DU MPhil Phd in Mathematics

Topic:- MATHS MPHIL S2

1) Which of the following societies awards the Fields Medal?

[Question ID = 10202]

1. International Mathematical Union

[Option ID = 40802]

2. American Mathematical Society

[Option ID = 40803]

3. European Mathematical Society

[Option ID = 40804]

4. International Mathematical Society for Outstanding Research

[Option ID = 40806]

Correct Answer :-

International Mathematical Union

[Option ID = 40802]

2) Which of the following mathematicians won the famous Abel Prize for 2019 on the work of analysis, geometry and mathematical physics?

[Question ID = 10205]

1. Robert Langlands

[Option ID = 40813]

2. Karen Uhlenbeck

[Option ID = 40814]

Louis Nirenberg

[Option ID = 40816]

4. S.R. Srinivasa Varadhan

[Option ID = 40817]

Correct Answer :-

Karen Uhlenbeck

[Option ID = 40814]

3) Which of the following Journals/Magazines/Newsletters is published in India

[Question ID = 10206]

1. The Mathematics Student

[Option ID = 40818]

2. The College Mathematics Journal

[Option ID = 40820]

3. Mathematics Magazine

[Option ID = 40821]

4. Involve

[Option ID = 40823]

Correct Answer :-

• The Mathematics Student

[Option ID = 40818]

4) Which of the following mathematicians is not a recipient of Padma Bhushan, the third highest civilian honor in India?

collegedunia

[Question ID = 10209] Manjul Bhargava [Option ID = 40828] 2. M.S. Narasimhan [Option ID = 40830] 3. S.R. Srinivasa Vardhan [Option ID = 40832] 4. Akshay Venkatesh [Option ID = 40833] Correct Answer :- Akshay Venkatesh [Option ID = 40833] 5) Which mathematician of the post-christian era wrote the mathematical treatise 'Ganita Sara Sangraha'? [Question ID = 10210] Mahavira [Option ID = 40834] Sridharacharya [Option ID = 40835] 3. Brahmagupta [Option ID = 40836] Varahamihira [Option ID = 40837] Correct Answer :- Mahavira [Option ID = 40834] 6) Let T be the set of square free positive integers i.e. the set of positive integers not divisible by any square larger than 1. Assuming that any positive integer can be written as $n=m^2k$, $k\in T$, $m\in\mathbb{N}$, the value of $\sum_{k\in T}\frac{1}{k^2}$ is equal to [Question ID = 10211] 1. $\frac{\pi^2}{16}$ [Option ID = 40838] 2. $\frac{\pi^2}{6}$ [Option ID = 40839] [Option ID = 40840] [Option ID = 40841] Correct Answer :-[Option ID = 40841]7) Which of the following statements is true? [Question ID = 10212] 1. $f(x) = \frac{1}{x-2}$ is uniformly continuous on (2,3]. [Option ID = 40842] ^{2.} $f(x) = x^2$ is uniformly continuous on $[2, +\infty)$.

[Option ID = 40843] 3. $f(x) = \sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0,1). [Option ID = 40844] 4. $f(x) = e^{-x^2}$ is uniformly continuous on $(-\infty, +\infty)$. [Option ID = 40845] Correct Answer :-• $f(x) = e^{-x^2}$ is uniformly continuous on $(-\infty, +\infty)$. [Option ID = 40845] 8) Applying term wise differentiation or otherwise, the value of $\sum_{n=1}^{\infty} \frac{2^n n^2}{n!}$ is [Question ID = 10213] 1. 6e2 [Option ID = 40846] 2. 4e2 [Option ID = 40847] 3. 2 [Option ID = 40848] 4. 6e [Option ID = 40849] Correct Answer :-· 6e2 [Option ID = 40846] 9) Which of the following statements is true? [Question ID = 10214] 1. If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and the series $\sum_{n=1}^\infty b_n$ diverges, then the series $\sum_{n=1}^\infty a_n$ diverges. [Option ID = 40850] 2. If $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} |a_n| = B$, A and B are finite then |A| = B. [Option ID = 40851] 3. If the series $\sum_{n=1}^{\infty} a_n$ diverges and $a_n > 0$, then the series $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ also diverges. [Option ID = 40852] 4. The series $\sum_{n=1}^{\infty} \frac{n+1}{n+5}$ converges to $\frac{1}{5}$. [Option ID = 40853]Correct Answer :-• If the series $\sum_{n=1}^{\infty} a_n$ diverges and $a_n > 0$, then the series $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ also diverges. [Option ID = 40852]10) The value of $\int_C (2xy-x^2)dx + (x+y^2)dy$, where C is the closed curve of the region bounded by $y=x^2$ and $y^2 = x$ is [Question ID = 10215] [Option ID = 40854] [Option ID = 40855] [Option ID = 40856]

