
1.

UGC NET PAPER 2 NOVEMBER 05, 2017 SHIFT 1 ELECTRONIC SCIENCE QUESTION PAPER

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are **compulsory**.

- The depletion region in a junction diode contains charges that are:
 - (1) Mobile donor and acceptor ion
- (2) Fixed donor and acceptor ion
- (3) Mostly majority carriers
- (4) Mostly minority carriers
- 2. For the circuit shown below, the value of R_L and maximum power are :

(1) 6 Ω and 0.51 W

(2) 12 Ω and 0.6 W

(3) 12Ω and 0.75 W

- (4) cannot be calculated without knowing R_L
- 3. In a full wave rectifier, the current in each of the diode flows for :
 - (1) Half cycle of input signal
- (2) Full cycle of input signal
- (3) Quarter cycle of input signal
- (4) Three fourth cycle of input signal
- 4. The Boolean SOP expression obtained from the truth table is:

	Inputs	Output			
A	В	C	Х		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	0		

- (1) ABC' + A'BC
- (2) AB'C + ABC'
- (3) A'B'C + ABC'
- (4) A'BC' + AB'C

5.	Whi	ch command woi	d of 8	3251 indicate	es ent	er hu	nt mo	de ?			
	(1)	D_0	(2)	D_1		(3)	D_6		(4)	EH or D ₇	
6.	Con	sider the 'C' state	ement	printf ("%f"	′,(floa	t) 7/5); It p	orints :			
	(1)	1.0			(2)	1.4					
	(3)	2.0			(4)	Non	e of th	ne above			
7.		induction and rac ance 'R'. The valu			n oscil	lating	dipol	le becomes a	appro.	ximately equal at a	
	(1)	⅓6	(2)	$\frac{\lambda}{4}$		(3)	1/3		(4)	λ∕2	
8.	The	ability of a receiv	er to	discriminate	agair	nst the	inter	fering signa	ds is l	known as :	
	(1)	Selectivity	(2)	Sensitivity		(3)	Fide	lity	(4)	Distortion	
9.	An LED made of GaAs operates at a wavelength of 0.86 μm, The surrounding medium is air The relative permittivity of GaAs is 12.9. The external quantum efficiency of the LED is :									and the rel igious and the first fill the first construction	
	(1)	2.31 %	(2)	23.1 %	400	(3)	13.1	%	(4)	1.31 %	
10.	Sens	Sensitivity of potentiometer can be increased by :									
	(1)										
	(2)										
	(3)										
	(4)	(4) Decreasing the resistance in the rheostat in the series with the battery									
11.	The operation of JFET involves mainly :										
	(a)	Flow of Minorit	y carr	riers							
	(b)	Flow of Majorit	y carr	iers							
	(c) A very high input impedance										
	(d)	(d) Negative resistance									
	Whi	ch of the followin	ig is c	orrect ?							
	(1)	(b) and (c)	(2)	(a) and (b)			(3)	(c) and (d))	(4) (c) and (a)	

12. Consider the following statements:

- (a) Tellegen's theorem is applicable to any lumped networks
- (b) The reciprocity theorem is applicable to linear bilateral networks
- (c) Thevenin's theorem is applicable to two terminal linear active networks
- (d) Norton's theorem is applicable to two terminal linear active networks

Which of the above statements are correct?

- (1) (a), (b) and (c) only
- (2) (a), (b) and (d) only

- (3) (a), (b), (c) and (d)
- (4) (b), (c) and (d) only
- 13. The addition of two binary variables A and B results into a SUM and a CARRY output. Consider the following expressions for SUM and CARRY outputs.
 - (a) SUM = $A \cdot B + \overline{AB}$
- (b) SUM = $\Lambda \cdot \overline{B} + \overline{\Lambda} \cdot B$

(c) $CARRY = A \cdot B$

(d) CARRY = A + B

Which of the following expressions are correct?

- (1) (a) and (c)
- (2) (b) and (c)
- (3) (d) and (b)
- (4) (a) and (d)

- 14. What are the names of 16 bit registers in 8085?
 - (a) SP
- (b) PC
- (c) Accumulator
- (d) W

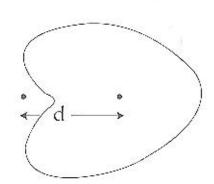
Options:

(1) (a) and (b) are correct

- (2) (c) and (d) are correct
- (3) (a), (b) and (c) are correct
- (4) (b), (c) and (d) are correct

15. Consider the following 'C' Program:

```
# include <stdio.h>
int main ()
{
  int max;
  scanf ("%d", & max);
  int a[max];
  for (i=1; i<max; i++)
  {
    scanf ("%d", a[i]);
    printf("%d \n", a[i]);
}
  return 0;
}</pre>
```



Which of the following statements are correct: about the 'C' program given above?

