Unleashing Potential

CHEMISTRY
 SECTION-A

61. The transition metal having highest $3^{\text {rd }}$ ionisation enthalpy is :
(1) Cr
(2) Mn
(3) V
(4) Fe

Ans. (2)
Sol. 3rd Ionisation energy : [NCERT Data]
V : $2833 \mathrm{KJ} / \mathrm{mol}$
Cr : $2990 \mathrm{KJ} / \mathrm{mol}$
Mn : $3260 \mathrm{KJ} / \mathrm{mol}$
Fe : $2962 \mathrm{KJ} / \mathrm{mol}$
alternative
$\mathrm{Mn}: 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$
Fe: $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Cr}: 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{V}: 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
So Mn has highest 3rd IE among all the given elements due to d^{5} configuration.
62. Given below are two statements :

Statement (I) : A π bonding MO has lower electron density above and below the inter-nuclear asix.
Statement (II) : The π^{*} antibonding MO has a node between the nuclei.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement I and Statement II are false
(2) Both Statement I and Statement II are true
(3) Statement I is false but Statement II is true
(4) Statement I is true but Statement II is false

Ans. (3)
Sol. A π bonding molecular orbital has higher electron density above and below inter nuclear axis

Unleashing Potential
63. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : In aqueous solutions Cr^{2+} is reducing while Mn^{3+} is oxidising in nature.
Reason (R) : Extra stability to half filled electronic configuration is observed than incompletely filled electronic configuration.
In the light of the above statement, choose the most appropriate answer from the options given below:
(1) Both (A) and (R) are true and (R) is the correct explanation of (A)
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(3) (A) is false but (R) is true
(4) (A) is true but (R) is false

Ans. (1)
Sol. Cr^{2+} is reducing as it configuration changes from d^{4} to d^{3} due to formation of^{3+}, which has half filled $\mathrm{t}_{2 \mathrm{~g}}$ level, on other hand, the change Mn^{3+} to Mn^{2+} result half filled d^{5} configuration which has extra stability.
64. Match List - I with List - II.

List-I

(Reactants)
(A) Phenol, Zn / Δ
(B) Phenol, $\mathrm{CHCl}_{3}, \mathrm{NaOH}, \mathrm{HCl}$
(C) Phenol, $\mathrm{CO}_{2}, \mathrm{NaOH}, \mathrm{HCl}$
(D) Phenol, Conc. HNO_{3}

List-II

Products

(I) Salicylaldehyde
(II) Salicylic acid
(III) Benzene
(IV) Picric acid

Choose the correct answer from the options given below.
(1) (A)-(IV), (B), (II), (C)-(I), (D)-(III)
(2) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(3) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
(4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Ans. (3)

Sol.

Unleashing Potential
65. Given below are two statements :

Statement (I) : Both metal and non-metal exist in p and d-block elements.
Statement (II) : Non-metals have higher ionisation enthalpy and higher electronegativity than the metals.
In the light of the above statements, choose the most appropriate answer from the option given below:
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Ans. (2)
Sol. I. In p-Block both metals and non metals are present but in d-Block only metals are present.
II. EN and IE of non metals are greater than that of metals

I - False, II-True
66. The strongest reducing agent among the following is:
(1) NH_{3}
(2) SbH_{3}
(3) BiH_{3}
(4) PH_{3}

Ans. (3)
Sol. Strongest reducing agent : BiH_{3} explained by its low bond dissociation energy.
67. Which of the following compounds show colour due to d-d transition?
(1) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(3) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(4) KMnO_{4}

Ans. (1)
Sol. $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}^{2+}: 3 \mathrm{~d}^{9} 4 \mathrm{~s}^{0}$
unpaired electron present so it show colour due to d-d transition.
68. The set of meta directing functional groups from the following sets is:
(1) $-\mathrm{CN},-\mathrm{NH}_{2},-\mathrm{NHR},-\mathrm{OCH}_{3}$
(2) $-\mathrm{NO}_{2},-\mathrm{NH}_{2},-\mathrm{COOH},-\mathrm{COOR}$
(3) $-\mathrm{NO}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COR}$
(4) $-\mathrm{CN},-\mathrm{CHO},-\mathrm{NHCOCH}_{3},-\mathrm{COOR}$

Ans. (3)

Sol.

All are -M , Hence meta directing groups.

