

JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS &

🇰 10 APRIL, 2023 **③** 9:00 AM to 12:00 Noon

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) **TOP 100 AIRs IN JEE ADVANCED**

VIKAAS **VISHWAAS** VISHESH For Class X to XI For Class XI to XII For Class XII **Moving Students Moving Students Passed Students TARGET 2025 TARGET 2024 TARGET 2024** Starting From : 12 & 19 APRIL'23 Avail Scholarship up to 90% through R-NET on EVERY SUNDAY

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

1.	The number of moles and molecules of O_2 in 28.375L of oxygen gas at STP.							
Ans.	1.25,	7.525×10^{23}						
Sol.	Number of moles of $O_2 = \frac{28.375}{22.7} = 1.25$							
	\Rightarrow Number of molecule = 1.25 N _A = 7.525 × 10 ²³							
2.	The compound which does not exist.							
	(1) BeCl ₂	(2) NaO_2	(3) $PbEt_4$	(4) $(NH_4)_2BeF_4$				
Ans.	(2)							
Sol.	NaO ₂ (Super oxide of sodium is unstable)							
-	a. 1							
3.	Stabilizer use	e for concentrating sulphi	de ores :					
	(1) Fatty acid	d (2) Pine oil	(3) Cresol	(4) Xenthate				
Ans.								
Sol.	Cresol			20.				
4.	Which of the following is correct regarding adsorption ?							
	(1) $\Delta H_{adsorption} \Rightarrow +ve$, ΔH of micelle formation $\Rightarrow +ve$ (2) $\Delta H_{adsorption} \Rightarrow -ve$, ΔH of micelle formation $\Rightarrow +ve$ (3) $\Delta H_{adsorption} \Rightarrow +ve$, ΔH of micelle formation $\Rightarrow -ve$ (4) $\Delta H_{adsorption} \Rightarrow -ve$, ΔH of micelle formation $\Rightarrow -ve$							
Ans.	(4)							
Sol.	$\Delta H_{adsorption}$							
	gas + solid $\xrightarrow{\text{adsortion}}$ gas/solid ; $\Delta H = -ve$ $\begin{cases} \begin{cases} \\ \\ \\ \end{cases} & + \text{Solvent} & \underline{[Conc.] > CMC} \\ \hline & \end{array}$ Micelle formation							
	$\Delta H = -ve$							

Which of the following is low spin diamagnetic, octahedral complex ? 5. (1) $[CoCl_6]^{3-}$ (2) $[CoF_6]^{3-}$ (3) $[Co(NH_3)_6]^{3+}$ (4) $[Fe(H_2O)_6]^{3+}$ (3) Ans. $Co^{+3} \rightarrow [Ar]3d^6$ **Sol.** (3) $NH_3 \rightarrow SFL$ $t_{2g}^{2,2,2}, e_g^{0,0}$ (Complex is diamagnetic and low spin) $[CoCl_6]^{-3}$ (1) $\text{Co}^{3+} \rightarrow [\text{Ar}]3\text{d}^6$ $Cl^{-} \rightarrow W.F.L.$ $t_{2g}^{2,1,1}, e_{g}^{1,1}$ $C(s) + H_2O(g) \xrightarrow{T_1} CO(g) + H_2(g)$ $CO(g) + H_2O(g) \xrightarrow{T_2} CO_2(g) + H_2(g)$ $(1) T_1 = T_2$ $(1) T_1 < T_2$ $T_1 < T_2$ $T_1 = 100 \text{ K}, T_2 = 1270 \text{ K}$ (Paramagnetic and high spin) (2) 6. Ans. $C(s) + H_2O(g) \xrightarrow{1273K} CO(g) + H_2(g)$ Sol. $\xrightarrow[(FeO.Cr_2O_3)]{673K} CO_2(g) + H_2(g)$ $CO(g) + H_2O(g) -$

7. Select the correct option

	r						
	$2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)}$	ΔH = -	- x kJ/mole				
	$C(\text{graphite}) + O_{2(g)} \longrightarrow CO_{2(g)} \qquad \Delta H = -y \text{ kJ/mole}$						
	Then ΔH for						
	$C_{(graphite)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$ is						
	(1) $x - \frac{y}{2}$ (2) $\frac{x - 2y}{2}$		$(3) \ \frac{x+2y}{2}$	$(4) \ \frac{x-y}{2}$			
Ans.	(2)						
Sol.	Target equation						
	$C(\text{graphite}) + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)} \dots$.(i)	ΔH				
	$C(graphite) + O_{2(g)} \longrightarrow CO_{2(g)} \dots \dots ($	ii)	$\Delta H_1 = -y kJ/mole$				
	$CO_{2(g)} \longrightarrow CO_{(g)} + \frac{1}{2}O_{2(g)} \dots \dots (iii)$		$\Delta H_2 = \frac{x}{2} \text{ kJ/mole}$				
	eq. (i) = eq.(ii) + eq (iii)			. 1			
	$\therefore \Delta H = \frac{x}{-y} = \frac{x-2y}{-y}$	1		e alle			
	2 2 2		1 , 3	Le.			
0				20			
0.	$Na_2O + H_2O \longrightarrow 2X$						
	$Cl_2O_7 + H_2O \longrightarrow 2Y$						
Ang	Number of 'O' atom in one molecules of X and Y.						
Ans.							
501.	$Na_2O + H_2O \longrightarrow 2NaOH$	1	n.				
	$Cl_2O_7 + H_2O \longrightarrow 2HClO_4$						
	$50, 1 \pm 4 = 5$						
9.	How many of the following are bent i	ny of the following are bent in shape					
	SO ₂ , O ₃ , I ⁻ ₃ , N ⁻ ₃ , NO ⁻ ₂						

Ans. 3

0^{±0},0 0^{±N},0o≠^{\$}≈0 Sol.

