^{2}=130$
$\Rightarrow(x+y)^{2}-2 x y=130$
$\Rightarrow x y=63$
$\Rightarrow \quad x=7, y=9$
Now, $x^{3}+y^{3}$
$\Rightarrow 7^{3}+9^{3}$
$\Rightarrow 343+729$
$\Rightarrow 1072$
8. Sum of series
$\frac{1}{1!50!}+\frac{1}{3!48!}+\frac{1}{5!46!}+\ldots+\frac{1}{51!0!}$ equals
(1) $\frac{2^{51}}{50!}$
(2) 2^{51}
(3) $51 \cdot 2^{50}$
(4) $\frac{2^{50}}{51!}$

Answer (4)

Sol. $\frac{1}{51!}\left(\frac{51!}{1!50!}+\frac{51!}{3!48!}+\frac{51!}{5!46!}+\ldots .+\frac{51!}{51!0!}\right)$
$=\frac{1}{51!}\left({ }^{51} C_{1}+{ }^{51} C_{3}+\ldots+{ }^{51} C_{51}\right)$
$=\frac{1}{51!}\left(\frac{2^{51}}{2}\right)=\frac{2^{50}}{51!}$
9. Let $R=\{(a, b): 3 a-3 b+\sqrt{7}$ is irrational $\}$
(1) R is an equivalence relation
(2) R is symmetric but not reflexive
(3) R is reflexive but not symmetric
(4) R is reflexive and symmetric but not transitive

Answer (3)

Sol. For reflexive
$3 a-3 b+\sqrt{7}=\sqrt{7}$ is irrational
$\therefore \quad(a, a) \in R$
\therefore reflexive
For symmetric
$(a, b) \in R$
$\Rightarrow 3 a-3 b+\sqrt{7}$ is irrational
$\Rightarrow 3 b-3 a+\sqrt{7}$ is irrational
$\Rightarrow \quad(b, a) \in R$
\therefore Not symmetric
For transitive
$(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow 3 a-3 b+\sqrt{7}$ is irrational
$3 b-3 c+\sqrt{7}$ is irrational
$3 a-3 c+\sqrt{7}$ is irrational
$\therefore \quad R$ is not transitive
10. Negation of the statement $p \vee(p \wedge \sim q)$ is
(1) p
(2) $\sim p$
(3) q
(4) $\sim q$

Answer (2)
Sol. $p \vee(p \wedge \sim q)$

$$
\equiv p
$$

$\sim(p \vee(p \wedge \sim q)) \equiv \sim p$

JEE (Main)-2023 : Phase-1 (01-02-2023)-Morning

11. Let S be solution set for values of x satisfying $\cos ^{-1}(2 x)+\cos ^{-1} \sqrt{1-x^{2}}=\pi$ then $\sum_{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$ is equal to
(1) 0
(2) $-\sin ^{-1}\left(\frac{24}{25}\right)$
(3) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\pi-\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$

Answer (2)

Sol. $\frac{\pi}{2}-\sin ^{-1}(2 x)+\frac{\pi}{2}-\sin ^{-1} \sqrt{1-x^{2}}=\pi$

$$
\Rightarrow \sin ^{-1}(2 x)+\sin ^{-1} \sqrt{1-x^{2}}=0
$$

$$
\Rightarrow \sin ^{-1}(-2 x)=\sin ^{-1} \sqrt{1-x^{2}}
$$

$$
\Rightarrow \quad-2 x=\sqrt{1-x^{2}}
$$

$$
4 x^{2}=1-x^{2}
$$

$$
\Rightarrow \quad x= \pm \sqrt{\frac{1}{5}}
$$

$x=-\frac{1}{\sqrt{5}}$ is only possible solution

$$
\begin{aligned}
\sum_{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right) & =2 \sin ^{-1}\left(-\frac{4}{5}\right) \\
& =-2 \sin ^{-1} \frac{4}{5} \\
& =-\sin ^{-1}\left(\frac{24}{25}\right)
\end{aligned}
$$

