Marking scheme – 2017 (Compartment)

CHEMISTRY (043)/ CLASS XII

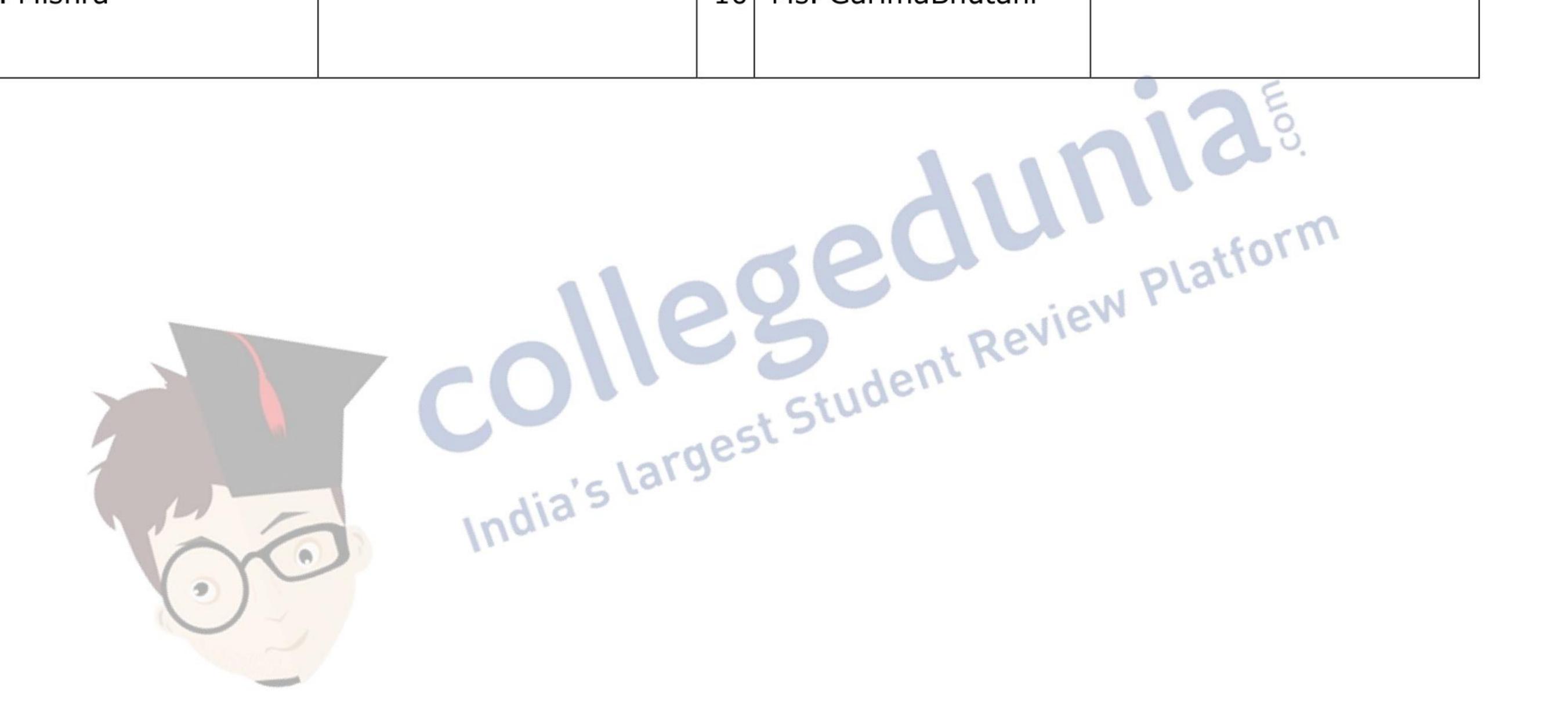
Set 56/1

Q.No	Value Points			
1	Frenkel defect			
2	Liquid –liquid colloidal systems ; example- milk (or any other)			
3	Dichloridobis(ethane-1,2-diamine)cobalt(III) ion			
4	$ \begin{array}{c} OH \\ Na_2Cr_2O_7 \\ H_2SO_4 \end{array} $ / Benzoquinone is formed	1		
5	N,N-dimethylbutan-1-amine	1		
6	Ag ⁺ (aq) + e ⁻ → Ag(s) Because it has higher reduction potential			
7	Hypophosphorous acid is a good reducing agent as it contains two P-H bonds. There is no P-H bond in orthophosphoric acid, so it is not a reducing agent			
	Example: It reduces AgNO ₃ to metallic silver/ chemical equation	1		
8	a) Due to high activation energy	1		
	b) Rate = $k [A_2]^0 [B_2]^0$	1		
	OR OR			
8	Rate = $-\frac{d[R]}{dt} = k[R]$ Integrating this equation, we get In $[R] = -kt + 1$ (4.8) When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant. Therefore, equation (4.8) can be written as In $[R]_0 = -k \times 0 + 1$ In $[R]_0 = 1$ Substituting the value of I in equation (4.8) In $[R] = -kt + \ln[R]_0$ (4.9) Rearranging this equation In $\frac{[R]}{[R]_0} = -kt$ or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	1		
	t [R]	1		
9	i. Because it has incompletely filled d orbitals in one of its oxidation state (Cu ²⁺)	1		

	ii. Cr^{2+} (d^4) changes to Cr^{3+} (d^3) while Fe^{2+} (d^6) changes to Fe^{3+} (d^5). In aqueous medium d^3 is more stable than d^5 .	1
10.	a) CH ₃ -CH(Br)-CH ₃ alc кон CH ₃ -CH=CH ₂ HBr, Peroxide CH ₃ -CH ₂ -CH ₂ -Br b) .	1
	$+ Cl_2 \xrightarrow{Fe} \xrightarrow{Cl} \xrightarrow{HNO_3} \xrightarrow{conc. H_2SO_4} \xrightarrow{NO_2}$	1
11	In bcc, z=2;	
	$d = (zxM) / a^3 x N_A$ (i) Putting values of M in equation (i) $M = 7.2 c / cm^3 x (200 \times 10^{-10} cm)^3 N_A / C$	1
