

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. The ratio of molar specific heat capacity at constant pressure (C_P) to that at constant volume (C_V) varies with temperature (T) as : [Assume temperature to be low]
 - (1) T^0 (2) $T^{1/2}$
 - (3) T' (4) $T^{3/2}$

Answer (1)

Sol.
$$\frac{C_P}{C_V} = \frac{f+2}{f} = v = 1 + \frac{2}{f} = \text{constant}$$

We take 'f to be constant for molecule at low temperature.

$$\frac{C_P}{C_V} \propto T^0$$

- 2. If *n* : Number density of charge carriers
 - A : Cross-sectional area of conductor
 - q : Charge on each charge carrier
 - *I* : Current through the conductor

then the expression of drift velocity is

(1)
$$\frac{nAq}{l}$$
 (2) $\frac{l}{nAq}$
(3) $nAql$ (4) $\frac{lA}{nq}$

Answer (2)

Sol. We Know $I = nAe v_d$

$$\Rightarrow v_d = \frac{l}{nAq}$$

. . . .

3. If R, X_L and X_C denote resistance, inductive reactance and capacitive reactance respectively. Then which of the following options shows the dimensionless physical quantity.

(1)
$$\frac{X_L X_C}{R}$$
 (2) $\frac{R}{\sqrt{X_L X_C}}$
(3) $\frac{R}{X_L X_C}$ (4) $\frac{R}{(X_L X_C)^2}$

Answer (2)

Sol. X_L = Inductive reactance = [R] = dimension of R X_C = Capacitive reactance = [R] = dimension of RR = Resistance

$$\frac{R}{\sqrt{X_L X_C}}$$
 = dimensionless

4. A drop of water of 10 mm radius is divided into 1000 droplets. If surface tension of water surface is equal to 0.073 J/m² then increment in surface energy while breaking down the bigger drop in small droplets as mentioned is equal to

(1)
$$8.25 \times 10^{-5}$$
 J (2) 9.17×10^{-4} J
(3) 9.17×10^{-5} J (4) 8.25×10^{-4} J

Answer (4)

Sol. Let the radius of one small droplet is r then

$$1000\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10)^3$$

$$\Rightarrow r = 1 \text{ mm}$$

$$U_{f} = 1000 \ 4\pi r^{2} \text{ T} = 1000 \times 4\pi \times 10^{-6} \times 0.073$$

$$= 9.17 \times 10^{-4} \text{ J}$$

$$U_{f} = 4\pi \times (10^{-2})^{2} \text{ T} = 9.17 \times 10^{-5} \text{ J}$$

5. A force 200 N is exerted on a disc of mass 70 kg as shown. Find the normal reaction given by ground on the disc.

Answer (3)

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

- At depth *d* from surface of earth acceleration due to gravity is same as its value at height *d* above the surface of earth. If earth is a sphere of radius 6400 km, then value of *d* is equal to
 - (1) 2975 km (2) 3955 km
 - (3) 2525 km (4) 4915 km

Answer (2)

Sol.
$$g_0 \left(1 - \frac{d}{R} \right) = \frac{g_0}{\left(1 + \frac{d}{R} \right)^2}$$
$$\left(1 - \frac{d}{R} \right) \left(1 + \frac{d}{R} \right)^2 = 1$$

On solving

$$\frac{d}{R} = 0, -\left(\frac{\sqrt{5}+1}{2}\right), \frac{\sqrt{5}-1}{2}$$

So,
$$d = \frac{\sqrt{5}-1}{2}R$$

⇒ *d* = 3955 km

 Which of the following graphs depicts the variation of electric potential with respect to radial distance from centre of a conducting sphere charged with positive charge.