Unleashing Potential
69. Select the compound from the following that will show intramolecular hydrogen bonding.
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) NH_{3}
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4)

Ans. (4)
Sol. $\quad \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Rightarrow$ Intermolecular H-Bonding

70. Lassaigne's test is used for detection of :
(1) Nitrogen and Sulphur only
(2) Nitrogen, Sulphur and Phosphorous Only
(3) Phosphorous and halogens only
(4) Nitrogen, Sulphur, phosphorous and halogens

Ans. (4)
Sol. Lassaigne's test is used for detection of all element $\mathrm{N}, \mathrm{S}, \mathrm{P}, \mathrm{X}$.
71. Which among the following has highest boiling point?
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{H}_{5} \mathrm{C}_{2}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$

Ans. (2)
Sol. Due to H-bonding boiling point of alcohol is High.

Unleashing Potential
72. In the given reactions identify A and B .

$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}+\mathrm{H}_{2} \xrightarrow{\mathrm{Na} / \mathrm{LiquidNH}_{3}} " \mathrm{~B} "$
(1) A : 2-Pentyne
B : trans - 2 - butene
(2) A : n - Pentane
B : trans - 2 - butene
(3) A : 2 - Pentyne
B : Cis - 2 - butene
(4) A : n - Pentane
B : Cis - 2 - butene

Ans. (1)

Sol.

73. The number of radial node/s for 3 p orbital is:
(1) 1
(2) 4
(3) 2
(4) 3

Ans. (1)
Sol. For $3 \mathrm{p}: \mathrm{n}=3, \ell=1$
Number of radial node $=\mathrm{n}-\ell-1$
= $3-1-1=1$
74. Match List - I with List - II.

List - I

Compound
(A) Carbon tetrachloride
(B) Methylene chloride
(C) DDT
(D) Freons

List - II

Use
(I) Paint remover
(II) Refrigerators and air conditioners
(III) Fire extinguisher
(IV) Non Biodegradable insecticide

Choose the correct answer from the options given below :
(1) (A)-(I), (B), (II), (C)-(III), (D)-(IV)
(2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(3) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)

Ans. (2)
Sol. CCl_{4} used in fire extinguisher. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ used as paint remover. Freons used in refrigerator and AC. DDT used as non Biodegradable insecticide.

Unleashing Potential
75. The functional group that shows negative resonance effect is:
(1) $-\mathrm{NH}_{2}$
(2) -OH
(3) -COOH
(4)-OR

Ans. (3)

Sol.

76. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ are respectively known as:
(1) Spin free Complex, Spin paired Complex
(2) Spin paired Complex, Spin free Complex
(3) Outer orbital Complex, Inner orbital Complex
(4) Inner orbital Complex, Spin paired Complex

Ans. (2)
Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
Co^{3+} (strong field ligand $) \Rightarrow 3 \mathrm{~d}^{6}\left(\mathrm{t}_{2 \mathrm{~g}}^{6}, \mathrm{e}_{\mathrm{g}}^{0}\right)$,
Hybridisation: $\mathrm{d}^{2} \mathrm{sp}^{3}$
Inner obital complex(spin paired complex)
Pairing will take place.
$\left[\mathrm{CoF}_{6}\right]^{3-}$
$\mathrm{Co}^{3+}($ weak field ligand $) \Rightarrow 3 \mathrm{~d}^{6}\left(\mathrm{t}_{2 \mathrm{~g}}^{4}, \mathrm{e}_{\mathrm{g}}^{2}\right)$
Hybridisation: $\mathrm{sp}^{3} \mathrm{~d}^{2}$
Outer orbital complex (spin free complex)
no pairing will take place
77. Given below are two statements :

Statement (I) : SiO_{2} and GeO_{2} are acidic while SnO and PbO are amphoteric in nature.
Statement (II) : Allotropic forms of carbon are due to property of catenation and $\mathrm{p} \pi-\mathrm{d} \pi$ bond formation.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement I and Statement II are false
(2) Both Statement I and Statement II are true
(3) Statement I is true but Statement II is false
(4) Statement I is false but Statement II is true

Ans. (3)
Sol. $\quad \mathrm{SiO}_{2}$ and GeO_{2} are acidic and $\mathrm{SnO}, \mathrm{PbO}$ are amphoteric.
Carbon does not have d-orbitals so can not form $\mathrm{p} \pi-\mathrm{d} \pi$ Bond with itself. Due to properties of catenation and $\mathrm{p} \pi-\mathrm{p} \pi$ bond formation. carbon is able to show allotropic forms.