- (a) The code is correct and runs successfully
- (b) The code is erroneous since the statement declaring array is invalid
- (c) The code is erroneous since the subscript for array used in 'for' loop is in the range 1 to max 1
- (d) The code is erroneous since the type declaration statement int a [max]; is done after scanf()

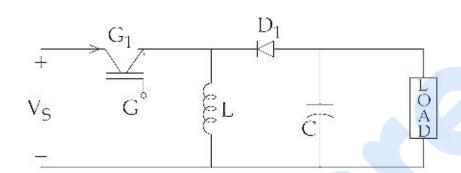
Options:

- (1) (a) and (c)
- (2) (b) and (c)
- (3) (b) and (d)
- (4) (c) and (d)
- 16. The radiation pattern of two non directional radiators fed with equal currents (with a phase shift) shown in figure belongs to :

- (a) $d = \lambda/2$
- (b) $\alpha = -90^{\circ}$
- (c) $d = \lambda/4$
- (d) $\alpha = 0^{\circ}$

- (1) (a) and (b) are correct
- (2) (b) and (c) are correct
- (3) (c) and (d) are correct
- (4) (a) and (d) are correct

- 17. An FM detector produces a peak to peak output voltage of 1.2 V from an FM signal that is modulated to 10 kHz deviation by a sine wave.
 - (a) The peak voltage is 0.6V
 - (b) The detector sensitivity is $6 \mu V/Hz$
 - (c) The peak voltage is 2.4V
 - (d) The detector sensitivity is $60 \mu V/Hz$


Which of the above are correct?

(1) (a) and (b)

18.

- (2) (b) and (c)
- (3) (c) and (d)
- (4) (a) and (d)

In the following circuit of buck - boost regulator:

Input voltage = 12V, duty cycle = 0.25 and switching frequency = 25 kHz , L = 125 μ H and C = 220 μ F. The average load current = 1.25 Λ . Following statements are given :

- (a) Average output voltage = 4.8 V
- (b) Peak to peak output ripple voltage = 5.68 V
- (c) Average output voltage = -4 V
- (d) Peak to peak output ripple voltage = 56.8 mV

Which one is **correct** option:

- (1) (a) and (b)
- (2) (b) and (c)
- (3) (c) and (d)
- (4) (a) and (d)
- Consider the following statements regarding the steady state error due to a step function input.
 - (a) Type '0' system $e_{ss} = \frac{R}{1 + Kp}$
 - (b) Type '0' system $e_{ss} = 0$
 - (c) Type '1' system $e_{ss} = 0$
 - (d) Type '1' system $e_{ss} = \infty$

Which of the above statements are correct?

- (1) (a) and (b)
- (2) (b) and (c)
- (3) (a) and (c)
- (4) (a) and (d)

- 20. The Q point of a voltage amplifier is selected in the middle of the active region because:
 - (a) In this case it requires a small dc voltage
 - (b) The operating point becomes stable
 - (c) It gives distortion less output
 - (d) It is suitable for small input signals without distorted output

Which of the following is correct?

(1) (b) and (d)

21.

- (2) (c) and (d)
- (3) (a) and (d)
- (4) (b) and (a)

Match the following list:

List - I

- (a) Resist on UV exposure undergoes
- (i) + ve resist

List - II

cross-linking

- (b) Resist on UV exposure under goes decomposition reaction
- (ii) ve photoresist
- (c) Space charge width at zero bias for M-S contact
- (iii) $n.p = n_i^2$

(d) Law of mass action

(iv) $\left[\frac{2\epsilon_s V_{bi}}{aN_D}\right]^{1/2}$

Correct code are:

Code:

- (a) (b) (c) (d)
- (1) (ii) (i) (iv) (iii)
- (2) (iii) (ii) (i) (iv)
- (3) (ii) (iii) (iv) (i)
- (4) (i) (ii) (iv) (iii)

22. Match the following list:

List-I

(a) $a \oplus b = 0$

$$(b) \quad \overline{a+b} = 0$$

(c)
$$\bar{a} \cdot b = 0$$

(d)
$$a \oplus b = 1$$

Code :

