SET: 55/3

MARKING SCHEME

Q. No.	Expected Answer/ Value Points SECTION A	Marks	Total Marks
Q1	For higher magnification both objective and eyepiece must have short focal length	1	
	(Alternatively: $: m \propto \frac{1}{f_o f_e}$)		1
Q2	Accept both the answers:	1	
	A:+ve; B:-ve		4
Q3	or A:-ve; B:+ve Any two of the following	$\frac{1}{2} + \frac{1}{2}$	
	i. Length of transmitting antenna is short.		
	ii. Power radiated is more.		
	iii. Mixing of signals can be avoided.		1
Q4			
	Definition ½		E
	SI Unit	-012	3.
	Conductivity is reciprocal of resistivity	1/2	
	$\sigma = \frac{1}{2}$	- Lat	OLW
		ieW 1/2	4
Q5	SI unit : S(siemen)	1	_L _
	+Q		1
	SECTION B		
Q6	Two properties of photon $\frac{1}{2} + \frac{1}{2}$		
	Reason for different energies of photoelectrons 1		
	i. Photon is electrically neutralii. Photon has an energy hv	1/2 1/2	
	[Or any other property]	72	
	Reason:		
	In addition to the work done to free them from the surface, different		
	(emitted) photoelectrons need different amounts of work to be done on them to reach the surface.	1	
	OR		
	Energy of photon		
	KE of proton		
	Energy of photon ½ KE of proton 1 Comparison ½		

Page 1 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			<u>SEI:5</u>
	Energy of photon, $K_1 = \frac{hc}{\lambda}$	1/2	
	For proton: $\lambda = \frac{h}{\sqrt{2mK_2}}$	1/2	
	$K_1 = \frac{h^2}{2m\lambda^2}$	1/2	
	$\therefore \frac{1}{K_2} = 2mc\lambda/h$	1/2	2
Q7	Distinction between nuclear fission and fusion 1 Cause of release of energy 1		
	In nuclear fission a heavy nucleus breaks up into smaller nuclei accompanied by release of energy where as in nuclear fusion two light nuclei combine to form a heavier nucleus accompanied by release of energy.	1/2 + 1/2	
	In both the cases, some mass(= mass defect) gets converted into energy as per the relation. $E = \Delta mc^{2}$	1	<u>6</u> 2
Q8	Calculation of Current Calculation of Terminal Voltage	N Plat	orm
	10-4 = I(1+5) ∴I = 1A ∴ terminal voltage across cell = $(4 + 1 \times 1)V$ = $5V$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2
Q9			
	Distinction between 'point to point' and broadcast modes 1 One example for each $\frac{1}{2} + \frac{1}{2}$		
	Point to point communication takes place between a single transmitter and a receiver.	1/2	
	In broadcast mode, a large number of receivers can receive signal from a single transmitter.	1/2	
	Example of point to point mode: telephony Example of Broadcast mode: Radio/TV	1/2 1/2	,
Q10	Definition 1 Calculation of Speed 1	1 4	
	i. Refractive index of a medium is the ratio of speed of light (c) in free space to the speed of light (v) in that medium. $\mu = \frac{c}{v}$	1	

Page 2 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET : 5
	ii. $\mu = \frac{c}{v} = \frac{1}{\sin i_c}$ $= \frac{3 \times 10^8}{10^8} = \frac{1}{300}$	1/2	
	$v = \frac{30}{50} \times 3 \times 10^8 = 1.8 \times 10^8 m/s$	1/2	2
	SECTION C		
Q11	VI characteristics Two advantages Factors 1 1/2 + 1/2 1/2 + 1/2 1/2 + 1/2 1/2 + 1/2	1	S. orm
	OR OR OR I(mA) 100- 80- 60- 40- 20- 20- 0.2 0.4 0.6 0.8 1.0 • V(V)	ew Pla	
	Advantages (any two) i. Low operational voltage. ii. less power consumption. iii. Long life iv. ruggedness [or any other]	1/2 1/2	
	 a. Energyband gap controls the wavelength of light emitted. b. Forward current controls the intensity of emitted light. 	1/2	3
Q12	Formula for magnetic field of toroid Calculation of magnetic field 1½ Effect of change of core ½	<i>j</i> <u>2</u>	
	$B = \mu_r \mu_o n I$ = $(800 \times 4\pi \times 10^{-7}) \times \left(\frac{4000}{2\pi \times 20 \times 10^{-2}}\right) \times 3$ = $9.6T$	1 1/2 1	
Page 3 of 13	Final Draft (Outside Delhi) 20 th II	ILY 17 201	

