JEE MAIN 2023

## APRIL ATTEMPT

## PAPER-1 (B.Tech / B.E.)



Duration : 3 Hours
Maximum Marks : 300

## SUBJECT - PHYSICS

## LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

|  | AIR <br> MAYANK MOTWANI Roll No. : 20771637 <br> JEE AdV. 2022 |  | AIR |  |
| :---: | :---: | :---: | :---: | :---: |
| AIR <br> 29 <br> SANKALP PARASHAR <br> Roll No. : 209756 JEE Adv. 2020 |  | AIR <br> 30 <br> AARYAN GUPTA <br> Roll No. : 20975800 JEE Adv. 2020 |  |  |

Admission Announcement for JEE Advanced (For Session 2023-24)


Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

## PHYSICS

1. At $t=0$ particle is at $\frac{A}{2}$ from mean position and moving in + ve $x$-direction. At general time its equation is $\mathrm{A} \sin (\omega \mathrm{t}+\phi)$. Value of $\phi$ is?
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{2}$

Ans. (2)

Sol.


$$
\begin{aligned}
& \mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi) \\
& \text { at } \mathrm{t}=0 \quad \mathrm{x}=\frac{\mathrm{A}}{2}
\end{aligned}
$$

$$
\frac{\mathrm{A}}{2}=\mathrm{A} \sin [\omega(0)+\phi]
$$

$$
\sin \phi=\frac{1}{2}
$$

$$
\phi=\frac{\pi}{6}
$$

2. A ball of mass ' $m$ ' moving with velocity ' $v$ ' collides and sticks to the body of mass ' 2 m ', initially at rest. Find the final velocity of combined mass.
(1) $\frac{\mathrm{V}}{3}$
(2) $\frac{\mathrm{V}}{4}$
(3) $\frac{y}{8}$
(4) $\frac{\mathrm{V}}{10}$

Ans. (1)

Sol.


$$
\begin{aligned}
& \mathrm{mv}=3 \mathrm{~m} \mathrm{v}^{\prime} \\
& \frac{\mathrm{v}}{3} \mathrm{~m} / \mathrm{s}=\mathrm{v}^{\prime}
\end{aligned}
$$

Unleashing Potential
3. $y=A \sin (6 t+0.003 x)$. Find speed of wave ' $x$ ' is in centimeter :
(1) $10 \mathrm{~m} / \mathrm{s}$
(2) $20 \mathrm{~m} / \mathrm{s}$
(3) $30 \mathrm{~m} / \mathrm{s}$
(4) $40 \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $\omega=6 \mathrm{rad} / \mathrm{sec}$
$\mathrm{k}=0.003 \mathrm{rad} / \mathrm{cm}$
$\mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{6}{0.3}=20 \mathrm{~m} / \mathrm{s}$
4. Find equivalent capacitance between A and B

(1) 4 C
(2) 2 C
(3) $\mathrm{C} / 2$
(4) $5 \mathrm{C} / 3$

Ans. (2)
Sol. Circuit is reduced to

5. The de-Broglie wavelength of gas particle is $\lambda$ for temperature 300 k , find the de-Broglie wavelength when temperature is 600 k ?
(1) $\frac{\lambda}{\sqrt{2}}$
(2) $\frac{\lambda}{\sqrt{3}}$
(3) $\frac{\lambda}{2}$
(4) $\frac{\lambda}{5}$

Ans. (1)
Sol. $\quad \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mk}}} \quad\left(\therefore \mathrm{k}=\frac{3}{2} \mathrm{kT}\right)$
$\lambda \propto \frac{h}{\sqrt{T}}$
$\lambda_{1} \sqrt{\mathrm{~T}_{1}}=\lambda_{2} \sqrt{\mathrm{~T}_{2}}$
$\lambda \sqrt{\frac{300}{600}}=\lambda^{\prime}$
$\frac{\lambda}{\sqrt{2}}=\lambda^{\prime}$ (new wavelength)
6. If the weight on the surface of a planet of mass, radius $R$ is 200 N . Find weight at depth $\mathrm{R} / 2$ from surface of planet.
(1) 200 N
(2) 300 N
(3) 100 N
(4) 400 N

Ans. (3)

Sol.