[Option ID = 40857]

Correct Answer :-

• 1 30

[Option ID = 40854]

11) Let A(2,5) be rotated by an angle of $\frac{\pi}{3}$ then the coordinates of the resulting point is

[Question ID = 10216]

1.
$$\left(1 + \frac{5\sqrt{3}}{2}, \sqrt{3} - \frac{5}{2}\right)$$

[Option ID = 40858]

2.
$$\left(1 - \frac{5\sqrt{3}}{2}, \sqrt{3} - \frac{5}{2}\right)$$

[Option ID = 40859]

3.
$$\left(1 - \frac{5\sqrt{3}}{2}, \sqrt{3} + \frac{5}{2}\right)$$

[Option ID = 40860]

4.
$$(1+\frac{5\sqrt{3}}{2},\sqrt{3}+\frac{5}{2})$$

[Option ID = 40861]

Correct Answer :-

•
$$(1+\frac{5\sqrt{3}}{2},\sqrt{3}+\frac{5}{2})$$

[Option ID = 40861]

12) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a length preserving linear transformation. Suppose that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the matrix corresponding to T. Which of the following relations is false?

[Question ID = 10217]

1.
$$a^2 + c^2 = 1$$

[Option ID = 40862]

2.
$$b^2 + d^2 = 1$$

[Option ID = 40863]

 $^{3.} ab + cd = 0$

[Option ID = 40864]

4. ab + cd = 1

[Option ID = 40865]

Correct Answer :-

• ab + cd = 1

[Option ID = 40865]

13) Let $T: V \to W$ be a nonsingular linear transformation of a finite dimensional vector space V to any vector space W. Which of the following is true?

[Question ID = 10218]

1. dim V < Rank of T

[Option ID = 40866]

2. $\dim V = \operatorname{Rank} \operatorname{of} T$

[Option ID = 40867]

3. T maps a basis of V to a basis of W

[Option ID = 40868]

4. dim V > Rank of T

[Option ID = 40869]

Correct Answer :-

• $\dim V = \operatorname{Rank} \operatorname{of} T$

[Option ID = 40867]

14) Let $A = \begin{bmatrix} 3 & -5 \\ 2 & -3 \end{bmatrix}$ be a matrix over a field F of characteristic 0. Which of the following statements is true?

[Question ID = 10219]

1. If $F = \mathbb{R}$ then A has nonzero eigenvalues.

[Option ID = 40870]

2. If $F = \mathbb{R}$ then A is diagonalizable

[Option ID = 40871]

3. If $F = \mathbb{C}$ then A has real eigenvalues

[Option ID = 40872]

4. If $F = \mathbb{C}$ then A is diagonalizable

[Option ID = 40873]

Correct Answer :-

• If $F = \mathbb{C}$ then A is diagonalizable

[Option ID = 40873]

15) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by

$$T(x,y) = (2x-7y, 4x + 3y).$$

The matrix of T with respect to the ordered basis $\mathcal{B} = \{(1,3), (2,5)\}$ is

[Question ID = 10220]

1. $\begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix}$

[Option ID = 40874]

2.
$$\begin{bmatrix} -121 & 201 \\ 70 & -116 \end{bmatrix}$$

[Option ID = 40875]

3.
$$\begin{bmatrix} -121 & 201 \\ 70 & 116 \end{bmatrix}$$

[Option ID = 40876]

4. |-121 -201

[Option ID = 40877]

Correct Answer :-

• [121 201] -70 -116]

[Option ID = 40874]

16) Let f be a bounded Lebesgue measurable function on $[\pi, 3\pi]$. Then $\lim_{n\to\infty}\int_{\pi}^{3\pi}f(x)\sin nx\,dx$

[Question ID = 10221]

may not exist

[Option ID = 40878]

2. exists and is equal to 1

[Option ID = 40879]

3. exists and is equal to 0

[Option ID = 40880]

4. exists and is equal to 2

[Option ID = 40881]

Correct Answer :-

exists and is equal to 0

[Option ID = 40880]

17) Let $A = \left\{ x \in (0,1) : \sin\left(\frac{1}{x}\right) = 0 \right\}$ and $f : [0,1] \to \mathbb{R}$ be given by $f(x) = \left\{ \frac{1}{\sin(\frac{1}{x})}, \text{ if } x \in (0,1) \sim A, \right\}$

1, otherwise.