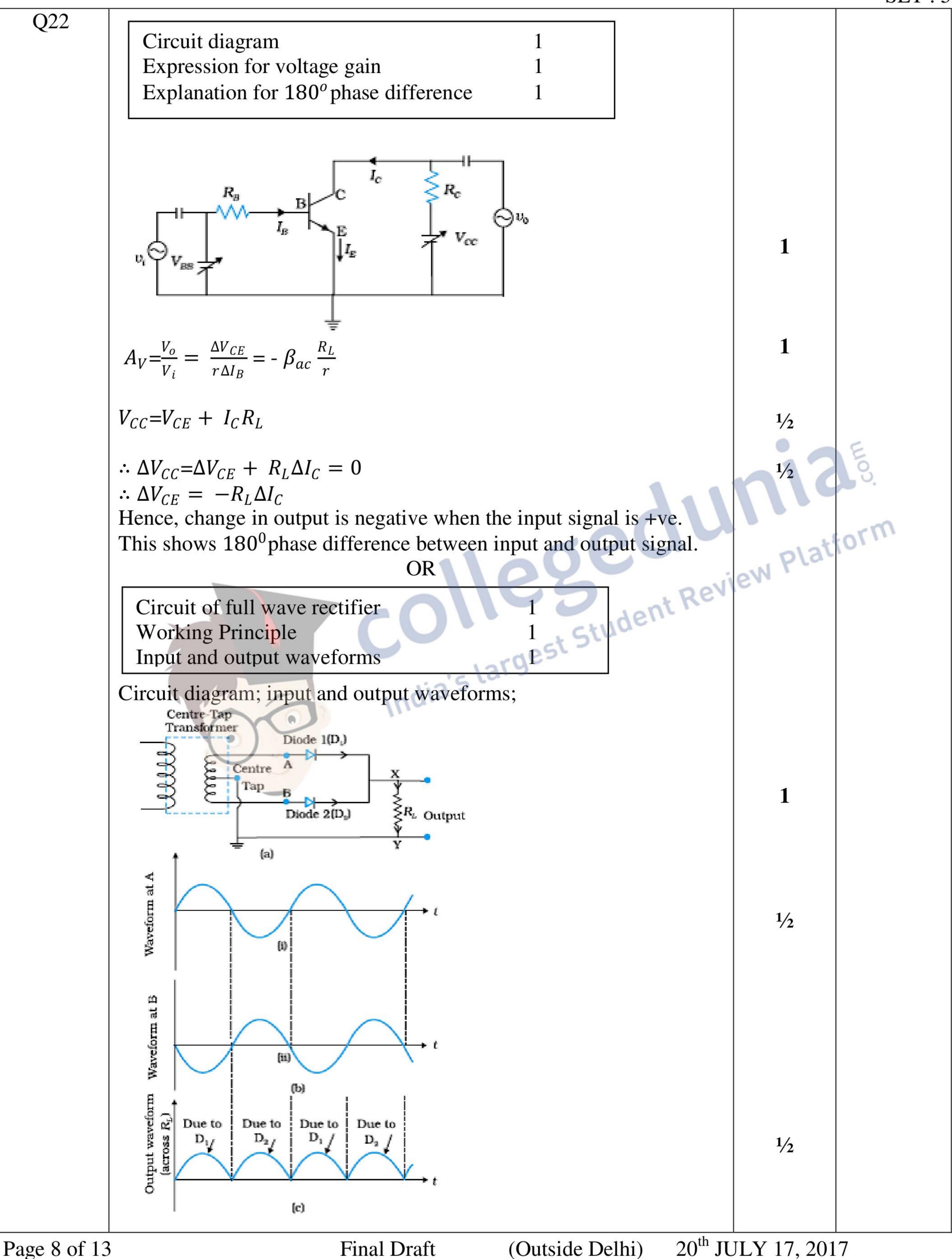
Page 3 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SEI . 3
	Since Bismith is diamagnetic, its $\mu_r < 1$ \therefore The magnetic field in the core will get very much reduced.	1/2	3
Q13	Name of em wave Method of generation Two uses 1 Em waves: ultra violet Sun is an important source of UV rays. Some special lamps and very hot bodies also produce UV rays. Uses i. In lasik eye surgery ii. UV lamps are used to kill germs in water purifiers.	1 1 1/ ₂ 1/ ₂	3
Q14	Formula for de Broglie's wavelength Calculation of de Broglie's wavelength Formula for RP Comparison of RP $\lambda = \frac{1.227}{\sqrt{V}} nm$ $= \frac{1.227}{\sqrt{5000}} \approx 0.02 \text{nm}$ R.P. of electron microscope R. P. of optical microscope $\frac{\lambda_o}{550} = \frac{\lambda_o}{1.22}$	1/2\at	J.E.
	$=\frac{330}{0.02}=27500$	1/2	3
Q15	Explanation / reason 1 Finding intensities 1+1 a) Interference pattern will not be observed as two independent lamps are not coherent sources. b) $I_1 = 4I_0^2 cos^2 \left(\frac{\phi_1}{2}\right) = 4I_0^2 \qquad \phi_1 = 0$ $I_2 = 4I_0^2 cos^2 \left(\frac{\pi}{2}\right) = 0 \qquad \phi_1 = \pi$ [Note: Give full two marks if the student just writes : Ratio $\Rightarrow \infty$ (as $I_2 = 0$)]	1 1	3
Dogo 4 of 13	Final Draft (Outside Delhi) 20 th II	 	