- (a) (b) (c) (d)
- (1) (iii) (ii) (i) (iv)
- (2) (ii) (iii) (iv) (i)
- (3) (iii) (ii) (iv) (i)
- (4) (ii) (iii) (i) (iv)

23. Match the following list:

List-I

- (a) In half wave Rectifier dc voltage across load approximately for $(r_d << R_I)$
- (b) Rectification efficiency of full wave rectifier in % is
- (c) Gain of amplifier in dB
- (d) Feedback factor when RC network is phase shift oscillator gives exactly 180° phase shift Correct code are:

Code :

- (a) (b) (c) (d)
- (1) (ii) (i) (iii) (iv)
- (2) (i) (iii) (iv) (ii)
- (3) (iii) (ii) (iv) (i)
- (4) (iv) (iii) (ii) (i)

List-II

- (i) a ≠ b
- (ii) a = b
- (iii) a = 1 or b = 1
- (iv) a = 1 or b = 0

List-II

- $(i) \sim \frac{V_{\rm m}}{\pi}$
- (ii) $\beta = \frac{1}{29}$
- (iii) $\frac{81.2}{1 + \frac{r_d}{R_1}}$
- (iv) $20 \log_{10} \frac{V_2}{V_1}$

Match the following list: 24.

List-I

(Octal)

- 35 (a)
- 65 (b)
- 54 (c)
- (d) 76
- Correct code are:

Code:

- (a) (b)
- (c)
 - (d) (i)
- (1)
- (iii) (ii)
- (iv)
- (2)
- (iv)

(ii)

- (iii) (ii)
- (i) (iv)

(4)

(3)

- (iii)
- (i)

(iii)

(i)

(iv) (ii)

Match the following list: 25.

List-I

(8085 Instruction)

- LXI H, 3400 H (a)
- STA 3600 H (b)
- STA X B (c)
- ADD B (d)

Correct code are:

Code:

- (a)
- (b)
- (c)

(i)

- (1)
- (iv)

(i)

(iii)

(ii)

- - (iv) (ii)

(d)

(iii)

(iv)

(3)

(4)

(2)

- (iii)

(iii)

- (i)

(iv)

- (ii)
- (ii) (i)