$200=\frac{\mathrm{GM}}{\mathrm{R}^{2}} \mathrm{~m}$
$\mathrm{M}=\frac{4}{3} \pi \mathrm{R}^{3} \rho$
$200=\frac{\mathrm{G} 4}{3} \pi \rho \mathrm{Rm}$
weight $\propto R$
Hence at $\frac{R}{2}$ from centre weight $=100 \mathrm{~N}$
7. Force acting on rod is:

(1) 0.18 N
(2) 0.018 N
(3) 1.8 N
(4) 18 N

Sol. $\mathrm{F}=\mathrm{i} \ell \mathrm{B}$
$=\left(\frac{\varepsilon}{\mathrm{R}}\right) \ell \mathrm{B}=\left(\frac{\mathrm{vB} \ell}{\mathrm{R}}\right) \ell \mathrm{B}=\frac{\mathrm{vB}^{2} \ell^{2}}{\mathrm{R}}=\frac{4}{5} \times\left(\frac{15}{100}\right)^{2} \times 1^{2}$
$=\frac{4}{5} \times \frac{225}{10^{4}}$
$=\frac{180}{10^{4}}=0.018 \mathrm{~N}$
8. If a projectile is thrown with speed $u$ at an angle $15^{\circ}$, the range obtained is 50 m . What will be range obtained if the same particle is thrown at an angle of $45^{\circ}$ with same speed $u$.
(1) 50 m
(2) 100 m
(3) 200 m
(4) 150 m

Ans. (2)

Sol.


$$
\begin{aligned}
& 50=\frac{\mathrm{u}^{2} \sin 30}{\mathrm{~g}} \\
& \mathrm{R}_{1}=\frac{\mathrm{u}^{2} \sin 90}{\mathrm{~g}} \\
& \frac{50}{\mathrm{R}_{1}}=\frac{1}{2} \\
& \mathrm{R}^{\prime}=100 \mathrm{~m}
\end{aligned}
$$

9. Find $R_{e q}$ across $A$ and $B$

(1) $\frac{16}{5} \Omega$
(2) $\frac{18}{5} \Omega$
(3) $4 \Omega$
(4) $6 \Omega$

Ans. (1)
Sol. The Circuit can be required to


$$
\Rightarrow \quad \mathrm{R}_{\mathrm{eq}}=\frac{16 \times 4}{16+4}=\frac{16}{5} \Omega
$$

Unleashing Potential
10. If frequency of electromagnetic wave is $f$ then frequency of energy density of electromagnetic wave is
(1) 1.2 f
(2) f
(3) $\frac{f}{2}$
(4) 2 f

Ans. (4)
Sol. $E=E_{0} \sin (\omega t-k x)$

$$
\frac{\mathrm{du}}{\mathrm{dv}}=\varepsilon_{0} \mathrm{E}_{0}^{2} \sin ^{2}(\omega \mathrm{t}-\mathrm{kx})
$$

11. 


A. A takes less time to reach home.
B. B takes less time to reach home.
C. A is faster.
D. $\quad \mathrm{B}$ is faster.
E. A's home is farther than B.