Page 4 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET: 5:
Q16	Definition of current sensitivity 1 Ratio R_1/R_2 2		
	Current sensitivity of a galvanometer is deflection per unit current	1	
	[Alternatively: $I_s = \frac{\phi}{I} = \frac{NAB}{K}$] In circuit (i) $\frac{4}{6} = \frac{R_1}{4} = R_1 = \frac{8}{3} \Omega$	1/2	
	In circuit (ii) $\frac{6}{R_2} = \frac{12}{8} = R_2 = 4 \Omega$	1/2	
	$\therefore \frac{R_1}{R_2} = \frac{2}{3}$	1	3
Q17	Effect on capacitance 1 Effect on charge 1 Effect on energy 1 i. $C = \frac{\epsilon_o A}{d}$ $C' = \frac{K\epsilon_o A}{d'} = \frac{10}{3} \frac{\epsilon_o A}{d} = \frac{10}{3} C$ ii. V remains same since battery is not disconnected $\therefore Q' = C'V$ $= \frac{10}{3} CV = \frac{10}{3} Q$ iii. Energy density, $u_d = \frac{1}{2} \epsilon_o E^2$	1/2 eW 1/2 1/2 1/2	J.S.
	$E = \frac{v}{d}$ $u'_{d} = \frac{1}{2}K \in_{o} E'^{2}$ $= \frac{10}{2} \in_{o} \left(\frac{v}{d'}\right)^{2}$ $= \frac{10}{2} \left(1 - E^{2}\right)$	1/2	
	$= \frac{10}{9} \left(\frac{1}{2} \in_{o} E^{2}\right)$ $= \frac{10}{9} u_{d}$	1/2	3

Page 5 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017


8		ar:	SET: 5
J	Graph of BE 1 Calculation of energy released 2		
	a)		
	8 6 10 100 150 170 Mass number (A) b) Energy released = [(110+130) x 8.5 - 240 x 7.6] MeV = 240(8.5 - 7.6) MeV = 216 MeV	1	3
9	Variation of intensity Separation between maxima 2	ew Plat	
	a) Intensity of diffraction pattern drops rapidly with order n because every higher order maxima gets intensity only from $\frac{1}{2n+1}$ part of the slit. The central maxima gets intensity from the whole slit (n=0) 1 st secondary maxima gets its intensity only from 1/3 of slit 2 nd secondary maxima gets its intensity only from 1/5 of slit and so on.		
	b) Position of 1 st maxima on the screen: $x_1 = \frac{3}{2} \frac{\lambda_1}{a} D$; $\lambda_1 = 590 nm$	1/2	
	$x_2 = \frac{\frac{2}{3} \frac{a}{\lambda_2}}{\frac{2}{a}} D$; $\lambda_2 = 596nm$	1/2	
	Separation $\Delta x = x_2 - x_1$ $= \frac{3D}{2a} (\lambda_2 - \lambda_1)$	1/2	
	$= \frac{\frac{2}{3}a}{2} \left(\frac{\frac{2}{4 \times 10^{-3}}}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$	1	