Calculate total number lone pairs in IF₇ & IF₅. 10.

37 Ans.

Sol.
$$F = F = F = F$$

$$F = F = F$$

$$F = F = F$$

$$F = F = F$$

Total lone pairs = 21 + 16 = 37

11. Number of electrons in t_{2g} set of orbitals in potassium ferrocyanide is ...

Ans. 6

 $\mathrm{Fe}^{2+}: \mathrm{3d}^6 \Longrightarrow \mathrm{t}^6_{\mathrm{2g}} \mathrm{e}^{\mathrm{o}}_{\mathrm{g}}$ $[Fe(CN)_6]^{4-}$ Sol.

12. Prolonged heating of ferrous ammonium sulphate is avoided to prevent : (2) Reduction (4) Breaking (1) Oxidation (3) Hydrolysis

Ans. (1)

Prolong heating will cause oxidation of $Fe^{2+} \rightarrow Fe^{3+}$ Sol.

An ideal gas is taken at 930.2 mm of Hg pressure in a certain volume. What will be the final 13. Leashing pressure if volume is reduced by 40% at constant temperature ?

$$Sol. P_1V_1 = P_2V_2$$

 $930.2 \times 100 = P_2 \times 60$ $P_2 = 1550 \text{ mm of Hg}$

14. Read the following two statements ?

Statement-1 : Potassium dichromate is used in volumetric analysis.

Statement-2 : $K_2Cr_2O_7$ is more soluble in water than $Na_2Cr_2O_7$.

- (1) Both statements-1 and 2 are correct.
- (2) Both statement-1 and 2 are incorrect
- (3) Statement-1 is correct and statement-2 is incorrect.
- (4) Statement-1 is incorrect and statement-2 is correct.

Ans. (3)

- The degree of dissociation of monobasic acid is 0.3. By what percent is the observed depression 15. in freezing point greater than the calculated depression in freezing point ?
- 30% Ans.
- $i = 1 + \alpha$ (for HA) Sol.
 - = 1.3

% increase

$$= \frac{(\Delta T_{f})_{obs} - (\Delta T_{f})_{cal}}{(\Delta T_{f})_{cal}} \times 100$$
$$= \frac{K_{f} \times i \times m - K_{f} \times m}{K_{f} \times m} \times 100$$

$$=\frac{i-1}{1} \times 100 = 30\%$$

16. A
$$t_{1/2} = 3 \min P$$

Both are Ist order reaction, calculate overall half life of A.

Ans. 2

(A)

A UTEntential $\frac{1}{t_{1/2}} = \frac{1}{3} + \frac{1}{12} = \frac{4+1}{12}$ Sol. 12 $t_{1/2} = \frac{12}{5} \min$ $'A' + H_2O \longrightarrow B \xrightarrow{CO_{2(g)}} \rightarrow$ excess CO 17. D partially insoluble soluble soluble 'A' is (1) Quick lime (2) Slaked lime (3) White lime (4) Lime water (1) Ans. $CaO(s) + H_2O \longrightarrow Ca(OH)_2 \xrightarrow{CO_2} CaCO_3 \downarrow \xrightarrow{excess CO_2} Ca(HCO_3)_{2(aq.)}$ Sol.

(B)

soluble

Which does not stabilise secondary and tertiary structure of protein? 21.

- (1) Hydrogen bonding (2) S–S linkage
- (3) van der waals force (4) H–H linkage
- Ans. (4)
- Sol. Secondary and tertiary structure of protein are stabilise by H-bonding, disulphide linkage, ionic bonding as well as van der waals forces.

22. **Column-I**

Column-II

(p) Addition polymer

(r) Polyester linkages

(s) Biodegradable

(q) Slag

(r) Biodegradab

(s) Gypsum

(q) Thermosetting polymer

- (a) Nylon-26
- (b) Dacron
- (c) Urea formaldehyde resin
- (d) Buna-N
- $a \rightarrow s, b \rightarrow r, c \rightarrow q, d \rightarrow p.$ Ans.

Column-II (Waste product) (p) Fly ash

Column-I

23.

- (a) Steel industry
- (b) Thermal power plant
- (c) Fertilizer industry
- (d) Paper mill
- $a \rightarrow q, b \rightarrow p, c \rightarrow s, d \rightarrow r$ Ans.

Which of the following pair of compounds have not zero dipole moment? 24.

- (1) CH₂Cl₂, CHCl₃
- (2) Cis-butene, trans-butene
- (3) 1,2-dichloro benzene, 1,4-dichloro benzene
- (4) Benzene and chlorobenzene
- Ans. (1)

25. Observe the following compound for their rate of reaction.

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota