

PHYSICS

Find the ratio of heat loss. 1.

- (1) 1 : 4
- (2) 4:1
- (3) 2:1
- (4) 1 : 1

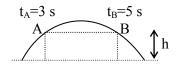
- **(2)** Ans.
- $P_1 = \frac{v^2}{\frac{R}{R}} = \frac{2v^2}{R}$ Sol.
- $P_2 = \frac{v^2}{2R}$
- $\frac{H_1}{H_2} = \frac{P_1 t}{P_2 t} = \frac{4}{1}$
- 4R $(3) \frac{1}{2}$ Two sphere of density ρ and $\frac{\rho}{3}$ of radius R and 4R respectively. Find the ratio of magnitude of 2. gravitational field at the surface respectively.

- $(1) \frac{3}{4}$

Ans. (1)

$$\text{Sol.} \quad g_1 = \frac{G\rho\bigg(\frac{4}{3}\pi R^3\bigg)}{R^2}$$

$$g_2 = \frac{G\frac{\rho}{3}\left(\frac{4}{3}\pi(4R)^3\right)}{(4R)^2}$$


$$\frac{g_1}{g_2} = \frac{3}{4}$$

- A projectile is projected at an angle 30° from horizontal, the height of projectile is same at **3.** t = 3 sec and t = 5 sec. Find the initial speed of the projectile?
 - (1) 80 m/s
- (2) 100 m/s
- (3) 120 m/s
- (4) 140 m/s

Ans. **(1)**

Sol.

 $T = t_A + t_B = 8$ seconds

$$\frac{2u\sin 30^{\circ}}{g} = 8$$

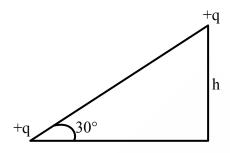
u = 80 m/s

- A person is firing 'n' bullets per second, the speed of each bullet is 250 m/s. The thrust force 4. 3)70 experienced by the person is 125 N, mass of each bullet 10 grams. Find n.
 - (1)50
- (2)60

(1) Ans.

Sol. $\Delta P = mv$

 $F_{Thrust} = \frac{\Delta p}{\Delta t}$ {due to each bullet}


 $F_{net} = nF_{trust} = n(mv)$

$$125 = (n) \times \frac{10}{1000} \times 250$$

50 = n

5. Two identical charge of mass 20 gm and charge 2 µC are on smooth inclined plane if they are in equilibrium find out h.

- (1) 30 cm
- (2) 40 cm
- (3) 10 cm
- (4) 5 cm

Ans. (1)

Sol.
$$mgsin\theta = \frac{kq^2 sin^2 \theta}{h^2}$$

$$h = \sqrt{\frac{kq^2 \sin \theta}{mg}} = \sqrt{\frac{9 \times 10^9 \times 4 \times 10^{-12}}{2 \times 10^{-2} \times 10 \times 2}}$$

$$h = 30 \text{ cm}$$

6.
$$F = (2 + 3x) N$$

=4m. Find work done by force F in between x = 0 to x = 4m.

- (1) 32 J
- (2) 72 J
- (4) 60 J

Ans. **(1)**

Sol.
$$\mathbf{W} = \int_{0}^{4} \mathrm{Fdx}$$

$$\mathbf{W} = \int_{0}^{4} (2 + 3x) dx$$

$$\mathbf{W} = \left[\left(2x + \frac{3x^2}{2} \right) \right]_0^4 = 32 \text{ J}$$

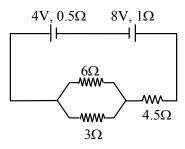
- 7. A coin is placed on disc at 1 cm from centre of disk which is moving with maximum Angular velocity ' ω ' without slipping. If angular velocity of disc is $\frac{\omega}{2}$, then at what maximum distance coin should be placed without slipping.
 - (1) 2 cm
- (2) 4 cm
- (3) 6 cm
- (4) 8 cm

Ans. (2)

Sol.
$$\mu mg = m\omega^2 r_1$$
(i)

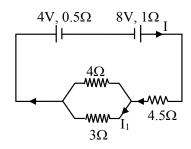
$$\mu mg = m \left(\frac{\omega}{2}\right)^2 r_2 \qquad \dots (ii)$$

From (i) and (ii)


$$m\omega^2 r_1 = m \left(\frac{\omega}{2}\right)^2 r_2$$

$$r_2=4r_1\\$$

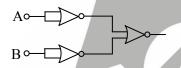
$$r_2 = 4 \times 1$$


$$r_2 = 4$$
 cm

8. If current passing through 3Ω resistor is $\frac{x}{3}$ amp. then find the value of x?

Sol. Equivalent emf is $E_{eq} = 8V - 4V = 4V$

Equivalent resistance $R_{eq} = \frac{6 \times 3}{6+3} + 4.3 + 0.5 + 1 = 8\Omega$


Current in circuit $I = \frac{E_{eq}}{R_{eq}} = \frac{4}{8} = 0.5\Omega$

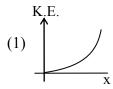
Current passing through 3Ω resistor $I_1 = \frac{6}{3+6} \times I$

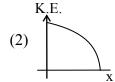
$$I_1 = \frac{6}{9} \times \frac{1}{2} = \frac{1}{3}$$
amp

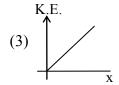
Value of x is 1.