Page 6 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

78606400 188900 18990		1	SEI . J.
Q20	Graph of emf Graph of emergy stored Ratio of energy stored 2		
	a) $e = \frac{dI}{dt}$ $I (L = 12nH)$ $II (L = 30nH)$	1/2	
	b) u u_1 $\frac{1}{2}L_1i_1^2$ $ndia's largest Student Review$	1/2 Plat	J.S.
	$\frac{u_2}{u_2} = \frac{\frac{2}{1}}{\frac{1}{2}L_2i_2^2}$	1/2	
	But $\varepsilon_1 i_1 = \varepsilon_2 i_2$ ("power dissipated is same) $ \frac{i_1}{1} - \frac{\varepsilon_2}{1} = \frac{L_2}{1} \left(\frac{dI}{1} \right) $ is same and $\varepsilon = -L \frac{dI}{1} $	1/2	
	$\therefore \frac{i_1}{i_2} = \frac{\varepsilon_2}{\varepsilon_1} = \frac{L_2}{L_1} \left(\because \frac{dI}{dt} \text{ is same and } \varepsilon = -L \frac{dI}{dt}\right)$	1/2	
	$\therefore \frac{u_1}{u_2} = \frac{L_1}{L_2} \left(\frac{L_2}{L_1}\right)^2$ $= \frac{L_2}{L_1} = \frac{30}{12} = 2.5$	1/2	3
Q21	Function of each of the three devices 1+1+1		
	<u>Transducer</u> : It converts one form of energy into another <u>Transmitter</u> : It processes the incoming message so as to make it	1	
	suitable for transmission through a channel.	1	
	Repeater: It picks up signal from the transmitter, amplifies and retransmits it to the receiver sometimes with a change in carrier	1	
	frequency. [Alternatively: Repeaters are used to extend the range of communication.]		3

Page 7 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

(Outside Delhi)

Page 8 of 13

Final Draft

			<u>2</u> 2
	Working Principle:		
	When A is +ve, B is negative		
	Only D_1 conducts because it is forward biased Current in R_L flows	1/2	
	from X to Y		
		1/2	2
	When B is positive and A is negative, only D_2 conducts and Current	1/2	3
	in R_L is once again from X to Y.		
	SECTION D		
Q23	Two values of Mr. Hiorki		
	Two values of Mr. Kamath		
	Track Political		
	Meissner effect 1		
	Value of μ_r		
	a) Eager to share ideas and knowledge; Professionalism;	1/2 + 1/2	
	Environment friendly nature. (any two)	/2 1 /2	
		14 . 14	
	b) Eager to learn (open minded); observant; appreciating good	$\frac{1}{2} + \frac{1}{2}$	
	ideas.(any two)		
	c) Phenomenon of perfect diamagnetism in super conductors	1	1 5
	$\mu_r = 0$		J. v. 4
	SECTION E		
Q24	Average Derven diagination is gone		arm
	a) Average Power dissipation is zero	ew Plat	LO.
	b) Numerical	ew F	
	a) Instantaneous Power = $vi = V_o sinwt I_o coswt$		
		1/2	
	Average power, $P = \frac{1}{T} \int_{0}^{T} vidt$		
	$= \frac{V_o I_o}{2\pi} \int_0^T 2 \sin wt \cos wt dt$	1/2	
	V_{I}	1/2	
	$= \frac{v_o t_o}{2T} \int_0^t \sin 2wt \ dt$	1/2	
	=0	1/2	
	b)		
	1		
	1. $\omega_o = \frac{1}{\sqrt{LC}}$	1/2	
	1		
	$= \frac{1}{1}$		
	$(200 \times 10^{-3} \times 400 \times 10^{-6})^{\overline{2}}$		
	1 103		
	$= \frac{1}{s^{-1}} s^{-1} = \frac{10^3}{s^{-1}} \approx 111 s^{-1}$	1/2	
	$= \frac{1}{\sqrt{8 \times 10^{-5}}} s^{-1} = \frac{10^{3}}{\sqrt{80}} s^{-1} \simeq 111 s^{-1}$	72	
	I - V - 50		
	R = R = R = R	1	
	$1 L 1 \sqrt{200 \times 10^{-3}}$		
	ii. $Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{200 \times 10}{400 \times 10^{-6}}} = \sqrt{5}$	1	5
	OR		
	a) Derivation of induced emf 2½		
	b) Numerical 2½		
	_ / _ / _ / _ /		_
	a)		