Which of the following statements is true?

[Question ID = 10222]

1. f is not Lebesgue measurable

[Option ID = 40882]

2. f is Lebesgue measurable but |f| is not Lebesgue measurable

[Option ID = 40883]

3. f is Lebesgue measurable but not Lebesgue integrable on [0,1]

[Option ID = 40884]

4. f is Lebesgue integrable on [0,1]

[Option ID = 40885]

Correct Answer :-

• f is Lebesgue integrable on [0,1]

[Option ID = 40885]

18) Let $z = x + iy \in \mathbb{C}$ and

$$f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, & \text{if } z \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

If f(z) = u(x, y) + iv(x, y), then at origin

[Question ID = 10223]

1. u and v do not satisfy Cauchy Riemann equations but f is differentiable

[Option ID = 40886]

 2 . u and v do not satisfy Cauchy Riemann equations and f is not differentiable

[Option ID = 40887]

3. u and v satisfy Cauchy Riemann equations but f is not differentiable

[Option ID = 40888]

4. u and v satisfy Cauchy Riemann equations and f is differentiable

[Option ID = 40889]

Correct Answer :-

 \bullet u and v satisfy Cauchy Riemann equations but f is not differentiable

[Option ID = 40888]

19) The value of the integral $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the anticlockwise circle |z|=3 is

[Question ID = 10224]

1.
$$2\pi(e^2+2e^4)i$$

[Option ID = 40890]

2. $2\pi(e^4-e^2)i$

[Option ID = 40891]

3. $2\pi(e^2-e^4)i$

[Option ID = 40892]

4. $2\pi(e^2-2e^4)i$

[Option ID = 40893]

Correct Answer :-

• $2\pi(e^4 - e^2)i$

[Option ID = 40891]

For $n \in \mathbb{N}$, let $z_n = (-1)^n$ and $w_n = \begin{cases} \frac{1}{n}, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$

Let $G=\{z\in\mathbb{C}:\,|z|<2\}$ and $f,g:G\to\mathbb{C}$ be functions such that $f\left(\frac{1}{n}\right)=z_n$ and

 $g\left(\frac{1}{n}\right) = w_n$ for all $n \in \mathbb{N}$. Then on G

[Question ID = 10225]

1. f can be chosen to be analytic but g cannot be analytic

[Option ID = 40894]

 2 . g can be chosen to be analytic but f cannot be analytic

[Option ID = 40895]

3. Neither f nor g can be analytic

[Option ID = 40896]

4. Both f and g can be chosen to be analytic

[Option ID = 40897]

Correct Answer :-

Neither f nor g can be analytic

[Option ID = 40896]

21) Let $f(z) = a_0 + a_1 z + \dots + a_{20} z^{20}$, $z \in \mathbb{C}$ be such that $|f(z)| \le 1$, for $|z| \le 1$. Then for all $n = 1, 2, \dots, 20$,

[Question ID = 10226]

1. $|a_n| \le 1$ and f is a constant

[Option ID = 40898]

2. $|a_n| \le 1$ but f need not be a constant

[Option ID = 40899]

3. $1 < |a_n| < n$ but f need not be a constant

[Option ID = 40900]

4. $1 < |a_n| < n$ and f is a constant

[Option ID = 40901]

Correct Answer :-

• $|a_n| \le 1$ but f need not be a constant

[Option ID = 40899]

22) Let 5 be compact subset of a metric space. Then,

[Question ID = 10227]

S is complete and totally bounded

[Option ID = 40902]

2. s is complete but need not be totally bounded

[Option ID = 40903]

3. s is totally bounded but need not be complete

[Option ID = 40904]

4. s is totally bounded but s need not be totally bounded

[Option ID = 40905]

Correct Answer :-

s is complete and totally bounded

[Option ID = 40902]

23) Which of the following statements is false?

