JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

	AIR MAYANK MOTWANI Roll No. : 20771637 JEE Adv. 2022		AIR \square DHANANJAY KEJRIWAL JEE Adv. 2020	
AIR 29 SANKALP PARASHARRoil No. : 20975 JEE Adv. 2020	कe	AIR 30 AARYAN GUPTA JEE Adv. 2020		

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

CHEMISTRY

1. The number of d electrons present in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ are same as those present in which of the following?
(A) Fe (III)
(B) $\mathrm{Mn}(\mathrm{VII})$
(C) $\mathrm{Ni}(\mathrm{II})$
(D) Co (II)

Ans. (B)
Sol. $\quad \mathrm{CrO}_{2} \mathrm{Cl}_{2}: \mathrm{d}^{0} \quad$ d electron $=0$
$\mathrm{Fe}^{3+}: 3 \mathrm{~d}^{5} \quad \mathrm{~d}$ electron $=5$
$\mathrm{Ni}^{2+}: 3 \mathrm{~d}^{8} \quad$ d electron $=8$
$\mathrm{Co}^{2+}: 3 \mathrm{~d}^{7} \quad \mathrm{~d}$ electron $=7$
2. $\mathrm{XeF}_{4}+\mathrm{SbF}_{5} \longrightarrow\left[\mathrm{XeF}_{\mathrm{m}}\right]^{\mathrm{tn}}\left[\mathrm{SbF}_{\mathrm{p}}\right]^{\mathrm{q}-}$

The value of $m+n+p+q$ is :
Ans. 11
Sol. $\mathrm{XeF}_{4}+\mathrm{SbF}_{5} \longrightarrow \mathrm{XeF}_{3}{ }^{+} \mathrm{SbF}_{6}^{-}$
$\mathrm{m}=3$
$\mathrm{n}=1$
$\mathrm{p}=6$
$\mathrm{q}=1$
$\mathrm{m}+\mathrm{n}+\mathrm{p}+\mathrm{q}=3+1+6+1=11$
3. The extraction of which of the following metals involves concentration of the ore by leaching ?
(1) Copper
(2) Magnesium
(3) Gold
(4) Potassium

Ans. (3)
Sol. $\mathrm{Au}+\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right](\mathrm{aq})+\mathrm{NaOH}$ (Leachant)
4. Order of Electronegativity of following elements is:

P, Br, At, C
Ans. $\quad \mathrm{Br}>\mathrm{C}>\mathrm{At}>\mathrm{P}$
Sol. $\quad \operatorname{Br}(2.8)>\mathrm{C}(2.5)>\operatorname{At}(2.2)>\mathrm{P}(2.1)$

Unleashing Potential
5. Statement-1 : Lithium and Magnesium do not form super oxides.

Statement -2 : Ionic radius of Li^{+}is greater than Mg^{2+}.
(1) Both statement-1 \& 2 are correct.
(2) Both statement-1 \& 2 are incorrect.
(3) Statement-1 is correct but statement-2 is incorrect.
(4) Statement-2 is correct but statement- 2 is incorrect.

Ans. (1)
6. Consider the reaction
$\mathrm{Cu}^{+2}+\mathrm{X}^{-1} \longrightarrow \mathrm{Cu}_{2} \mathrm{X}_{2}+\mathrm{X}_{2}$
product X_{2} will be predominantly
(1) only Cl_{2}
(2) only Br_{2}
(3) only I_{2}
(4) All halogens are possible

Ans. (3)
Sol. $\mathrm{Cu}^{+2}+\mathrm{I}^{-1} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}$
7. How many factors will contribute to major role in covalent character of a compound ?
(a) Polarising power of cation
(b) Polarisibility of the anion
(c) Distortion causd by cation
(d) Polarisibility of cation

Ans. (3)
Sol. Covalent character depends on :
(a) Polarising power of cation
(b) Polarisibility of the anion
(c) Distortion caused by cation
8. Given below are the variation of V.P. of solution and solvent with temperature. Determine boiling point of solvent.

Ans. $\quad 82^{\circ} \mathrm{C}$

Unleashing Potential
9. 0.5 gram of an organic compound having $60 \% \mathrm{C}$ evolves $\mathrm{x} \times 10^{-1} \mathrm{gm} \mathrm{CO}_{2}$ on complete combustion. Determine x.