Page 9 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

$\phi_{B} = Blx$ $\varepsilon = \frac{-d\phi_{B}}{dt}$ $= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{o0} = 12 \pi$ $\varepsilon = \frac{1}{2}B_{H}l^{2}\omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_{H} \times (60 \times 10^{-2})^{2} \times 12\pi$ $\therefore B_{H} = \frac{s}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law $Derivation b) Electric flux through a closed surface is \frac{1}{\epsilon_{n}} times charge enclosed by the closed surface. \phi = \frac{Q_{cuclosed}}{\epsilon_{o}} \phi = \frac{\Phi}{E} \cdot dS = \frac{Q_{cuclosed}}{\epsilon_{o}} \therefore E.2\pi rl = \frac{\lambda l}{\epsilon_{o}} \frac{1}{\sqrt{2}}$				SET: 53
$\varepsilon = \frac{-d\phi_B}{dt}$ $= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2}B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's faw Derivation b) Electric flux Expression c) 2 a) Electric flux through a closed surface is $\frac{1}{\varepsilon_0}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{continent}}{\varepsilon_0}$ $\phi = \oint \vec{E} \cdot d\vec{s} = \frac{Q_{continent}}{\varepsilon_0}$ $\therefore E.2\pi r l = \frac{\lambda l}{\varepsilon_0}$ $\frac{l}{\varepsilon_0}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
$\varepsilon = \frac{-d\phi_B}{dt}$ $= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2}B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's faw Derivation b) Electric flux Expression c) 2 a) Electric flux through a closed surface is $\frac{1}{\varepsilon_0}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{continent}}{\varepsilon_0}$ $\phi = \oint \vec{E} \cdot d\vec{s} = \frac{Q_{continent}}{\varepsilon_0}$ $\therefore E.2\pi r l = \frac{\lambda l}{\varepsilon_0}$ $\frac{l}{\varepsilon_0}$		A = D1	1/2	
$\varepsilon = \frac{\alpha v_F}{dt}$ $= -Bt \frac{dx}{dt}$ $= Btv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2}B_Ht^2\omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law Derivation b) Electric flux through a closed surface is $\frac{1}{\epsilon_0}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\epsilon_0}$ $\phi = \oint \vec{E} \cdot d\vec{s} = \frac{Q_{enclosed}}{\epsilon_0}$ $\therefore E.2\pi rl = \frac{\lambda l}{\epsilon_0}$ ψ_2			1/2	
$= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2}B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law berivation b) Electric flux Expression 2 a) Electric flux through a closed surface is $\frac{1}{\varepsilon_0}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\varepsilon_0}$ $\phi = \frac{Q_{enclosed}}{\varepsilon_0}$ $\therefore E.2\pi rl = \frac{\lambda l}{\varepsilon_0}$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$		$\varepsilon = \frac{r b}{J L}$		
Blv b) $\omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2} B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} . B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law Derivation b) Electric flux Expression 2 a) Electric flux Hirough a closed surface is $\frac{1}{\epsilon_o}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\epsilon_o}$ $\phi = \frac{\Phi_{enclosed}}{\epsilon_o}$ $\therefore E.2\pi r l = \frac{\lambda l}{\epsilon_o}$ $1/2$		$=-Bl\frac{dx}{dx}$	1/2	
b) $\omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\varepsilon = \frac{1}{2}B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law 1 Derivation b) Electric flux Expression 2 a) Electric flux Expression 2 a) Electric flux Expression 4 by the closed surface. $\phi = \frac{Q_{\text{encloved}}}{\varepsilon_0}$ $\phi = \oint \vec{E} \cdot d\vec{s} = \frac{Q_{\text{encloved}}}{\varepsilon_0}$ $\therefore E.2\pi r l = \frac{\lambda l}{\varepsilon_0}$ 1/2 1/2 1/2 1/2 1/2			1/2	
$\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$ $\therefore B_H = \frac{5}{27\pi} = 0.06T$ No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's faw $\begin{array}{c} 1 \\ Derivation \\ Derivation \\ b) Electric flux Expression \\ 2 \\ a) Electric flux through a closed surface is \frac{1}{\epsilon_o} times charge enclosed by the closed surface. \phi = \frac{Q_{melosed}}{\epsilon_o} \phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{emclosed}}{\epsilon_o} \therefore E.2\pi r l = \frac{\lambda l}{\epsilon_o}$			1/2	
$\begin{array}{c} \therefore B_H = \frac{5}{27\pi} = 0.06\text{T} \\ \text{No change in emf if no. of spokes is increased.} \end{array}$ $\begin{array}{c} \text{Q25} \\ \text{Q25} \\ \text{A)} \begin{array}{c} \text{Statement of Guass's law} & 1 \\ \text{Derivation} & 2 \\ \text{Derivation} \\ \text{b)} \begin{array}{c} \text{Electric flux Expression} & 2 \\ \text{a)} \end{array}$ $\text{Electric flux through a closed surface is } \frac{1}{\epsilon_o} \text{ times charge enclosed} \\ \text{by the closed surface.} \\ \phi = \frac{Q_{enclosed}}{\epsilon_o} \\ \phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{enclosed}}{\epsilon_o} \\ \therefore \text{E.} 2\pi r l = \frac{\lambda l}{\epsilon_o} \end{array}$		$\varepsilon = \frac{1}{2} B_H l^2 \omega$ $\therefore 400 \times 10^{-3} = \frac{1}{2} B_H \times (60 \times 10^{-2})^2 \times 12\pi$	1/2	LUO.
No change in emf if no. of spokes is increased. Q25 a) Statement of Guass's law 1 Derivation b) Electric flux Expression 2 a) Electric flux through a closed surface is $\frac{1}{\epsilon_o}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\epsilon_o}$ $\phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{enclosed}}{\epsilon_o}$ $\therefore E. 2\pi r l = \frac{\lambda l}{\epsilon_o}$ 1 1 1 1 1 1 1 1 1 1 1 1 1		$Arr B_H = \frac{5}{27\pi} = 0.06T$	1/2\at	orm
a) Statement of Guass's law Derivation b) Electric flux Expression 2 a) Electric flux through a closed surface is $\frac{1}{\epsilon_o}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\epsilon_o}$ $\phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{enclosed}}{\epsilon_o}$ $\therefore E. 2\pi r l = \frac{\lambda l}{\epsilon_o}$		No change in emf if no. of spokes is increased.	ew 72	3
$\phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{enclosed}}{\epsilon_o}$ $\therefore \text{E.} 2\pi r l = \frac{\lambda l}{\epsilon_o}$ 1/2	Q25	a) Statement of Guass's law Derivation b) Electric flux Expression a) Electric flux through a closed surface is $\frac{1}{\epsilon_o}$ times charge enclosed by the closed surface. $\phi = \frac{Q_{enclosed}}{\epsilon_o}$	1	
$\therefore \text{E.} 2\pi r l = \frac{\lambda l}{\epsilon_o}$			1/2	
		$\therefore \text{E.} 2\pi r l = \frac{\lambda l}{}$	1/2	

