JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

	AIR MAYANK MOTWANI Roll No. : 20771637 JEE Adv. 2022		AIR \square DHANANJAY KEJRIWAL JEE Adv. 2020	
AIR 29 SANKALP PARASHARRoil No. : 20975 JEE Adv. 2020	कe	AIR 30 AARYAN GUPTA Roil No. : 209758		

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

CHEMISTRY

1. The number of moles and molecules of O_{2} in 28.375 L of oxygen gas at STP.

Ans. $1.25, \quad 7.525 \times 10^{23}$
Sol. Number of moles of $\mathrm{O}_{2}=\frac{28.375}{22.7}=1.25$
\Rightarrow Number of molecule $=1.25 \mathrm{~N}_{\mathrm{A}}=7.525 \times 10^{23}$
2. The compound which does not exist.
(1) BeCl_{2}
(2) NaO_{2}
(3) PbEt_{4}
(4) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$

Ans. (2)
Sol. $\quad \mathrm{NaO}_{2}$ (Super oxide of sodium is unstable)
3. Stabilizer use for concentrating sulphide ores:
(1) Fatty acid
(2) Pine oil
(3) Cresol
(4) Xenthate

Ans. (3)
Sol. Cresol
4. Which of the following is correct regarding adsorption ?
(1) $\Delta \mathrm{H}_{\text {adsorption }} \Rightarrow+\mathrm{ve}, \Delta \mathrm{H}$ of micelle formation $\Rightarrow+\mathrm{ve}$
(2) $\Delta \mathrm{H}_{\text {adsorption }} \Rightarrow-\mathrm{ve}, \Delta \mathrm{H}$ of micelle formation $\Rightarrow t \mathrm{ve}$
(3) $\Delta \mathrm{H}_{\text {adsorption }} \Rightarrow+\mathrm{ve}, \Delta \mathrm{H}$ of micelle formation $\Rightarrow-\mathrm{ve}$
(4) $\Delta \mathrm{H}_{\text {adsorption }} \Rightarrow-\mathrm{ve}, \Delta \mathrm{H}$ of micelle formation $\Rightarrow-\mathrm{ve}$

Ans. (4)
Sol. $\Delta \mathrm{H}_{\text {adsorption }}$
gas + solid $\xrightarrow{\text { adsortion }}$ gas/solid; $\Delta \mathrm{H}=-$ ve
$\left\{\begin{array}{c}\ominus \\ +\begin{array}{c}\text { Solvent } \\ \left(\mathrm{H}_{2} \mathrm{O}\right)\end{array} \xrightarrow{[\text { Conc. }]>\text { CMC }} \text { Micelle formation } \\ \Delta \mathrm{H}=-\mathrm{ve}\end{array}\right.$
5. Which of the following is low spin diamagnetic, octahedral complex ?
(1) $\left[\mathrm{CoCl}_{6}\right]^{3-}$
(2) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Ans. (3)
Sol. (3) $\mathrm{Co}^{+3} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{NH}_{3} \rightarrow$ SFL
$t_{2 g}^{2,2,2}, e_{g}^{0,0}$
(Complex is diamagnetic and low spin)
(1) $\left[\mathrm{CoCl}_{6}\right]^{-3}$
$\mathrm{Co}^{3+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{Cl}^{-} \rightarrow$ W.F.L.
$\mathrm{t}_{2 \mathrm{~g}}^{2,1,1}, \mathrm{e}_{\mathrm{g}}^{1,1}$
(Paramagnetic and high spin)
(2) $\left[\mathrm{CoF}_{6}\right]^{-3}$
$\mathrm{Co}^{+3} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{F}^{-} \rightarrow$ WFL
$\mathrm{t}_{2 \mathrm{~g}}^{2,1,1}, \mathrm{e}_{\mathrm{g}}^{1,1}$
(Paramagnetic and high spin)
6. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\mathrm{T}_{1}} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\text { Catalyst }]{\mathrm{T}_{2}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
(1) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(2) $T_{1}>T_{2}$
(3) $\mathrm{T}_{1}<\mathrm{T}_{2}$
(4) $\mathrm{T}_{1}=100 \mathrm{~K}, \mathrm{~T}_{2}=1270 \mathrm{~K}$