Unleashing Potential
78. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \xrightarrow{\text { alc. } \mathrm{KOH}} \mathrm{A} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}} \mathrm{~B} \xrightarrow[\text { Excess }]{\mathrm{KCN}} \mathrm{C} \longrightarrow \longrightarrow \underset{\substack{\mathrm{H}_{3} \mathrm{O}^{+} \\ \text {Excess } \\ \mathrm{D}}}{\substack{ \\ }}$

Acid D formed in above reaction is :
(1) Gluconic acid
(2) Succinic acid
(3) Oxalic acid
(4) Malonic acid

Ans. (2)
Sol.

(B)
$\downarrow \begin{aligned} & \text { Kxcess }\end{aligned}$

79. Solubility of calcium phosphate (molecular mass, M) in water is W_{g} per 100 mL at $25^{\circ} \mathrm{C}$. Its solubility product at $25^{\circ} \mathrm{C}$ will be approximately.
(1) $10^{7}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{3}$
(2) $10^{7}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$
(3) $10^{3}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$
(4) $10^{5}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$

Ans. (2)
Sol. $\mathrm{S}=\frac{\mathrm{W} \times 10}{\mathrm{M}}$

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\text { aq. })+2 \mathrm{PO}_{4}^{3-}(\text { aq. })
$$

$\mathrm{S}=\frac{\mathrm{W} \times 1000}{\mathrm{M} \times 100}=\frac{\mathrm{W} \times 10}{\mathrm{M}}$
$\mathrm{K}_{\text {sp }}=(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}$
$=108 \mathrm{~s}^{5}$
$=108 \times 10^{5} \times\left(\frac{\mathrm{W}}{\mathrm{M}}\right)^{5}$
$=1.08 \times 10^{7}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$

Unleashing Potential
80. Given below are two statements :

Statement (I): Dimethyl glyoxime forms a six-membered covalent chelate when treated with NiCl_{2} solution in presence of $\mathrm{NH}_{4} \mathrm{OH}$.

Statement (II) : Prussian blue precipitate contains iron both in $(+2)$ and $(+3)$ oxidation states. In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is true but Statement II is false

Ans. (1)
Sol. $\quad \mathrm{Ni}^{2+}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{dmg} \rightarrow$

2 Five member ring

III II
$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
Prussian Blue

SECTION-B

81. Total number of isomeric compounds (including stereoisomers) formed by monochlorination of 2-methylbutane is \qquad .

Ans. (6)

Sol.

(2)

(1)

(2)

(1)

Unleashing Potential
82. The following data were obtained during the first order thermal decomposition of a gas A at constant volume:
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
S.No Time/s
Total pressure/(atm)
$1 . \quad 0$
.
115
0.1
0.28

The rate constant of the reaction is \qquad $\times 10^{-2} \mathrm{~s}^{-1}$ (nearest integer)
Ans. (2)
Sol.

$$
\mathrm{A}(\mathrm{~g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g})
$$

$\mathrm{t}=0$
0.1
$\mathrm{t}=115 \mathrm{sec} . \quad 0.1-\mathrm{x} 2 \mathrm{x}$
x
$0.1 .1+2 x=0.28$
$2 \mathrm{x}=0.18 \quad ; \quad \mathrm{x}=0.09$
$K=\frac{1}{115} \ln \frac{0.1}{0.1-0.09}$
$=0.0200 \mathrm{sec}^{-1}=2 \times 10^{-2} \mathrm{sec}^{-1}$
83. The number of tripeptides formed by three different amino acids using each amino acid once is

Ans. (6)
Sol. Let 3 different amino acid are A, B, C then following combination of tripeptides can be formed$\mathrm{ABC}, \mathrm{ACB}, \mathrm{BAC}, \mathrm{BCA}, \mathrm{CAB}, \mathrm{CBA}$
84. Number of compounds which give reaction with Hinsberg's reagent is \qquad .

Ans. (5)
Sol.