Page 10 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017

		SET: 55
$: E = \frac{\lambda}{2\pi \epsilon_o r}$	1	
b) $dq = \lambda dx = kx dx$	1/2	
$Q = \int_{0}^{t} dq = \int_{0}^{t} kx dx = \frac{1}{2}kl^{2}$	1/2	
$\int\limits_{l}^{0}Q \qquad \int\limits_{kl^{2}}^{0}$	1	
$\dot{\varphi} = \overline{\xi_o} = \overline{2 \xi_o}$ OR		
a) Derivation of expression for electric potential 3 b) Numerical Problem 2		
a)		
r_1		
\mathbf{r}		LEO.
$\begin{bmatrix} 2a & \mathbf{p} \\ a \end{bmatrix}$ o $\begin{bmatrix} r_2 \\ a \end{bmatrix}$ Rev	ew 1/2	orm
$V = \frac{1}{1 - q} \left[\frac{q}{q} - \frac{q}{q} \right]$ $V = \frac{1}{1 - q} \left[\frac{q}{q} - \frac{q}{q} \right]$ $V = \frac{1}{1 - q} \left[\frac{q}{q} - \frac{q}{q} \right]$	1/2	
$r_1^2 = r^2 + a^2 - 2ar\cos\theta \approx r^2\left(1 - \frac{2a\cos\theta}{r}\right)$	1/2	
$r_2^2 = r^2 + a^2 + 2ar\cos\theta \approx r^2\left(1 + \frac{2a\cos\theta}{r}\right)$	1/2	
If $r > a$		
$\left \frac{1}{r_1} = \frac{1}{r} \left[1 - \frac{2a\cos\theta}{r} \right]^{-\frac{1}{2}} \simeq \frac{1}{r} \left[1 + \frac{a}{r}\cos\theta \right]$	1/2	
and $\frac{1}{r_2} \simeq \frac{1}{r} \left[1 - \frac{a}{r} \cos \theta \right]$ $q 2a \cos \theta$	1/2	
$\therefore V = \frac{q}{4\pi \in_{o}} \cdot \frac{2\pi \cos \theta}{r^{2}}$ $= \frac{1}{4\pi \in_{o}} \frac{p \cos \theta}{r^{2}}$	1/2	
b) $\frac{1}{4\pi\epsilon_o} \frac{4\mu C}{x^2} = \frac{1}{4\pi\epsilon_o} \frac{1\mu C}{(2-x)^2}$	1	
$\therefore \frac{x}{2} = 2 - x$		
$\therefore 3x = 4 => x = \frac{4}{3}m$	1/2	5