Correct statements are :
(1) B, C
(2) B, D
(3) A, C
(4) A, D, E

Ans. (2)
12. The volume of Earth shrinks to $1 / 64$ of its initial value, mass staying the same then ratio of initial and final value of time periods of rotation of Earth about its axis is $t_{1} / x$ where $t_{1}=24$. Find $x$ :

Ans. 16

Unleashing Potential

Sol. From conservation of angular momentum

$$
\begin{aligned}
& M_{M}^{2} \omega_{1}=M\left(\frac{R}{4}\right)^{2} \omega_{2} \\
& \Rightarrow \quad M^{2} \omega_{1}=\frac{M R^{2}}{16} \omega_{2} \\
& \Rightarrow \quad \frac{\omega_{1}}{\omega_{2}}=\frac{1}{16} \quad \Rightarrow \quad \frac{T_{2}}{T_{1}}=\frac{1}{16} \Rightarrow \frac{T_{1}}{T_{2}}=\frac{16}{1}=\frac{t_{1}}{x} \\
& \therefore \quad t_{1}=24 \quad \frac{16}{1}=\frac{24}{t_{2}} \quad \Rightarrow \quad x=16
\end{aligned}
$$

13. Statement 1: Current sensitivity doubles when number of turns is doubled

Statement 2: Both voltage sensitivity and current sensitivity increases equally an increasing no of turns.
(1) Statement-1 and statement-1 both are correct.
(2) Statement- 1 and statement- 1 both are wrong.
(3) Statement- 1 is wrong and statement- 2 is correct.
(4) Statement- 1 is correct and statement- 2 is wrong.

Ans. (4)
Sol. BINA $=\mathrm{C} \phi \rightarrow \frac{\phi}{\mathrm{I}}=\frac{\mathrm{BNA}}{\mathrm{C}}:$ Current sensitivity voltage sensitivity $=\frac{\phi}{\mathrm{V}}=\frac{\mathrm{BNA}}{\mathrm{CR}}$ as $N \uparrow \Rightarrow R \uparrow \Rightarrow$ V.S Remains same.
14. Two gases $A$ and $B$ having same initial state $(P, V, n, T)$. Now gas ' $A$ ' is compressed to $\frac{V}{8}$ by isothermal process and other gas B is compressed to $\frac{V}{8}$ by adiabatic process. Find ratio of Final pressure of gas A and B (Both gases are monoatomic)
(1) $1 / 4$
(2) $1 / 8$
(3) $1 / 12$
(4) $1 / 64$

Ans. (1)

Sol. Isothermal process equation
$\mathrm{PV}=\mathrm{P}_{\mathrm{A}}(\mathrm{V} / 8)$
$8 \mathrm{P}=\mathrm{P}_{\mathrm{A}}$
Adiabatic process equation
$\mathrm{PV}^{5 / 3}=\mathrm{P}_{\mathrm{B}}(\mathrm{V} / 8)^{5 / 3}$
$32 \mathrm{P}=8^{5 / 3} \mathrm{P}=\mathrm{P}_{\mathrm{B}}$
$\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{8 \mathrm{P}}{32 \mathrm{P}}=\frac{1}{4}$
15. Mirror is moved towards the object by 4 cm , then find how much distance image will shift
(1) 8 cm
(2) 4 cm
(3) 12 cm
(4) 16 cm

Ans. (1)
Sol. Image distance shift $=2 \times 4=8 \mathrm{~cm}$
16. The magnetic field intensity inside current carrying solenoid is $\mathrm{H}=2.4 \times 10^{3} \mathrm{~A} / \mathrm{m}$. If Length and no. of turns of solenoid is 15 cm and 60 turns. Find current flowing in solenoid.
(1) 4 A
(2) 6 A
(3) 0.6 A
(4) 60 A

Ans. (2)
Sol. $B=\mu_{0} \frac{N}{L} i$
$\frac{\mathrm{B}}{\mu_{0}}=\frac{\mathrm{N}}{\mathrm{L}} \mathrm{i}$
$\mathrm{H}=\frac{\mathrm{N}}{\mathrm{L}} \mathrm{i}$
$2.4 \times 10^{3}=\frac{60}{15 \times 10^{-2}} \mathrm{i}$
$6 \mathrm{~A}=\mathrm{i}$

Unleashing Potential
17. Statement 1 : Maximum power is dissipated when resonance occurs.