Unleashing Potential
85. Mass of ethylene glycol (antifreeze) to be added to 18.6 kg of water to protect the freezing point at $-24^{\circ} \mathrm{C}$ is \qquad kg (Molar mass in $\mathrm{g} \mathrm{mol}^{-1}$ for ethylene glycol $62, \mathrm{~K}_{\mathrm{f}}$ of water $=1.86 \mathrm{~K} \mathrm{~kg}$ mol^{-1})
Ans. (15)
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \times$ molality
$24=(1) \times 1.86 \times \frac{\mathrm{W}}{62 \times 18.6}$
$\mathrm{W}=14880 \mathrm{gm}$
$=14.880 \mathrm{~kg}$
86. Following Kjeldahl's method, 1 g of organic compound released ammonia, that neutralised 10 mL of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The percentage of nitrogen in the compound is \qquad $\%$.
Ans. (56)
Sol. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Millimole of $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 10 \times 2$
So Millimole of $\mathrm{NH}_{3}=20 \times 2=40$
Organic $\rightarrow \mathrm{NH}_{3}$
Compound $\quad 40$ Millimole
\therefore Mole of $\mathrm{N}=\frac{40}{1000}$
wt. of $\mathrm{N}=\frac{40}{1000} \times 14$
$\%$ composition of N in organic compound $=\frac{40 \times 14}{1000 \times 1} \times 100$
$=56 \%$
87. The amount of electricity in Coulomb required for the oxidation of 1 mol of $\mathrm{H}_{2} \mathrm{O}$ to O_{2} is
\qquad $\times 10^{5} \mathrm{C}$.
Ans. (2)
Sol. $\quad 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$\frac{\mathrm{W}}{\mathrm{E}}=\frac{\mathrm{Q}}{96500}$
mole \times n-factor $=\frac{\mathrm{Q}}{96500}$
$1 \times 2=\frac{\mathrm{Q}}{96500}$
$\mathrm{Q}=2 \times 96500 \mathrm{C}$
$=1.93 \times 10^{5} \mathrm{C}$

Unleashing Potential
88. For a certain reaction at $300 \mathrm{~K}, \mathrm{~K}=10$, then $\Delta \mathrm{G}^{\circ}$ for the same reaction is - \qquad $\times 10^{-1} \mathrm{~kJ} \mathrm{~mol}^{-1}$. (Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
Ans. (57)
Sol. $\quad \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$
$=-8.314 \times 300 \ell \mathrm{n}(10)=5744.14 \mathrm{~J} / \mathrm{mole}=57.44 \times 10^{-1} \mathrm{~kJ} / \mathrm{mole}$
89. Consider the following redox reaction :

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The standard reduction potentials are given as below $\left(\mathrm{E}_{\text {red }}^{\circ}\right)$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{\circ}=+1.51 \mathrm{~V} \\
& \mathrm{E}_{\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}=-0.49 \mathrm{~V}
\end{aligned}
$$

If the equilibrium constant of the above reaction is given as $\mathrm{K}_{\mathrm{eq}}=10^{\mathrm{x}}$, then the value of $\mathrm{x}=$
\qquad (nearest integer)
Ans. (338 OR 339)
Sol. Cell Rx ${ }^{\mathrm{n}} ; \mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$
$\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}_{\text {op }}^{\circ}$ of anode $+\mathrm{E}_{\mathrm{RP}}^{\circ}$ of cathode
$=0.49+1.51=2.00 \mathrm{~V}$
At equilibrium
$\mathrm{E}_{\text {cell }}=0, \quad \mathrm{E}_{\text {cell }}^{\circ}=\frac{0.059}{\mathrm{n}} \log \mathrm{K}$
(As per NCERT $\frac{\mathrm{RT}}{\mathrm{F}}=0.059$ But $\frac{\mathrm{RT}}{\mathrm{F}}=0.0591$ can also be taken.)
$2=\frac{0.059}{10} \log \mathrm{~K}$
$\log \mathrm{K}=338.98$
90. 10 mL of gaseous hydrocarbon on combustion gives 40 mL of $\mathrm{CO}_{2}(\mathrm{~g})$ and 50 mL of water vapour. Total number of carbon and hydrogen atoms in the hydrocarbon is \qquad .
Ans. (14)
Sol.

| $\begin{array}{c}\mathrm{CxHy} \\ 10 \mathrm{ml}\end{array}$ |
| :---: |$+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{CxHy}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \rightarrow \mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{x} \quad 5 \mathrm{y}$
$10 \mathrm{x}=40$
$\mathrm{x}=4$
$5 y=50$
$\mathrm{y}=10$
$\mathrm{C}_{4} \mathrm{H}_{10}$