	$M = 7.2g/ \text{ cm}^3 \text{ x} (288 \text{ x} 10^{-10} \text{ cm})^3 \hat{N}_A / 2$ = 51.8 g/ mol	1
	(or any other correct method)	1
12	$\Delta rG^{\circ} = -nFE^{\circ}_{cell}$, n=6	1/2
	= - 6 × 96500 C/ mol × 0.34V = -196860 J /mol or -196.860 kJ/mol	1
	E_{cell}^{o} = 0.059V / n × log Kc	1/2
	log Kc = 0.34 V ×6 / 0.059V = 34.5762	1
13	$t = \frac{2.303}{k} \log [R]o/[R]$	
	$t_{99\%} = \frac{2.303}{100} \log 100/1 = \frac{2.303}{100} \times 2$ (i)	1
	$\frac{1}{2.303}$ $\frac{1}{100/10}$ $\frac{1}{2.303}$ (iii)	<u>-1.</u>
	Dividing equation (i) by (ii)	1
	2.303	
	$\frac{\tau_{99\%}}{k} = \frac{\kappa}{k} \times 2$	
	$t_{90\%}$ $\frac{2.303}{l}$	
	t _{99%} = 2 t _{90%} k	1
	299% 2 290%	
14	i) The colloidal particles scatter light in all directions in space.	1
	ii) The zig-zag movement of particles of the dispersed phase due to unbalanced	
	bombardment of the colloidal particles by the molecules of dispersion medium.	1
15	iii) As the adsorption is an exothermic process, it decreases with increase in temperature. a) i)The impurities are more soluble in the melt than in the solid state of the metal.	1
	ii)The more basic / reactive metal gets deposited at the cathode and the less	
	basic / reactive ones go to the anode mud.	1
	b) i)Ni ii) Ti/Zr	1/2,1/2
16	A: Na ₂ CrO ₄ ; B: Na ₂ Cr ₂ O ₇	1/2,1/2
	4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂	1
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	
		1
	OR	
16	a) i)Due to d-d transition ii)Due to bigher evidetion etete of Mp in Mp O / Due to bigh polarizing power of	1
	ii) Due to higher oxidation state of Mn in Mn_2O_7 / Due to high polarizing power of Mn(VII).	1
	b) $\mu = \sqrt{4(4+2)} = 4.90 \text{ B.M}$	1
	, , , , , , , , , , , , , , , , , , ,	