53 62

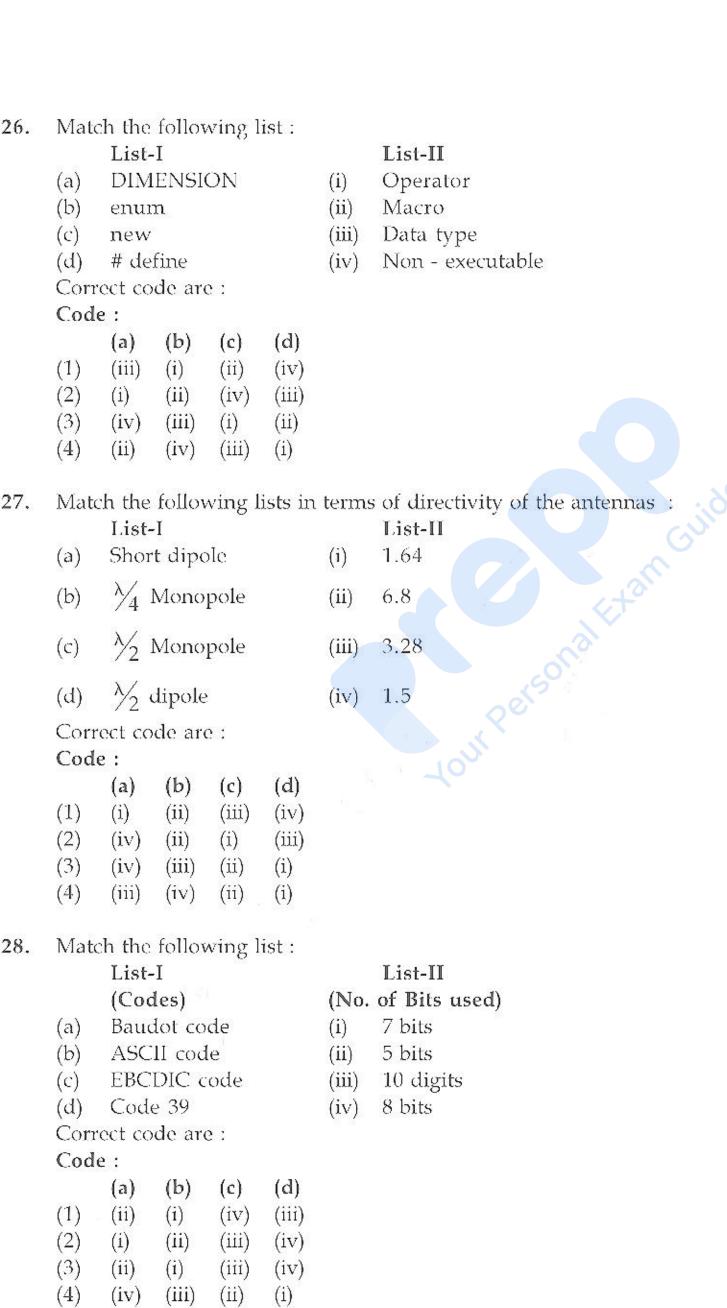
List-II

(Decimal)

(iii) 29

(i)

(ii)


(iv) 44

List-II

(Addressing mode)

- (i) Direct
- Register Indirect (ii)
- Immediate (iii)
- Register (iv)

29. Match the following list:

List-I

List-II

(a) Crest factor

- (i) $\sqrt{\frac{I_s^2 I_{s_1}^2}{I_{s_1}^2}}$
- (b) Harmonic factor
- (ii) $\cos \phi$
- (c) Displacement power factor (iii)
- $(iii) \quad \frac{\Delta V_o}{V_o \ average}$

(d) Power factor

(iv) $\frac{I_s \text{ (Peak)}}{I_s}$

Correct code are:

Code:

- (a) (b) (c) (d)
- (1) (ii) (iii) (iv) (i)
- (2) (iv) (i) (ii) (iii)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (ii) (i) (iii)

30. Match the following list:

List-I

List-II

- (a) Amplidyne
- (i) Three axes device
- (b) Resolver
- (ii) Dynamo-electric amplifier
- (c) Gyroscope
- (iii) Rotatory transformer
- (d) Accelerometer
- (iv) Inertial measurement

Correct code are:

Code:

- (a) (b) (c) (d)
- (1) (i) (iii) (iv)
- (2) (ii) (i) (iv) (iii)
- (3) (ii) (iii) (i) (iv)
- (4) (i) (ii) (iii) (iv)

Integrator

(a), (b), (c)

Proportional + Derivative

Proportion + Integral + Derivative

(2)

(a)

(b)

(c)

(1)

Code:

31.	The	The correct sequence of TTL logic chip in decreasing order of their gate delay time is :							
	(a)	74 L 00	(b)	74 S 00	(c)	74 LS 00	(d)	74 H 00	
	Cod	e :							
	(1)	(a), (b), (c), (d)		(2)	(a),	(c), (d), (b)			
	(3)	(a), (c), (b), (d)		(4)	(b),	(a), (d), (c)			
32.	 Following are the incident radiation used for lithography while making integrated circu (depending upon the feature size). 								
	(a)	Visible light	(b)	Electron beam	(c)	Ion beam	(d)	UV light	
	Sequ	ience the radiation	n used	d for increasing o	rder (of the feature size	:		
	Cod	e :					:19e		
	(1)	(c), (b), (d), (a)	(2)	(b), (a), (d), (c)	(3)	(a), (b), (c), (d)	(4)	(a), (d), (b), (c)	
						13/11			
33.	Whi	ch of the followin	g is co	orrect sequence of	evali	uation for the 'C'	expres	sion given below ?	
		A + B*R/4%2 - 1							
	(1)	- % / * + =	(2)	/ * % - + =	(3)	5 * / % - + =	(4)	* / % +-=	
34.	Arrange the following in terms of theoretical attenuation in ascending order for a distance of 100 ft from the transmitter.								
	(a)	Ku band	(b)	X band	(c)	L band	(d)	S band	
	The	correct sequence	of atte	enuation in ascen	ding	order is :			
	Cod	e :							
	(1)	(c), (d), (b), (a)		(2)	(a),	(b), (c), (d)			
	(3)	(a), (b), (d), (c)		(4)	(d),	(b), (c), (a)			
35.	Con	sider the followin	g circ	uit models.					