Statement 2 : Maximum power is dissipated containing pure resistance due to zero phase difference.
(1) Statement I and II both are correct and II is the correct explanation of I.
(2) Statement I and II both are correct and II is not the correct explanation of I.
(3) Both statement I and II are wrong.
(4) Statement I is true, II is false.

Ans. (1)
18. Base band signal of amplitude 3 V is modulate with carrier wave of amplitude 15 V Ratio of maximum to minimum, amplitude in amplitude modulate wave
(1) $\frac{3}{4}$
(2) $\frac{4}{5}$
(3) $\frac{3}{2}$
(4) $\frac{3}{7}$

Ans. (3)
Sol. $\mathrm{A}_{\text {max }}=\mathrm{A}_{\mathrm{m}}+\mathrm{A}_{\mathrm{c}}=18$
$\mathrm{A}_{\text {min }}=\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{m}}=12$
$\frac{\mathrm{A}_{\text {max }}}{\mathrm{A}_{\text {min }}}=\frac{3}{2}$
19. Radius of both wires is 0.2 cm , elongation in steel wire is $\mathrm{x} \times 10^{-6} \mathrm{~m}$ and Young's modulus of steel is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. Find x .


Ans. 20

Unleashing Potential

Sol. Tension is steel wire $\mathrm{T}_{2}=2 \mathrm{~g}+\mathrm{T}_{1}$
$\mathrm{T}_{2}=20+11.4$
$=31.4 \mathrm{~N}$


Elongation in steel wire $\Delta \mathrm{L}=\frac{\mathrm{T}_{2} \mathrm{~L}}{\mathrm{Ay}}$
$\Delta \mathrm{L}=\frac{31.4 \times 1.6}{\pi\left(0.2 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}$
$\Delta \mathrm{L}=\frac{16}{2 \times 4 \times 10^{-6} \times 10^{11}}$
$=2 \times 10^{-5} \mathrm{~m}$
$=20 \times 10^{-6} \mathrm{~m}$
20. A light of intensity $32 \mathrm{w} / \mathrm{m}^{2}$ enters in a system of 3 polaroid's. Angle between $3^{\text {rd }}$ and $1^{\text {st }}$ polaroid is $90^{\circ}$. Light ray passes the system with intensity $3 \mathrm{w} / \mathrm{m}^{2}$. So angle between $1^{\text {st }}$ and $2^{\text {nd }}$ polaroid is.

Ans. $30^{\circ}$
Sol. $\mathrm{I}_{0}=32 \mathrm{w} / \mathrm{m}^{2}$
 $\longrightarrow \frac{\mathrm{I}_{0}}{2} \cos ^{2} \theta$ $\longrightarrow \frac{I_{0}}{2} \cos ^{2} \theta \cdot \sin ^{2} \theta$

$\otimes$

$$
3^{\mathrm{rd}}
$$

$\mathrm{I}_{\text {net }}=3=\frac{32}{2} \cos ^{2} \theta \cdot \sin ^{2} \theta$
$\frac{3}{4}=4 \sin ^{2} \theta \cdot \cos ^{2} \theta=(\sin 2 \theta)^{2}$

Unleashing Potential

$$
\frac{\sqrt{3}}{2}=\sin (2 \theta)
$$

Hence, $\theta=30^{\circ}$
21. For an object radiating heat at 300 K , the wavelength corresponding to maximum intensity is $\lambda$. If the temperature of body is increased by 300 K , the new wavelength corresponding to maximum intensity will be
(1) $\frac{\lambda}{2}$
(2) $2 \lambda$
(3) $\frac{\lambda}{4}$
(4) $4 \lambda$

Ans. (1)