[Question ID = 10228]

1. The connected subsets of \mathbb{R} , with the usual metric, are precisely its intervals

[Option ID = 40906]

2. The real line R and the Euclidean plane R² are not homeomorphic

[Option ID = 40907] 3. If A is a connected metric space then every continuous function $f: A \to \mathbb{N}$ must be constant. 4. If $B \subseteq \mathbb{R}$ is bounded and $f : \mathbb{R} \to \mathbb{R}$ is continuous on B then f(B) is bounded [Option ID = 40909] Correct Answer :-• If $B \subseteq \mathbb{R}$ is bounded and $f : \mathbb{R} \to \mathbb{R}$ is continuous on B then f(B) is bounded [Option ID = 40909] 24) Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a family of topological spaces. Which of the following statements is false? [Question ID = 10229] 1. Product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ is finer than the box topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ [Option ID = 40910] 2. If $\prod_{\alpha \in A} X_{\alpha}$ has product topology and $E_{\alpha} \subseteq X_{\alpha}$ then $\overline{\prod_{\alpha \in A} E_{\alpha}} = \prod_{\alpha \in A} \overline{E_{\alpha}}$. [Option ID = 40911] 3. If each X_{α} is completely regular then $\prod_{\alpha \in \Lambda} X_{\alpha}$ under product topology is completely regular 4. If \mathcal{B}_{α} is a basis for X_{α} then the family of sets $\prod_{\alpha \in \Lambda} \mathcal{B}_{\alpha}$, $\mathcal{B}_{\alpha} \in \mathcal{B}_{\alpha}$ is a basis for $\prod_{\alpha \in \Lambda} X_{\alpha}$ under box topology [Option ID = 40913] Correct Answer :-• Product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ is finer than the box topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ [Option ID = 40910] 25) Which of the following statements is false? [Question ID = 10230] 1. The open continuous image of a first countable space is first countable. [Option ID = 40914] 2. The space R, (R with lower limit topology) is separable but not second countable. [Option ID = 40915]3. Let X and Y be topological spaces, $f: X \to Y$ be such that $x_n \to x$ in X implies $f(x_n) \to f(x)$ in Y, then f is continuous. 4. Both axioms of first countability and second countability are hereditary. [Option ID = 40917] Correct Answer :-• Let X and Y be topological spaces, $f: X \to Y$ be such that $x_n \to x$ in X implies $f(x_n) \to f(x)$ in Y, then f is continuous. [Option ID = 40916] 26) Which of the following statements is false? [Question ID = 10231] All the cubes, spheres and discs are compact in Rⁿ. [Option ID = 40918] For a metric space (X, d) and $x \in X$, 2. $\overline{\{y \in X : d(x,y) < r\}} = \{y \in X : d(x,y) \le r\}.$ [Option ID = 40919] 3. If $(A_n)_{n\in\mathbb{N}}$ is a sequence of nowhere dense sets in a complete metric space X then $X\neq U_{n\in\mathbb{N}}A_n$. [Option ID = 40920] 4. Any continuous function from [a, b] to R is limit of some uniformly convergent sequence of polynomials.

[Option ID = 40921]

Correct Answer :-

For a metric space (X, d) and $x \in X$,

 $\overline{\{y \in X : d(x,y) < r\}} = \{y \in X : d(x,y) \le r\}.$

[Option ID = 40919]

27) Which of the following statements is false?

[Question ID = 10232]

1. The space of all real valued continuous functions on [a,b] under supremum norm is separable.

[Option ID = 40922]

2. Every subset of the Euclidean space \mathbb{R}^n is separable.

[Option ID = 40923]

3. Every compact metric space is separable.

[Option ID = 40924]

4. A closed subspace of a separable topological space is separable.

[Option ID = 40925]

Correct Answer :-

A closed subspace of a separable topological space is separable.

[Option ID = 40925]

28) Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be two normed spaces. For $(x, y) \in X \times Y$ define $\|(x, y)\|_1 = \|x\|_X + \|y\|_Y$;

$$\|(x,y)\|_{2} = (\|x\|_{X}^{1/2} + \|y\|_{Y}^{1/2})^{2} \|(x,y)\|_{3} = (\|x\|_{X}^{3} + \|y\|_{Y}^{3})^{1/3}$$

Consider the following statements:

a. $\|.\|_1$ defines a norm on $X \times Y$.

b. $\|.\|_2$ defines a norm on $X \times Y$.

c. $\|.\|_3$ defines a norm on $X \times Y$.