17	\Box	1
17	Hybridisation: d ² sp ³ Magnetic character: Paramagnetic	1
	- Iviagnetic character . Paramagnetic	T
	en Fe	
		1
	en'	
18.	a) i)Due to –I effect of X , the ring gets partially deactivated	1
	ii)They fail to form Hydrogen bonds with water/ more energy is required to break hydrogen	1
	bonds in water and less energy is released when new attractions are set up.	
	b)2-Bromo-2-methylbutane < 2-Bromopentane < 1-Bromopentane	1
19.	a) Due to resonance, phenoxide ion is more stable than phenol whereas there is no	1
	resonance in alkoxide ion / explained with the help of resonating structures.	
	b)	
	H.	
	(i) $CH_3-CH_2-O-H + H^+ \longrightarrow CH_3-CH_2-O-H$	
		1/2
	(ii) $CH_3CH_2 - \ddot{O}$: $+ CH_3 - CH_2 - \dot{O} + CH_3 - CH_3 - CH_3 - CH_3 - CH_3 + H_2O$	'2
	(II) CH_3CH_2 V V CH_3 CH_2 V H V CH_3CH_2 V CH_2CH_3 V H_2C	
	H	1
	the second of th	
	(iii) $CH_3CH_2 \rightarrow CH_2CH_3 \rightarrow CH_3CH_2 - CH_2CH_3 + H$	
	H dent in	1/2
	st Stud	
20.	i) A: CH ₃ - CH ₂ CN; B: CH ₃ - CH ₂ - CH ₂ NH ₂ ; C: CH ₃ - CH ₂ - CH ₂ -NH-COCH ₃	½ ×3
	NO ₂ dia NH ₂	
		½ ×3
	ii) A: $Ar = N_2BF_4$; B: C :	/2 ^3
21	a) Because they are excreted in urine and cannot be stored in body; Vitamin C / B_1 /	1/2 , 1/2
	B_2/B_6	
	b) i) Essential amino acids are those which cannot be synthesized in the body and are supplied through diet whereas non-essential amino acid can be synthesized	1
	in the body	
	ii) In fibrous proteins, the polypeptide chains run parallel and are held together by	1
	hydrogen or disulphide bonds while in globular, polypeptide chains coil	1
22	around to give a spherical shape i) Phonol / 0.2 % phonol is apticaptic while 1% is disinfectant	1
22	 i) Phenol / 0.2 % phenol is antiseptic while 1% is disinfectant. ii) Aspartame 	1
	iii) Cationic detergents are quaternary ammonium salts of amines with acetates,	1
	chlorides or bromides as anions/ Cationic part has a long chain hydrocarbon	1
	which is involved in cleansing action.	
23	a) Poly β-hydroxybutyrate – co-β-hydroxyvalerate / (PHBV)	1/2
		1/ 1/
	Monomers: CH ₃ -CH-CH ₂ -COOH, CH ₃ -CH ₂ -CH-CH ₂ -COOH	1/2,1/2
	Repeating unit:	
	(O-CH-CH ₂ -C -O-CH-CH ₂ -C)	1/2