Answer (3)

Sol.
$$V(r) = \begin{cases} \frac{q}{4\pi\varepsilon_0 R} & \text{if } r < R \\ \frac{q}{4\pi\varepsilon_0 r} & \text{if } r > R \end{cases}$$

Where r is radial distance and R is radius of sphere, as charge will be on the surface because the sphere is conducting. So graph will be

8. In a sample of hydrogen atoms, one atom goes through a transition $n = 3 \rightarrow$ ground state with emitted wavelength λ_1 . Another atom goes through a transition $n = 2 \rightarrow$ ground state with emitted

wavelength $\lambda_2.$ Find $\frac{\lambda_1}{\lambda_2}.$

(1)
$$\frac{6}{5}$$
 (2) $\frac{5}{6}$

(3)
$$\frac{27}{32}$$
 (4) $\frac{32}{27}$

Answer (3)

9.

Sol.
$$\frac{1}{\lambda_1} = RZ^2 \left[1 - \frac{1}{9} \right]$$

 $\frac{1}{\lambda_2} = RZ^2 \left[1 - \frac{1}{4} \right]$
 $\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{3}{\frac{4}{9}} = \frac{27}{32}$

A block of mass m is connected to two identical springs of force constant K as shown. Find total number of oscillations of block per unit time.

Answer (4)

$$K_{eq} = 2K$$

$$\omega = \sqrt{\frac{K_{\rm eq}}{m}} = \sqrt{\frac{2K}{m}}$$

 $f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{2K}{m}}$ oscillation per second.

10. Consider the two statements:

Assertion : The beam of electrons shows wave nature and exhibits interference and diffraction.

Reason : Davisson-Germer experiment verified the wave nature of electrons.

- (1) Both are correct. Reason correctly explains assertion
- (2) Both are incorrect
- (3) Assertion is correct but Reason is incorrect
- (4) Both are correct. Reason does not explain assertion.

Answer (1)

Sol. Davisson Germer experiment verified wave nature of electrons.

Option (1) is correct.

11. A projectile is launched on horizontal surface such that if thrown with initial velocity of *u*, it has velocity

of $\frac{\sqrt{3}u}{2}$ at maximum height. Then time of flight of the precise tile is equal to

the projectile is equal to

(1)
$$\frac{\sqrt{3u}}{g}$$
 (2) $\frac{2u}{g}$
(3) $\frac{u}{g}$ (4) $\frac{u}{2g}$

Answer (3)

Sol. $u\cos\theta = \frac{\sqrt{3}u}{2}$

$$\Rightarrow \theta = \frac{\pi}{6} \text{ angle of projection}$$
$$T = \frac{2u\sin\theta}{g} = \frac{u}{g}$$

12. A diatomic gas is taken from point *A* to point *B* in a thermodynamic process as described in the Pressure-Volume graph shown. The change in internal energy is equal to

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

(1) 3.75 × 10⁶ J
 (2) 2.25 × 10⁶ J
 (3) 7.5 × 10⁶ J
 (4) 4.5 × 10⁶ J

Answer (1)

Sol.
$$\Delta U = \frac{f}{2} nR\Delta T$$

= $\frac{5}{2} (P_f V_f - P_i V_i)$
= $\frac{5}{2} (200 \times 20 \times 10^3 - 50 \times 50 \times 10^3) J$
= $\frac{5}{2} \times 1500 \times 10^3 J$ = $3.75 \times 10^6 J$

13. A conductor of length *I* and cross-sectional area *A* has drift velocity v_d when used across a potential difference *V*. When another conductor of same material and length *I* but double cross-sectional area than first is used across same potential difference than drift velocity is equal to

(1)
$$\frac{V_d}{2}$$
 (2) v_d

(3)
$$2v_d$$
 (4) $4v_d$

Answer (2)

Sol.
$$I = \eta e v_d A$$

$$\frac{V}{2} = \eta e v_d A$$
$$\frac{VA}{\rho I} = \eta e v_d A$$

 \Rightarrow v_d is independent of area of cross-sectional of conductor.

14. A swimmer swims perpendicular to river flow and reaches point *B*. If velocity of swimmer in still water is 4 km/h, find velocity of river flow.