Page 11 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017

			SET : 55
Q26			
	a) Explanation with reason $2\frac{1}{2}$		
	b) Calculation of separations 2 ½		
	a) $\mathbf{p} = \frac{1}{n_2} - \left(\frac{n_2 - n_1}{n_2}\right) \left(\frac{1}{n_2} - \frac{1}{n_2}\right)$	1/2	
	a) $P = \frac{1}{f} = \left(\frac{2}{n_2}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $(n_2 - n_1) \left(\frac{2}{R_1}\right) = \frac{1}{R_2}$		
	$=\left(\frac{n_2-n_1}{n_2}\right)\left(-\frac{2}{R}\right)$ for diverging lens	4 /	
	= negative	1/2	
	i. If $n_1 > n_2$		
	$\frac{n_2-n_1}{n_1}$ becomes negative	1/2	
	$\therefore P = \frac{1}{f}$ becomes positive		
	or lens become converging	1/2	
	ii. $(n_2)_{violet} > (n_2)_{red}$	1/2	
	∴Power increases on changing to violet light b) Power on L. be incident perallel to the principal exic		
	b) Rays on L_3 be incident parallel to the principal axis image from L_1 is formed at focus of L_2	1/2	E
	and focus of L_2 is $2f_1$ from 'O' of L_1	1/2	1 8.
		1/2	
	$\therefore L_1 L_2 = 2f_1 + f_2 = (3 \times 30) \text{cm} = 90 \text{cm}$	1/2	orm
	L_2L_3 can be any distance \mathbf{OR}	eW 1/2	5
	of Ke.		
	a) Derivation of expression for refractive index 2		
	Graph b) Numerical 2		
	b) Numerical		
	a)		
	A A		
	M ₁₀		
	or ru Re		
	N N		
	P	1/2	
	B	72	
	$\angle A + \angle QNR = 180^{\circ}$		
	$r_1 + r_2 + \angle QNR = 180^o$	1/2	
I	$\therefore r_1 + r_2 = \angle A$		
	$\delta = (i - r_1) + (e - r_2)$ $\delta = i + e - A$		
	For minimum derivation,		
	$\delta = D_m$, $i = e$ and $r_1 = r_2$		
	$\therefore 2r = A \Rightarrow r = \frac{A}{2}$	1 /	
	$D_m = 2i - A \Rightarrow i = \frac{A + D_m}{2}$	1/2	
Page 12 of 1	Z th	II V 17 201	7

Page 12 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017

$\therefore n = \frac{n_2}{n_1} = \frac{\sin i}{\sin r}$ $= \frac{\sin(\frac{A+D_m}{2})}{\sin\frac{A}{2}}$	1/2	
60° (S) 100 100 100 100 100 100 100 1	1	
b) i COLOR COLOR Student Revi	ew Plat	Jorm iorm
Sin c = $\frac{1}{n} = \frac{1}{\sqrt{2}}$ $\Rightarrow c = 45^{\circ}$ $r + c = 60^{\circ} \implies r = 15^{\circ}$ $n = \frac{\sin i}{n}$	1/2	
$r + c = 60^{0} \implies r = 15^{0}$ $n = \frac{\sin i}{\sin r}$ $\Rightarrow \sqrt{2} = \frac{\sin i}{\sin 15^{0}}$ $\Rightarrow i = \sin^{-1}[\sqrt{2}\sin 15^{0}]$	1/2	5

Page 13 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