Which of the following options is correct?

[Question ID = 10233]

1. Only a) and b) are correct.

[Option ID = 40926]

2. Only a) and c) are correct.

[Option ID = 40927]

3. Only b) and c) are correct.

[Option ID = 40928]

4. None of a), b) and c) is correct.

[Option ID = 40929]

Correct Answer :-

Only a) and c) are correct.

[Option ID = 40927]

29) For a normed space *X* consider the following statements:

a. For a sequence $(x_n)_{n\in\mathbb{N}}$ in X if $\sum_{n=1}^{\infty}\|x_n\|<\infty$, then the series $\sum_{n=1}^{\infty}x_n$ converges in X.

b. If X is complete and for a sequence $(x_n)_{n\in\mathbb{N}}$ in X if $\sum_{n=1}^{\infty}\|x_n\|<\infty$, then the series $\sum_{n=1}^{\infty}x_n$ converges in X.

c. If $\sum_{n=1}^{\infty} ||x_n|| < \infty$ implies the series $\sum_{n=1}^{\infty} x_n$ converges for any sequence $(x_n)_{n \in \mathbb{N}}$ in X, then X is complete.

d. For a sequence $(x_n)_{n\in\mathbb{N}}$ in X if the series $\sum_{n=1}^{\infty}x_n$ converges in X, then $\sum_{n=1}^{\infty}\|x_n\|<\infty$.

Which of the following options is correct?

[Question ID = 10234]

Only a) and b) are correct.

[Option ID = 40930]

2. Only b) and c) are correct.

[Option ID = 40931]

3. Only a) and c) are correct.

[Option ID = 40932]

4. Only b) and d) are correct.

[Option ID = 40933]

Correct Answer :-

Only b) and c) are correct.

[Option ID = 40931]

30) For a normed space X let X^{**} denote the second dual of X. Consider the following statements:

a.
$$C_0^{**} \approx l_{\infty}$$
.

b.
$$l_2^{**} \approx l_2$$
.

c.
$$l_1^{**} \approx C_0$$
.

(C_0 being the space of all sequences converging to 0 and l_p ($p \ge 1$) the sequence space of p-summable sequences).

Which of the following options is correct?

[Question ID = 10235]

1. Only a) and c) are correct.

[Option ID = 40934]

2. Only a) and b) are correct.

[Option ID = 40935]

3. Only b) and d) are correct.

[Option ID = 40936]

4. Only c) and d) are correct.

[Option ID = 40937]

Correct Answer :-

Only a) and b) are correct.

[Option ID = 40935]

31) Let $H = L^2[0,2\pi]$ and $\mathcal{B} = \left\{ \frac{1}{\sqrt{2\pi}} e_n : n \in \mathbb{Z} \right\}$, where $e_n(t) = e^{int}$, $t \in [0,2\pi]$.

Consider the following statements:

a. B is a Hamel basis for H.

b. ${\mathcal B}$ is an orthonormal set in ${\mathcal H}$.

c. B is a complete orthonormal set in H.

d. H is not separable.

Which of the following options is correct?

[Question ID = 10236]

1. Only a) is correct.

[Option ID = 40938]

2. Only b) and d) are correct.

[Option ID = 40939]

3. Only b) and c) are correct.

[Option ID = 40940]

4. Only c) and d) are correct.

[Option ID = 40941]

Correct Answer :-

Only b) and c) are correct.


```
[Option ID = 40940]
```

32) Let G be a finite group and $A, B \subseteq G$ be such that |A| + |B| > |G| (where |A| denotes the number of elements of A). Then $A, B = \{a, b : a \in A, b \in B\}$ is

[Question ID = 10237]

a proper subgroup of G.

[Option ID = 40942]

2. not a subgroup of A.

[Option ID = 40943]

3. equal to G.

[Option ID = 40944]

4. |A.B| < |G|.

[Option ID = 40945]

Correct Answer :-

· equal to G.

[Option ID = 40944]

33) Let f, g and h be polynomials over $\mathbb Q$ given by $f(x) = x^n + n$, where n is a positive integer, $g(x) = x^5 - 5x - 2$ and $h(x) = x^4 - 2x^2 + 1$. Which of the following statements is true?