	CH ₃ CH ₂ CH ₃ O	



26	a) A: CH ₃ CHO ; B: CH ₃ -CH(OH)-CH ₂ -CHO ; C: CH ₃ -CH=CH-CHO ;	1×4
	(Or any other suitable test) OR	
	ii) Add NaHCO ₃ solution to both the compounds, benzoic acid will give effervescence and liberate CO ₂ .	1
	b) i) Add NaOH and I ₂ to both the compounds and heat, acetophenone forms yellow ppt of iodoform.	1
	ii) Because it is a deactivating group / Due to electron withdrawing carboxylic group resulting in decreased electron density at o- and p- position. iii) Due to resonance, electrophilicity of carbonyl carbon is reduced.	1 1
26	a) i) Due to steric and + I effect of two methyl groups in propanone.	1
	ii). $6\mathrm{XeF_4} + 12~\mathrm{H_2O} \rightarrow 4\mathrm{Xe} + 2\mathrm{XeO_3} + 24~\mathrm{HF} + 3~\mathrm{O_2}$	1
	i). $4NaCl + MnO_2 + 4H_2SO_4 \rightarrow MnCl_2 + 4NaHSO_4 + 2H_2O + Cl_2$	1
	higher oxidation state of chlorine in HClO ₃ iii) Fluorine and oxygen are most electronegative and very reactive.	1
25	a) i) Stability of higher oxidation state decreases down the group from S to Te/ Stability of lower oxidation state increases down the group from S to Te. ii) ClO ₃ is more stable than ClO ⁻ / ClO ₃ is a weak conjugate base than ClO ⁻ / Due to	1
	OR OR	
	F Xe F India's largest Stude II.	1
	Cu + 4 HNO ₃ \rightarrow Cu(NO ₃) ₂ + 2 NO ₂ + 2 H ₂ O 2NO ₂ \rightarrow N ₂ O ₄ b) .	1
	NaNO ₃ + conc. H ₂ SO ₄ \longrightarrow NaHSO ₄ + HNO ₃ (or any other nitrate) Cu + 4 HNO ₃ \longrightarrow Cu(NO ₃) ₂ + 2 NO ₂ + 2 H ₂ O	1
25	a) A: NO ₂ ; B: N ₂ O ₄	1/2, 1/2
	$\Delta T_b = [3 \times 0.512 \text{ K kg mol}^{-1} \times 1000 \times 10 \text{ g}] / [111 \text{ g mol}^{-1} \times 200 \text{ g}]$ $= 0.69 \text{K}$	1
	b) $\Delta T_b = i K_b m$ Here, $m = w_B x 1000 / M_B X w_A$	1
24	a) i) The solutions which obey Raoult's law over the entire range of concentration. ii) It is the excess pressure that must be applied to a solution to prevent osmosis.	1 1
	$n_{co2} = 1.51 \times 10^{-3} \times 27.77 \text{ mol} = 0.042 \text{ mol}$ OR	1
	$n_{H2O} = 500g / 18 g/mol = 27.77 mol$ Let $n_{CO2} = n mol$ $X_{CO2} = n / (27.77 + n) = 1.51 \times 10^{-3}$	1/2
	$X_{CO2} = p_{CO2} / K_H$ = $2.53 \times 10^5 \text{ Pa} / 1.67 \times 10^8 \text{ Pa} = 1.51 \times 10^{-3}$	1
	(glucose) hence boiling point increases b) $p_{CO2} = K_H X_{CO2}$	1/2
24	a) Vapour pressure of the solvent decreases in the presence of non – voilatile solute	2
	 b) PHBV is used in speciality packaging, orthopaedic devices and in controlled release of drugs.(any two) c) Concern for environment, caring (or any other) 	½,½ ½,½

7	D: CH ₃ -CH(CH ₃)-OH		
	D. OH3-OH(OH3)-OH		
	N C U C U C U C U C U C U C U C U C U C	4 CH COOH	
	b) CH_3 -O- CH_3 < CH_3 CHO < CH_3 -CH ₂ -OH	< UN3-UUUN	1
			-

1	Dr. (Mrs.) Sangeeta Bhatia	6	5	Sh. Rakesh Dhawan	
2	Dr. K.N. Uppadhya	7	7	Dr. (Mrs.) SunitaRamrakhiani	
3	Prof. R.D. Shukla	8	3	Mrs. Preeti Kiran	
4	Sh. S.K. Munjal	9	9	Dr. Azhar Aslam Khan	
5	Sh. D.A. Mishra	1	10	Ms. GarimaBhutani	