Ans. (2)
Sol. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{1273 \mathrm{~K}} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\substack{\text { Catalyst } \\\left(\mathrm{FeO} . \mathrm{C}_{2} \mathrm{O}_{3}\right)}]{67 \mathrm{~K}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
7. Select the correct option

$$
\begin{array}{ll}
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-\mathrm{x} \mathrm{~kJ} / \mathrm{mole} \\
\mathrm{C}(\text { graphite })+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-\mathrm{y} \mathrm{~kJ} / \text { mole }
\end{array}
$$

Then ΔH for
$\mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})}$ is
(1) $x-\frac{y}{2}$
(2) $\frac{x-2 y}{2}$
(3) $\frac{x+2 y}{2}$
(4) $\frac{x-y}{2}$

Ans. (2)
Sol. Target equation

$$
\begin{array}{ll}
\mathrm{C}(\text { graphite })+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})} \ldots \ldots \text {.(i) } & \Delta \mathrm{H} \\
\mathrm{C}(\text { graphite })+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \ldots \ldots . \text { (ii) } & \Delta \mathrm{H}_{1}=-\mathrm{y} \mathrm{~kJ} / \mathrm{mole} \\
\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \ldots \ldots \text { (iii) } & \Delta \mathrm{H}_{2}=\frac{\mathrm{x}}{2} \mathrm{~kJ} / \mathrm{mole}
\end{array}
$$

$$
\text { eq. (i) }=\text { eq.(ii) }+ \text { eq (iii) }
$$

$$
\therefore \quad \Delta \mathrm{H}=\frac{\mathrm{x}}{2}-\mathrm{y}=\frac{\mathrm{x}-2 \mathrm{y}}{2}
$$

8. $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{X}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Y}$
Number of ' O ' atom in one molecules of X and Y .
Ans. 5
Sol. $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}$

$$
\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HClO}_{4}
$$

So, $1+4=5$
9. How many of the following are bent in shape
$\mathrm{SO}_{2}, \mathrm{O}_{3}, \mathrm{I}_{3}^{-}, \mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}$
Ans. 3
Sol.

Unleashing Potential
10. Calculate total number lone pairs in $\mathrm{IF}_{7} \& \mathrm{IF}_{5}$.

Ans. 37

Sol.

Total lone pairs $=21+16=37$
11. Number of electrons in $\mathrm{t}_{2 \mathrm{~g}}$ set of orbitals in potassium ferrocyanide is ...

Ans. 6
Sol. $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \quad \mathrm{Fe}^{2+}: 3 \mathrm{~d}^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{\mathrm{o}}$
12. Prolonged heating of ferrous ammonium sulphate is avoided to prevent:
(1) Oxidation
(2) Reduction
(3) Hydrolysis
(4) Breaking

Ans. (1)
Sol. Prolong heating will cause oxidation of $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}$
13. An ideal gas is taken at 930.2 mm of Hg pressure in a certain volume. What will be the final pressure if volume is reduced by 40% at constant temperature ?
Sol. $\quad P_{1} V_{1}=P_{2} V_{2}$
$930.2 \times 100=P_{2} \times 60$
$\mathrm{P}_{2}=1550 \mathrm{~mm}$ of Hg
14. Read the following two statements.

Statement-1 : Potassium dichromate is used in volumetric analysis.
Statement-2 : $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is more soluble in water than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
(1) Both statements-1 and 2 are correct.
(2) Both statement-1 and 2 are incorrect
(3) Statement- 1 is correct and statement- 2 is incorrect.
(4) Statement-1 is incorrect and statement-2 is correct.