[Question ID = 10238]

1. Only f(x) and g(x) are irreducible over \mathbb{Q} .

[Option ID = 40946]

2. Only g(x) and h(x) are irreducible over \mathbb{Q} .

[Option ID = 40947]

3. Only f(x) and h(x) are irreducible over \mathbb{Q} .

[Option ID = 40948]

4. All of f(x), g(x) and h(x) are irreducible over \mathbb{Q} .

[Option ID = 40949]

Correct Answer :-

• Only f(x) and g(x) are irreducible over \mathbb{Q} .

[Option ID = 40946]

34) For any pair of real numbers $a(a \neq 0)$ and b, define a function $f_{a,b}: \mathbb{R} \to \mathbb{R}$ by $f_{a,b}(x) = ax + b$. Consider the following statements:

a. The function $f_{a,b}$ is a permutation of \mathbb{R} .

b. $f_{a,b}$ o $f_{c,d} = f_{ac,ad+b}$

c. $G = \{f_{a,b} : a \in \mathbb{R} \sim \{0\}, b \in \mathbb{R}\}$ forms a group under composition.

Which of the following options is correct?

[Question ID = 10239]

1. Only a) and b) are correct.

[Option ID = 40950]

2. Only a) and c) are correct.

[Option ID = 40951]

3. All of a), b) and c) are correct.

[Option ID = 40952]

4. Only b) and c) are correct.

[Option ID = 40953]

Correct Answer :-

• All of a), b) and c) are correct.

[Option ID = 40952]

35) Which of the following rings has a finite group of units? [Question ID = 10240] 1. $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} : a, b \in \mathbb{Z}\right\}$ [Option ID = 40954] ^{2.} $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ [Option ID = 40955] 3. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$ [Option ID = 40956] ⁴· $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}$ [Option ID = 40957] Correct Answer :-• $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ [Option ID = 40955]36) How many irreducible quadratics (degree 2) are there over a finite field having n elements? [Question ID = 10241] 1. $n^2(n+1)$ [Option ID = 40958] 2. $n(n-1)^2$ [Option ID = 40959] 3. $\frac{n^2(n-1)}{2}$ [Option ID = 40960] 4. $\frac{n(n-1)^2}{2}$ [Option ID = 40961] Correct Answer :-• $\frac{n^2(n-1)}{2}$ [Option ID = 40960] 37) Which of the following vector spaces has dimension not divisible by 2? [Question ID = 10242] 1. A plane passing through origin in \mathbb{R}^3 over \mathbb{R} . [Option ID = 40962] 2. The set P_3 of all polynomials over \mathbb{R} of degree ≤ 3 [Option ID = 40963] 3. $\mathbb{Z}_3 \oplus \mathbb{Z}_3$ over \mathbb{Z}_3 . [Option ID = 40964] 4. $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ over \mathbb{Z}_2 . [Option ID = 40965] Correct Answer :- Z₂ ⊕ Z₂ ⊕ Z₂ over Z₂. [Option ID = 40965]38) Let L be the line passing through the origin and (1,1) in \mathbb{R}^2 . Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y) = projection of (x,y) on L. Then the eigenvalues of T are

[Question ID = 10243]

1. 1 and $\frac{1}{2}$.

[Option ID = 40966]

2. 0 and 1.

[Option ID = 40967]

3. 0 and $\frac{1}{2}$.

[Option ID = 40968]

4. 1 and $\frac{1}{4}$.

[Option ID = 40969]

Correct Answer :-

• 0 and 1.

[Option ID = 40967]

39) A particular integral of the partial differential equation

$$\left(\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} - 2\right)^2 z = e^{2x}\sin(y + 3x)$$

is

[Question ID = 10244]

1.
$$\frac{1}{2}x^2e^{2x}\sin(y+3x)$$

2.
$$\frac{1}{2}xe^{2x}\cos(y+3x)$$

3.
$$\frac{1}{2}x^3e^{2x}\sin(y+3x)$$

4.
$$\frac{1}{2}xe^{2x}[\sin(y+3x)+\cos(y+3x)]$$

[Option ID = 40973]

Correct Answer :-

$$\bullet \ \frac{1}{2}x^2e^{2x}\sin(y+3x)$$

[Option ID = 40970]

40) The partial differential equation

$$x(y-z)\frac{\partial z}{\partial x} + y(z-x)\frac{\partial z}{\partial y} = z(x-y)$$

has general solution (with arbitrary function φ)

[Question ID = 10245]

1.
$$\varphi(x+y+z,xyz)=0.$$

$$2. \ \varphi\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}, xyz\right) = 0$$

3.
$$\varphi(x^2 + y^2, xyz) = 0$$
.