Sol. $\quad \lambda=\frac{b}{T}$

$$
\mathrm{T}^{\prime} \rightarrow 2 \mathrm{~T}
$$

$\lambda^{\prime} \rightarrow \frac{\lambda}{2}$
22. A quantity $\ell$ is given as $\ell=\frac{\mathrm{a}^{2} \mathrm{~b}^{3}}{\mathrm{c} \sqrt{\mathrm{d}}}$. Given error in the calculation of a, $\mathrm{b}, \mathrm{c}$ and d are $1 \%, 2 \%, 3 \%$ and $4 \%$ respectively find the maximum percentage error in quantity $l$

Ans. 13

Sol. $\quad \frac{\Delta \mathrm{L}}{\mathrm{L}}=2\left|\frac{\Delta \mathrm{a}}{\mathrm{a}}\right|+3\left|\frac{\Delta \mathrm{~b}}{\mathrm{~b}}\right|+\left|\frac{\Delta \mathrm{c}}{\mathrm{c}}\right|+\frac{1}{2}\left|\frac{\Delta \mathrm{~d}}{\mathrm{~d}}\right|$
$=\left(2 \times 1+3 \times 2+3+\frac{1}{2} \times 4\right) \%$
$=13 \%$
23. Three concentric spheres have charge densities $\sigma,-\sigma, \sigma$ respectively. Radius of inner two spheres are 2 cm and 3 cm . If potential of inner and outer spherical shell are same. Then radius of outer sphere is $\qquad$ cm :

Ans. 5

Sol.


$$
\begin{aligned}
& \frac{\mathrm{kq}_{1}}{2}+\frac{\mathrm{kq}_{2}}{3}+\frac{\mathrm{kq}_{3}}{\mathrm{r}} \\
& =\frac{\mathrm{k}\left(\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}\right)}{\mathrm{r}} \\
& \sigma \times 4 \pi \times 2-\sigma \times 4 \pi \times 3 \\
& =\frac{\sigma\left[4 \pi \times 2^{2}-4 \pi \times 3^{2}\right]}{\mathrm{r}} \\
& \therefore \quad \mathrm{r}=5 \mathrm{~cm}
\end{aligned}
$$

24. The angular momentum of $\mathrm{e}^{-}$in H -atom in first orbit is L . Find the change in angular momentum if $\mathrm{e}^{-}$is in second orbit of H -atom.
(1) 2 L
(2) L
(3) $\frac{L}{20}$
(4) 4 L

Ans. (2)
Sol. $\mathrm{mur}=\frac{\mathrm{nh}}{2 \pi}$
$\mathrm{L} \propto \mathrm{n}$
for $\mathrm{n}=\mathrm{R}, \mathrm{L}^{\prime}=2 \mathrm{~L}$
$\Delta \mathrm{L}=\mathrm{L}^{\prime}-\mathrm{L}=2 \mathrm{~L}-\mathrm{L}=\mathrm{L}$
25. A radioactive sample of nuclei $X$ decays simultaneously into two different nuclei $Y$ and $Z$ with half-life of the decays processes as 12 minutes and 3 minutes respectively. Find the time after which $50 \%$ of nuclei of the sample X has decayed.

Ans. $\quad 2.4 \mathrm{~min}$

Unleashing Potential
Sol.


$$
\mathrm{t}_{1 / 2}=\frac{\mathrm{t}_{1} \mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}=\frac{3 \times 12}{15}=2.4 \mathrm{~min}
$$

26. Zener breakdown voltage is 8 volt. If power of Zener Diode is 1.6 watt find $R_{0}$.


Ans. $10 \Omega$

Sol. $\mathrm{P}_{\mathrm{z}}=\mathrm{V}_{\mathrm{z}} \mathrm{I}_{\mathrm{z}}$
$1.6=8 . \mathrm{I}_{\mathrm{z}}$
$\mathrm{I}_{\mathrm{z}}=0.2 \mathrm{~A}$
$10-0.2 \mathrm{R}-8=0$
$0.2 \mathrm{R}=2$
$\mathrm{R}=10 \Omega$


RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