Ans. 11
Sol. Mass of $\mathrm{C}=0.5 \times \frac{60}{100}$
Moles of $\mathrm{C}=\frac{\frac{0.5 \times 60}{100}}{12}=\mathrm{n}_{\mathrm{CO}_{2}}$
Mass of $\mathrm{CO}_{2}=\frac{0.5 \times \frac{60}{100}}{12} \times 44=1.1 \mathrm{~g}=11 \times 10^{-1} \mathrm{~g}$
$\mathrm{x}=11$
10. Order of spin only magnetic moment of the following complexes is :
(I) $\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right]$
(II) $\left[\mathrm{MnBr}_{4}\right]^{2-}$
(III) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$
(IV) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Ans. \quad II $>$ I $>$ IV $>$ III
Sol.

> No. of unpaired electrons
$\left[\mathrm{CoF}_{6}\right]^{3-} \Rightarrow 3 \mathrm{~d}^{6} \longrightarrow \mathrm{n}=4 ; \mu=\sqrt{24}$ B.M.
$\left[\mathrm{MnBr}_{4}\right]^{2-} \quad \Rightarrow 3 \mathrm{~d}^{5} \quad \mathrm{n}=5 ; \mu=\sqrt{35}$ B.M.
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \Rightarrow 3 \mathrm{~d}^{6} \quad \mathrm{n}=0 ; \mu=0$
(SFL)
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \Rightarrow 3 \mathrm{~d}^{8}$
$\mathrm{n}=2 ; \mu=\sqrt{8}$ B.M.
11. Gypsum is added to cement as
(1) It helps in slowing down process of settling of cement.
(2) It helps in fast settling of cement.
(3) It helps in hardening of cement.
(4) It reacts with cement to form stable compound.

Ans. (1)
Sol. It helps in slowing down process of settling of cement.

Unleashing Potential
12. How many of the following statements are correct regarding relation between activation energy, rate constant and temperature?
(a) If temperature dependence on rate constant in large, more will be the activation energy.
(b) If activation energy is zero, then rate constant is independent of temperature.
(c) If temperature dependence on rate constant is small, less will be the activation energy.
(d) If activation energy is negative, more will be the temperature dependence on rate constant.

Ans. (3)
Sol. a, b, c are correct
13. Which of the following complex is octahedral, diamagnetic and most stable ?
(1) $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(2) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(4) $\mathrm{Na}_{3}\left[\mathrm{CoCl}_{6}\right]$

Ans. (1)
Sol. * All are octahedral

* Diamagnetic are
$\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right] \&\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
* Out of these two $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ is more stable (SFL)

14. $2 \mathrm{IO}_{3}^{-1}+\mathrm{xI}^{-1}+12 \mathrm{H}^{+} \longrightarrow 6 \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ x is :
(1) 2
(2) 6
(3) 10
(4) 12

Ans. (3)
Sol. Balanced chemical reaction is :
$2 \mathrm{IO}_{3}^{-1}+10 \mathrm{I}^{-1}+12 \mathrm{H}^{+} \longrightarrow 6 \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
15. The correct graph regarding Freundlich adsorption isotherm
(A)

(B)

(C) $\frac{x}{m}$

(D) $\frac{\mathrm{x}}{\mathrm{m}} \underbrace{\text { (}}_{\mathrm{P}^{1 / \mathrm{m}}}$
(1) A, B only
(2) A, B, D only
(3) B, C, D only
(4) B, C only

Ans. (2)
Sol. As per Freundlich isotherm
$\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{k}(\mathrm{P})^{1 / \mathrm{n}} \Rightarrow \log \left(\frac{\mathrm{x}}{\mathrm{m}}\right)=\log \mathrm{k}+\frac{1}{\mathrm{n}} \log (\mathrm{P})$
16. Which cell representation is correct for the reaction given
$\mathrm{H}_{2}+2 \mathrm{AgCl}_{(\mathrm{s})} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{Ag}+2 \mathrm{Cl}^{-}$
(1) $\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{HCl}_{(\mathrm{aq})}\left|\mathrm{AgCl}_{(\mathrm{s})}\right| \mathrm{Ag}_{(\mathrm{s})}$
(2) $\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{KCl}_{(\mathrm{aq})}\left|\mathrm{AgCl}_{(\mathrm{s})}\right| \mathrm{Ag}_{(\mathrm{s})}$
(3) $\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{HCl}_{(\mathrm{aq})}\left|\mathrm{AgNO}_{3(\mathrm{aq)}}\right| \mathrm{Ag}_{(\mathrm{s})}$
(4) $\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{KCl}_{\text {(aq) }}\left|\mathrm{AgNO}_{3(\mathrm{aqq})}\right| \mathrm{Ag}_{\text {(s) }}$