4.
$$\varphi(x^3 + y^3 + x + y, xyz) = 0$$
.

[Option ID = 40977]

Correct Answer:-

41) The general solution of the differential equation

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin(\log(1+x))$$

is (with arbitrary constants c_1 and c_2)

[Question ID = 10246]

1. $c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) + \log(1+x) \sin(\log(1+x))$

[Option ID = 40978]

2. $c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) - \log(1+x) \cos(\log(1+x))$

[Option ID = 40979]

3. $c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) + \log(1+x)$

[Option ID = 40980]

4. $(c_1 + c_2 \log(1+x))\cos(\log(1+x)) - \log(1+x)\sin(\log(1+x))$

[Option ID = 40981]

Correct Answer :-

• $c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) - \log(1+x) \cos(\log(1+x))$

[Option ID = 40979]

42) For the initial value problem

$$\frac{dy}{dx} = f(x,y), \qquad y(0) = 0,$$

which of the following statements is true?

[Question ID = 10247]

^{1.} $f(x,y) = \sqrt{y}$ satisfies Lipschitz condition and the above problem has a unique solution.

[Option ID = 40982]

^{2.} $f(x,y) = y^{2/3}$ satisfies Lipschitz condition and the above problem has a unique solution.

[Option ID = 40983]

3. $f(x,y) = x^2|y|$, the above problem has a unique solution.

[Option ID = 40984]

4. $f(x,y) = e^y$, the above problem has at least two solutions.

[Option ID = 40985]

Correct Answer :-

• $f(x,y) = x^2|y|$, the above problem has a unique solution.

[Option ID = 40984]

43) The solution of the initial boundary value problem

$$u_{tt} - c^2 u_{xx} = 0, \qquad 0 < x < L, \qquad t > 0,$$

$$u_x(0,t)=x, \qquad u_x(L,t)=0,$$

$$u(x,0) = x,$$
 $u_t(x,0) = 0,$

is

[Question ID = 10248]

1.
$$u(x,t) = \frac{L}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{L} \left(\frac{L}{n\pi} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right]$$

[Option ID = 40986]

2.
$$u(x,t) = L + \sum_{n=1}^{\infty} \left[L \left(\frac{L}{n\pi} \right)^2 \left((-1)^n - 1 \right) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right].$$

[Option ID = 40987]

3.
$$u(x,t) = \frac{L}{2} + \sum_{n=1}^{\infty} \left[\frac{L}{2} \left(\frac{L}{n\pi} \right)^2 \left((-1)^n - 1 \right) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right].$$

[Option ID = 40988]

4.
$$u(x,t) = \frac{2}{L} + \sum_{n=1}^{\infty} \left[\frac{L}{2} \left(\frac{n\pi}{L} \right)^2 \left((-1)^n - 1 \right) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right].$$

[Option ID = 40989]

Correct Answer :-

•
$$u(x,t) = \frac{L}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{L} \left(\frac{L}{n\pi} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right]$$

[Option ID = 40986]

44) The solution of the differential equation $uu_t + u_x = -u$, $u(0,t)=\alpha t$

where α is a constant, is

[Question ID = 10249]

1.
$$u(x,t) = \frac{t\alpha e^x}{1 + \alpha - \alpha e^{-x}}.$$

[Option ID = 40990]
2.
$$u(x,t) = \frac{t\alpha e^{-x}}{1 - \alpha + \alpha e^{-x}}$$

[Option ID = 40991]
3.
$$u(x,t) = \frac{t\alpha e^{-x}}{1 + \alpha - \alpha e^{-x}}$$

[Option ID = 40992]

4.
$$u(x,t) = \frac{t\alpha e^x}{1 - \alpha + \alpha e^{-x}}.$$

[Option ID = 40993]

Correct Answer :-

•
$$u(x,t) = \frac{t\alpha e^{-x}}{1 + \alpha - \alpha e^{-x}}$$

[Option ID = 40992]