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

- 15. A bar magnet with magnetic moment of 5 Am² is lying at stable equilibrium in external uniform magnetic field of strength 0.4T. Work done in slowly rotating the bar magnet to the position of unstable equilibrium is equal to
 - (1) 1 J (2) 2 J (3) 3 J (4) 4 J

Answer (4)

- **Sol.** $U_i = -MB\cos^\circ$
 - $U_{f} = -MB \cos 180^{\circ}$ so, $W = \Delta U$ = 2 MB $= 2 \times 5 \times 0.4$ = 4 J
- 16. Unpolarised light (of intensity I_0) is incident on a polarizer *A* and subsequently on polarizer *B* whose pass axis is perpendicular to that of *A*. Now a polarizer *C* is introduced between *A* and *B* such that pass axis of *C* is at 45° with pass axis of *A*. Find intensity that comes out of *B*.
 - (1) $\frac{I_0}{8}$
 - (2) $\frac{l_0}{4}$
 - (3) Zero
 - (4) $\frac{3I_0}{8}$

Answer (1)

Sol.
$$I_{\text{net}} = I_0 \times \frac{1}{2} \times \cos^2 45^\circ \times \cos^2 45^\circ$$
$$= \frac{I_0}{8}$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A solid sphere is rolling on a smooth surface with kinetic energy = 7 × 10⁻³ J. If mass of the sphere is 1 kg, find the speed of centre of mass in cm/s. (Consider pure rolling)

Answer (10.00)

Sol.
$$\frac{1}{2}mv_{cm}^{2} + \frac{1}{2} \cdot \frac{2}{5}mv^{2} = 7 \times 10^{-3}$$
$$\Rightarrow \frac{7}{10}mv^{2} = \frac{7}{1000}$$
$$\Rightarrow v = \frac{1}{10}m/s = 10 \text{ cm/s}$$

22. A lift of mass 500 kg starts moving downwards with initial speed 2 m/s and accelerates at 2 ms⁻². The kinetic energy of the lift when it has moved 6 m down is _____ kJ.

Answer (07.00)

Sol.
$$u = 2 \text{ m/s}$$

 $a = 2 \text{ m/s}^2$
 $s = 6 \text{ m}$
 $v^2 - u^2 = 2as$
 $\Rightarrow v^2 = u^2 + 2as = 4 + 2 \times 2 \times 6 = 28$
 $\text{K.E.} = \frac{1}{2}MV^2 = \frac{1}{2} \times 500 \times (28)$
 $= 500 \times 14$
 $= 7000 \text{ J}$
 $= 7 \text{ kJ}$

23. Electric field in a region is $4000x^2\hat{i}$ N/C. The flux

Answer (32)

=

Sol. $\phi = 4000(0.2)^2 \times \text{Area}$

$$= 4000(0.2)^2 \times (0.2)^2$$

$$=\frac{4000\times16}{10000}$$

.....

24. For an series LCR circuit across an A.C source, current and voltage are in same phase. Given the resistance of 20 Ω and voltage of the source is 220 V. Find current (in A) in the circuit.

Answer (11.00)

Sol. The given circuit is in resonance

$$\therefore i = \frac{220}{20} = 11 \,\text{A}$$

25. For a particle performing SHM, maximum potential energy is 25 J. The kinetic energy (in J) at half the

amplitude is $\frac{x}{4}$. Find x

Answer (75.00)

Sol. KE =
$$\frac{1}{2}kA^2 - \frac{1}{2}k\left(\frac{A}{2}\right)^2$$

= $\frac{1}{2}kA^2\left[\frac{3}{4}\right]$
= $\frac{3}{4} \times 25 \text{ J}$
= $\frac{75}{4} \text{ J}$

26. The current through a 5 Ω resistance remains same, irrespective of its connection across series or parallel combination of two identical cells. Find the internal resistance (in Ω) of the cell.

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

Answer (05.00)

When connected in series

$$\varepsilon_{eq} = 2\epsilon$$

$$i = \left(\frac{2\varepsilon}{R+2r}\right)$$

$$\Rightarrow \frac{\varepsilon}{R+\frac{r}{2}} = \frac{2\varepsilon}{R+2r}$$

$$\Rightarrow R+2r = 2R+r$$

$$\Rightarrow [r=R=5\Omega]$$

27.

28. 29.

30.