Ans. (3)
15. The degree of dissociation of monobasic acid is 0.3 . By what percent is the observed depression in freezing point greater than the calculated depression in freezing point?
Ans. 30\%
Sol. $\mathrm{i}=1+\alpha$ (for HA)

$$
=1.3
$$

$\%$ increase $=\frac{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {obs }}-\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {cal }}}{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {cal }}} \times 100$

$$
\begin{aligned}
& =\frac{\mathrm{K}_{\mathrm{f}} \times \mathrm{i} \times \mathrm{m}-\mathrm{K}_{\mathrm{f}} \times \mathrm{m}}{\mathrm{~K}_{\mathrm{f}} \times \mathrm{m}} \times 100 \\
& =\frac{i-1}{1} \times 100=30 \%
\end{aligned}
$$

16.

Both are $\mathrm{I}^{\text {st }}$ order reaction, calculate overall half life of A.
Ans. 2
Sol. $\frac{1}{\mathrm{t}_{1 / 2}}=\frac{1}{3}+\frac{1}{12}=\frac{4+1}{12}=\frac{5}{12}$
$\mathrm{t}_{1 / 2}=\frac{12}{5} \min$

' A ' is
(1) Quick lime
(2) Slaked lime
(3) White lime
(4) Lime water

Ans. (1)
Sol. $\mathrm{CaO}($ s $)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2} \xrightarrow{\mathrm{CO}_{2}} \mathrm{CaCO}_{3} \downarrow \xrightarrow{\text { excess } \mathrm{CO}_{2}} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2 \text { (aq.) }}$
(A)
(B)
soluble
,
18.

(1)

(2)

(3)

(4)

Ans. (2)
19. Which reactants are used to prepare phenyl methyl ether?
(1) $\mathrm{PhONa}, \mathrm{CH}_{3} \mathrm{Br}$
(3) $\mathrm{PhONa}, \mathrm{CH}_{3} \mathrm{OH}$
(2) $\mathrm{PhBr}, \mathrm{CH}_{3} \mathrm{ONa}$
(4) $\mathrm{PhOH}, \mathrm{CH}_{3} \mathrm{Br}$

Ans. (1)
20. Following observations are found for the isomeric compounds of $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$.

Isomer-I : Can prepare by Gabriel phthalimide synthesis
Isomer-II : Reacts with Hinsberg reagent but does not soluble in NaOH Isomer-III : Reacts with HNO_{2} and form azodye
(1) Isomer-I :

Isomer-II :

Isomer-III :

(2) Isomer-I :

Isomer-III :

(3) Isomer-I :

Isomer-II :

Isomer-III :

(4) Isomer-I :

Isomer-II :

Ans. (1)

Unleashing Potential
21. Which does not stabilise secondary and tertiary structure of protein?
(1) Hydrogen bonding
(2) S-S linkage
(3) van der waals force
(4) $\mathrm{H}-\mathrm{H}$ linkage

Ans. (4)
Sol. Secondary and tertiary structure of protein are stabilise by H-bonding, disulphide linkage, ionic bonding as well as van der waals forces.
22. Column-I
(a) Nylon-26
(b) Dacron
(c) Urea formaldehyde resin
(d) Buna-N

Ans. $\quad \mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$.
23. Column-I
(a) Steel industry
(b) Thermal power plant
(c) Fertilizer industry
(d) Paper mill

Column-II

(p) Addition polymer
(q) Thermosetting polymer
(r) Polyester linkages
(s) Biodegradable

Column-II (Waste product)

(p) Fly ash
(q) Slag
(r) Biodegradable
(s) Gypsum

Ans. $\quad \mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{r}$
24. Which of the following pair of compounds have not zero dipole moment?
(1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$
(2) Cis-butene, trans-butene
(3) 1,2-dichloro benzene, 1,4-dichloro benzene
(4) Benzene and chlorobenzene

Ans. (1)
following compound for their rate of reaction.
25. Observe the following compound for their rate of reaction.
(I)

(II)

 (Rate of nucleophilic substitution reaction)

The correct option is
(1) II, III, IV
(2) I, II
(3) I, IV
(4) I, II, III

Ans. (1)

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