45) The eigen values λ_n and the eigen functions $arphi_n$ of the Sturm-Liouville problem

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \lambda y = 0, \qquad 1 \le x \le e,$$

$$y(1) = 0, y(e) = 0,$$

are given by

[Question ID = 10250]

1.
$$\lambda_n = n^2, \varphi_n(x) = \sin(\log x), \quad n = 1,2,3...$$

[Option ID = 40994]

2.
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \cos(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40995]

3.
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \sin(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40996]

4.
$$\lambda_n = n^2, \varphi_n(x) = \cos(\log x), \quad n = 1,2,3 \dots$$

[Option ID = 40997]

Correct Answer :-

•
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \sin(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40996]

46) The general solution of the Laplace equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0, \qquad 0 \le r < a, \qquad 0 < \theta \le 2\pi$$

is (with constants a_0, a_n, b_n)

[Question ID = 10251]

1.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

2.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

3.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \left(a_n e^{n\theta} + b_n e^{-n\theta}\right).$$

4.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n \left(a_n e^{n\theta} + b_n e^{-n\theta}\right).$$

[Option ID = 41001]

Correct Answer :-

•
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

[Option ID = 40998]

47) Consider the motion of an incompressible inviscid fluid moving under an arbitrary body force \vec{r} per unit mass with velocity \vec{q} . The generation of vorticity \vec{w} is given by

[Question ID = 10252]

1.
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{w} + \text{curl }\vec{F}.$$

2.
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{F} + \vec{w}.$$

3.
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{q} + \text{curl } \vec{F}.$$

$$^{4.} \frac{d\vec{w}}{dt} = \vec{q} + \vec{F}.$$

[Option ID = 41005]

Correct Answer :-

•
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{q} + \text{curl } \vec{F}.$$

[Option ID = 41004]

48) The Navier-Stokes equation for steady, viscous incompressible flow under no body force with \vec{q} as velocity, \vec{w} as vorticity vector, p as pressure, ρ as density, v as viscosity, may be developed in the form

[Question ID = 10253]

1.
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2}q^2 + \frac{p}{\rho}\right) + \nu \operatorname{curl} \vec{w}$$
.

2.
$$\vec{q} \times \vec{w} = v \operatorname{curl} \vec{q}$$
.

3.
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2} q^2 + \frac{p}{\rho} \right) + \text{curl } \vec{w}$$
.

4.
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2} w^2 + \frac{p}{\rho} \right) + \text{curl } \vec{q}.$$

[Option ID = 41009]

Correct Answer :-

•
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2} q^2 + \frac{p}{\rho} \right) + \nu \operatorname{curl} \vec{w}$$
.

[Option ID = 41006]

49) Consider a solid stationary sphere of radius a placed in a uniform stream of liquid for which the undisturbed velocity is $-u\hat{\imath}$, where u is a constant. Then the velocity component for $r \ge a$ is given by

[Question ID = 10254]

1.
$$q_{\theta} = U \sin \theta \left(1 + \frac{a^3}{2r^3} \right)$$
.

[Option ID = 41010]

2.
$$q_{\theta} = U \sin \theta \left(1 - \frac{a^3}{2r^2} \right).$$

[Option ID = 41011]

3.
$$q_{\chi} = -U \sin \theta$$
.

[Option ID = 41012]

4. $q_r = 0$.

[Option ID = 41013]

Correct Answer :-

•
$$q_{\theta} = U \sin \theta \left(1 + \frac{a^3}{2r^3} \right)$$
.

[Option ID = 41010]

50) Let R be a commutative ring with unity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. Then f(x) is a unit in R[x] if and only if

[Question ID = 10255]

- 1. a_0 is a unit and a_i $(1 \le i \le n)$ are nilpotents in R . [Option ID = 41014]
- ^{2.} $a_i (0 \le i \le n)$ are units in R.

[Option ID = 41015]

- 3. $a_i \ (0 \le i \le n)$ are nilpotents in R.
- [Option ID = 41016]
- 4. $a_i \ (0 \le i \le n)$ are zero divisors in R.

[Option ID = 41017]

Correct Answer :-

• a_0 is a unit and a_i $(1 \le i \le n)$ are nilpotents in R . [Option ID = 41014]