12. A triangle be such that $\cos 2 A+\cos 2 B+\cos 2 C$ is minimum. If inradius of the triangle is 3 then which of the following is CORRECT?
(1) Area of Δ is $\frac{6 \sqrt{3}}{2}$
(2) Perimeter of Δ is $18 \sqrt{3}$
(3) $\sin 2 A+\sin 2 B+\sin 2 C=\sin A+\sin B-\sin C$
(4) Perimeter of triangle is $9 \sqrt{3}$

Answer (2)

Sol. If $k=\cos 2 A+\cos 2 B+\cos 2 C$ is minimum then $k=\frac{-3}{2}$ and $A=B=C=\frac{\pi}{3}$

$$
\begin{array}{ll}
\therefore & r=\frac{\Delta}{s}=3=\frac{\sqrt{3} a^{2} \cdot 2}{4 \cdot 3 a} \\
\Rightarrow & a=6 \sqrt{3} \\
\therefore & \text { Area }=\frac{\sqrt{3}}{4} \cdot 36 \cdot 3=27 \sqrt{3}
\end{array}
$$

Perimeter is $18 \sqrt{3}$
13. ?
14. ?
15. ?
16. ?
17. ?
18. ?
19. ?
20. ?

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Area bounded by $y=x|x-3|$ and x-axis between $x=-1$ and $x=2$ is A then $12 A$ equals
Answer (18.00)
Sol. $y=\left\{\begin{array}{cc}x(x-3) & x>3 \\ -x(x-3) & x \leq 3\end{array}\right.$

$$
\begin{aligned}
& A=\int_{-1}^{2}-x(x-3) d x=\int_{-1}^{2}\left(-x^{2}+3 x\right) d x \\
& =\frac{-x^{3}}{3}+\left.\frac{3 x^{2}}{2}\right|_{-1} ^{2} \\
& =\left(-\frac{8}{3}+\frac{3}{2} \cdot 4\right)-\left(\frac{1}{3}+\frac{3}{2}\right) \\
& =\frac{-8}{3}+6-\frac{11}{6} \\
& =6-\frac{27}{6}=\frac{9}{6} \\
& 12 A=18
\end{aligned}
$$

22. Remainder when $23^{200}+19^{200}$ divided by 49 equals

Answer (02.00)

Sol. $23^{200}+19^{200}=(21+2)^{200}+(21-2)^{200}$

$$
\begin{aligned}
&=2\left[{ }^{200} C_{0} 21^{200}+{ }^{200} C_{2} 21^{198}+{ }^{200} C_{4} 21^{196}\right. \\
&\left.+\ldots+{ }^{200} C_{198} 21^{2}+{ }^{200} C_{200} 21^{0}\right]
\end{aligned}
$$

$$
=2(49 K+1)
$$

Remainder $=2$
23. $8, a_{1}, a_{2} \ldots a_{n}$ are terms m A.P. Sum of first 4 terms of series is 50 and sum of last 4 terms of series is 170. Find product of middle terms of series

Answer (754)

Sol. $\frac{4}{2}[16+3 d]=50$
$\Rightarrow d=3$
$\frac{4}{2}\left[2 a_{n}+3(-d)\right]=170$
$2 a_{n}-3 d=85$
$2 a_{n}=94$
$a_{n}=47$
$8+(n-1) d=47$

$$
n=14
$$

So $7^{\text {th }}$ and $8^{\text {th }}$ are middle terms
$T_{7}=8+6.3=26$
$T_{8}=8+7.3=29$
$\mathrm{T}_{7} \cdot \mathrm{~T}_{8}=754$
24. A circle is represented by $\frac{|z-2|}{|z-3|}=2$. Its radius is γ units and centre is (α, β) then find $3(\alpha+\beta+\gamma)$

Answer (12.00)