Ans. (1)
Sol. $\quad \mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{HCl}_{(\mathrm{aq})}\left|\mathrm{AgCl}_{(\mathrm{s})}\right| \mathrm{Ag}_{(\mathrm{s})}$
Anode: $\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Cathode: $\mathrm{AgCl}_{(\mathrm{s})}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}+\mathrm{Cl}^{-}$
Net cell reaction:
$\mathrm{H}_{2}+2 \mathrm{AgCl}_{(\mathrm{s})} \longrightarrow 2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Ag}+2 \mathrm{Cl}^{-}(\mathrm{aq})$
17. Match the following compound with maximum prescribed concentration of metals or ions in drinking water.
(A) F^{-}
(P) 5 ppm
(B) Zn
(Q) 500 ppm
(C) SO_{4}^{-2}
(R) 50 ppm
(D) NO_{3}^{-}
(S) 1 ppm

Ans. $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{Q}, \mathrm{D} \rightarrow \mathrm{R}$
18.

A is :
(1)

(2)

(3)

(4)

Ans. (2)
Sol. LiBH_{4} reduce ester to alcohol.
19. Match the products of reactions between benzene diazonium salt with the following reagents.

Reagents
(A) $\mathrm{Ph}-\mathrm{NH}_{2}$
(B) $\mathrm{Cu} / \mathrm{HCl}$
(C) CuCN
(D) HBF_{4}, Heat
(1) A-s, B-q, C-p, D-r
(3) A-s, B-q, C-r, D-p

Products
(p) $\mathrm{Ph}-\mathrm{CN}$
(q) $\mathrm{Ph}-\mathrm{Cl}$
(r) $\mathrm{Ph}-\mathrm{F}$
(s) $\mathrm{H}_{2} \mathrm{~N}-\bigcirc-\mathrm{N}=\mathrm{N}-\bigcirc$
(2) A-q, B-s, C-p, D-r
(4) A-s, B-p, C-q, D-r

Ans. (1)

JEE (MAIN) APRIL 2023 DATE-08/04/2023 (SHIFT-I)
Unleashing Potential
20. Match the following with their characteristic laboratory tests?

Column-I (Compounds)

(1)

(2)

(4)

(3)

(4)

Ans. (1-q); (2-p) (3-r)
21. Match the following

Column-I

(1) First artificial sweetening agent
(2) Stable at cooking temperature
(3) High potency sweetener
(4) Unstable at cooking temperature
(r) $\mathrm{NaOI}+\mathrm{KI}$

Column-II (Lab test)
(p) Neutral FeCl_{3}
(q) Chloroform in alkali potash
(s)
)
23. Whleashing Potential Which of the following will have higher rate towards $\mathrm{S}_{\mathrm{N}} 1$ reaction (Site)

(II)

(III)

(IV

(1) I $\rightarrow \mathrm{Br}(\mathrm{a}), \mathrm{II} \rightarrow \mathrm{I}(\mathrm{a})$, III $\rightarrow \mathrm{Br}(\mathrm{a}), \mathrm{IV} \rightarrow \mathrm{Br}(\mathrm{b})$
(2) I $\rightarrow \mathrm{Br}(\mathrm{b}), \mathrm{II} \rightarrow \mathrm{I}(\mathrm{b}), \mathrm{III} \rightarrow \mathrm{Br}(\mathrm{a}), \mathrm{IV} \rightarrow \mathrm{Br}(\mathrm{b})$
(3) I $\rightarrow \mathrm{Br}(\mathrm{a}), \mathrm{II} \rightarrow \mathrm{I}(\mathrm{b}), \mathrm{III} \rightarrow \mathrm{Br}(\mathrm{a}), \mathrm{IV} \rightarrow \mathrm{Br}(\mathrm{b})$
(4) I $\rightarrow \operatorname{Br}(\mathrm{a}), \mathrm{II} \rightarrow \mathrm{I}(\mathrm{b}), \mathrm{III} \rightarrow \mathrm{Br}(\mathrm{b}), \mathrm{IV} \rightarrow \mathrm{Br}(\mathrm{a})$

Ans. (1)
24. A hydrocarbon gives ethanal and propanone on ozonolysis. Calculate the molecular mass of hydrocarbon.

Ans. 70
Sol.

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