Arrange the above circuit models in decreasing order of their circuit complexity:

(3)

(b), (a), (c)

(c), (b), (a)

(4)

(a), (c), (b)

Directions: Question No. 36 to 45:

The following items consist of two statements, one labelled as "Assertion (A)" and the other labelled as the "Reason (R)". You are to examine the two statements carefully and decide if the Assertion (A) and the Reason (R) are individually true and if so whether the reason is a correct explanation of the assertion. Select your answer to these items using the code given below and mark your answer accordingly.

Code:

- (1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are true, but (R) is not the correct explanation of (A)
- (3) (A) is true, but (R) is false
- (4) (A) is false, but (R) is true
- 36. Assertion (A): Tunnel diode characteristics have negative resistance region.
 - Reason (R): Tunnel diode can be used as rectifier.
- 37. Assertion (A): Q factor of a series resonant circuit is $\frac{1}{R}\sqrt{\frac{L}{C}}$
 - **Reason (R):** High Q means better selectivity.
- **38. Assertion (A):** For making integrated circuit the type of lithography chosen depends upon the feature size.
 - Reason (R): UV lithography can easily be used for making nano size circuits.
- 39. Assertion (A): In a parallel in serial out shift register data is loaded one bit at a time.
 - **Reason (R)**: A serial in serial out shift register can be used to introduce time delay in the circuits.
- 40. **Assertion (A):** Architecturally 8086 μp is totally different from its predecessor 8085 μp but functionally it is downward compatible with 8085.
 - **Reason (R):** The segmented architecture was introduced in 8086 μp to keep compatibility with 8085 μp .

43.

- **41. Assertion** (A): If 'char a[10];' is defined in one file and 'extern char *a;' is declared in another file then it does not work.
 - Reason (R): The declaration 'extern char *a;' does not declare an array and therefore does not match the actual definition.
- 42. Assertion (A): A high electron mobility transistor is based upon modulation doped (GaAs ΛI GaAs) single heterojunction structure.
 - Reason (R): HEMT shows very high noise figure and very low gain at very high microwave frequencies upto 70 GHz.
 - **Assertion (A):** Shot noise is due to random variations in current flow in active devices.
 - **Reason (R):** Current is a flow of carriers each of which carries a finite amount of charge.
- **44.** Assertion (A): In a two transistor model the anode current is given by:

$$I_{A} = \frac{\alpha_{2}I_{G} + I_{CBO_{1}} - I_{CBO_{2}}}{I + (\alpha_{1} - \alpha_{2})}$$

- **Reason (R):** The regenerative or Latching action due to a positive feedback is demonstrated in a two transistor model of a thyrister. It contains a pnp & a npn transistors.
- **45. Assertion (A):** The closed loop pole zero dipole introduced by PI controller does not contribute significantly to the transient response of the closed loop system.
 - **Reason (R):** The PI controller adds a pole at s=0 and a zero at s=-z to the closed loop transfer function.

Based on the following para, answer Q. No. 46 to 50:

Antennas are used to transmit and receive signals. The basic theory behind them is given by Maxwell's equations and electromagnetics. Its size depends upon the frequency used. Higher is the frequency lower are the dimension of antennas. Antennas are of various types, like resonant, non - resonant etc. They are different for different applications.

- **46.** If 'Z' is the impedance of a simple dipole, the impedance of 'n' fold dipole is given by :
 - (1) n Z
- $n^2 Z$
- (3) Z/n
- $(4) \quad Z/n^2$

47.	17. The directivity of a small loop and a short dipole has the following ratio:										
	(1)	2:1	(2)	1:2		(3)	1:1		(4)	1:4	
48.	Patc	h is a :									
10.	253342757522		1 1		(2)	11: 1	2 95000 1 000 kepelentan	5555 1 556555	1	•	
	(1)	High gain wide	band	antenna	(2)	High	gain narre	ow band	a an	tenna	
	(3)	Low gain narro	w bar	nd antenna	(4)	Low	gain wide	band a	inter	ina	
49.		maximum gain fo. th is :	r H - p	olane sectora	al hor	n with	slant lengtl	h of 127	V occ	urs when	aperture
	(1)	λ	(2)	3 λ		(3)	6 λ		(4)	12 λ	
									20		
50.	Helical antennas are often used for satellite tracking in VHF range because of :										
	(1)	Troposcatter			(2)	Supe	r - refractio	n			
	(3)	lonospheric refr	actior	ı	(4)	Fara	day effect				
					-00	0 -					
						a ex	onall				

Space For Rough Work