Sol. Let $z=x+i y$

$$
\begin{aligned}
& (x-2)^{2}+y^{2}=4(x-3)^{2}+4 y^{2} \\
& x^{2}+y^{2}-4 x+4=4 x^{2}-24 x+36+4 y^{2} \\
& \Rightarrow \quad 3 x^{2}+3 y^{2}-20 x+32=0
\end{aligned}
$$

or $x^{2}+y^{2}-\frac{20 x}{3}+\frac{32}{3}=0$
centre $=\left(\frac{10}{3}, 0\right)$
$\gamma=\sqrt{\left(\frac{10}{3}\right)^{2}+0^{2}-\frac{32}{3}}=\frac{2}{3}$
$3(\alpha+\beta+\gamma)=12$
25. If $f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$ and $g(x)=2 x+f(1)$, then $f(4)-g(4)$ equals

Answer (12.00)

Sol. $g(x)=2 x+f^{\prime}(1)$
$\Rightarrow g^{\prime}(x)=2 \Rightarrow g^{\prime}(1)=2$ and $g^{\prime \prime}(x)=0$
Now,
$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(1)$
$f(x)=x^{2}+2 x$
$f^{\prime}(x)=2 x+2 \Rightarrow f^{\prime}(1)=4$
$g(x)=2 x+4$
$f(4)-g(4)=(16+8)-(8+4)$
$=24-12=12$
26. For some values of λ, system of equations
$\lambda x+y+z=1$
$x+\lambda y+z=1$
$x+y+\lambda z=1$
has no solution, then $\sum\left(|\lambda|^{2}+|\lambda|\right)$ equal

Answer (06.00)

Sol. $\left|\begin{array}{lll}\lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
$\Rightarrow \lambda\left(\lambda^{2}-1\right)-1(\lambda-1)+1(1-\lambda)=0$
$\Rightarrow(\lambda-1)\left(\lambda^{2}+\lambda-1-1\right)=0$
$\Rightarrow \lambda=1,-2$
For $\lambda=1$ there are infinite solution
for $\lambda=-2$, system has no solution
27. If solution of $\frac{d y}{d x}+\frac{(x+a)}{y-2}=0$ is a circle and $y(0)=1$, area of circle is $=2 \pi . P$ and Q are point of intersection of circle with y-axis. Normals at P and Q intersect x-axis at R and S. The length of $R S$ is

Answer (0, 4)

Sol. $(y-2) d y+(x+a) d x=0$
$\Rightarrow \frac{y^{2}}{2}-2 y+\frac{x^{2}}{2}+a x=c$
$\Rightarrow x^{2}+y^{2}+2 a x-4 y+3=0$
$\Rightarrow(x+a)^{2}+(y-2)^{2}=a^{2}+1$
Also $\sqrt{a^{2}+1}=\sqrt{2} \quad$ (as area is 2π sq. units)
$\therefore \quad C \equiv(x \pm 1)^{2}+(y-2)^{2}=2$
For P and Q put $x=0$
$\Rightarrow y-2=1$ or $-1 \Rightarrow P \equiv(0,3)$ and $Q \equiv(0,1)$
If $C \equiv(x+1)^{2}+(y-2)^{2}=2$ then normal at P
$y=x+3 \Rightarrow R \equiv(-3,0)$
and normal at Q
$x+y=1 \Rightarrow S \equiv(1,0)$
$\therefore \quad R S=4$
If $C \equiv(x-1)^{2}+(y-2)^{2}=2$
Normal at $P y=x+1 \Rightarrow R \equiv(-1,0)$

Normal at $Q x+y=3 \Rightarrow S \equiv(3,0)$
$\therefore \quad R S=4$
28. Find number of 3 -digit number which are divisible by 2 or 3 but not divisible by 7 .

Answer (536.00)

Sol. Numbers divisible by $2=450=n(A)$
Numbers divisible by $3=300=n(B)$
Numbers divisible by $6=150$
Numbers divisible by 2 and $7=64$
Numbers divisible by 3 and $7=42$
Numbers divisible by 2, 3 and $7=21$

Total numbers $=450+300-150-43-21$

$$
=600-64=536
$$

29.?
30. ?