9. Find out which logic gate is represented by following setup

- (1) AND
- (2) OR
- (3) NAND
- (4) NOR


Potential


Ans. (1)

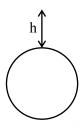

Sol.
$$\overline{\overline{A}} + \overline{\overline{B}} = \overline{\overline{A}}.\overline{\overline{B}} = A.B$$

AND GATE

10. A particle under SHM is moving from mean position to extreme position. Plot graph of KE v/s position x.

(4) None of these

Ans. (2)


Sol. K.E. =
$$\frac{1}{2}$$
 mv²

K.E. =
$$\frac{1}{2}$$
 m ω^2 (A² – x²)

11. If signals from an antenna can be received upto 4 km along the ground and it is found that height of antenna is $x \times 10^{-2}$ m. Find the value of x. (Assume radius of Earth to be 6400 km)

125 Ans.

Sol.
$$d = \sqrt{2Rh}$$

$$4000 = \sqrt{2 \times 6400 \times 10^3 \times h}$$

$$h = 1.25 \text{ m}$$

$$h = 125 \times 10^{-2} \text{ m}$$

Tas Potential The equation of a travelling wave is given as $g = A \sin 20 (160t - 0.5x + \phi)$. Find the velocity of **12.** wave is (Km/hr).

Sol.
$$\mathbf{v} = \frac{\omega}{K} = \frac{160}{0.5} = 320 \,\text{m/s}$$

$$= 320 \times \frac{18}{5} = 1125 \text{ Km/hr}$$

13. When a rod of length ℓ is stretched by 100 N force its length becomes ℓ_1 and when it is stretched by 120 N force it's length becomes ℓ_2 . If $\frac{\ell_1}{\ell_2}$ is $\frac{10}{11}$, then original length (ℓ) of rod is $\frac{\ell_1}{x}$. Find value of x?

Ans. (x = 2)

Sol.

$$\Delta \ell = \frac{F\ell}{Ay}$$

$$\ell_1 - \ell = \frac{100L}{Ay} \qquad \dots (i)$$

When stretched by 120 N

$$\ell_2 - \ell = \frac{120x}{Ay} \qquad \dots (ii)$$

$$\frac{\text{(i)}}{\text{(ii)}}$$
 $\frac{\ell_1 - \ell}{\ell_2 - \ell} = \frac{10}{12} = \frac{5}{6}$

$$6\ell_1 - 6\ell = 5\ell_2 - 5\ell$$

$$\frac{\ell_1}{\ell_2} = \frac{10}{11} \Rightarrow \ell_2 = \frac{11}{10} \ell_1$$

$$6\ell_1 - \left(\frac{11}{10}\ell_1\right) = \ell$$

$$\frac{5}{10}\,\ell_1 = \ell \Rightarrow \ell = \frac{\ell_1}{2}$$

14. A charged capacitor has potential energy U_1 . An identical uncharged capacitor is connected across it. The potential energy stored in the combination now is U_2 . Find U_1/U_2 ?

ing potential

Sol.
$$U_1 = \frac{1}{2}CV^2$$

$$\begin{array}{c|c}
CV-CV \\
\hline
Before \\
\hline
CV/2 - CV/2 \\
\hline
CV \\
\hline
CV \\
\hline
2 - CV \\
\hline
After
\end{array}$$

$$U_2 = \frac{1}{2} \frac{CV^2}{4} \times 2 = \frac{CV^2}{4}$$

$$\frac{\mathbf{U}_1}{\mathbf{U}_2} = 2$$

Area of loop is 4 m² and magnetic field which is passing through is varying according to graph. **15.** Find out induced emf?

Ans.

Sol.
$$\phi = BA$$
 $\{B(t) = 2t\}$

$$\phi(t) = 2t \times 4 = 8t$$

$$\left(\frac{d\phi}{dt}\right) = e = 8 \text{ volt}$$

16. Half life of nuclei A is equal to average life of nuclei of B, then correct relationship between decay constants

$$(1) \lambda_A = 2\lambda_B$$

(2)
$$2\lambda_A = \lambda_B$$

(1)
$$\lambda_A = 2\lambda_B$$
 (2) $2\lambda_A = \lambda_B$ (3) $\lambda_A \ell n2 = \lambda_B$ (4) $\lambda_A = \lambda_B \ell n2$

(4)
$$\lambda_A = \lambda_B \ell n2$$

Ans. **(4)**

Sol.
$$\frac{\ell n2}{\lambda_A} = \frac{1}{\lambda_B}$$
 $\Rightarrow \ell n2 \lambda_B = \lambda_A$

- If current sensitivity is increased by 25 % on increasing number of turns by N. Then voltage **17.** sensitivity increases by: (consider resistance constant)
 - (1)25%
- (2) 0 %
- (3) -25 %
- (4) 50 %

Ans. (1)

 $C.S \propto N$ Sol.

 $R \rightarrow constant$

- $V.S \propto N^1$
- When light of wavelength λ is incident on a metallic surface its stopping potential become V_0 . If 18. wavelength of light becomes 2λ its stopping potential becomes $\frac{V_0}{4}$. Then find thresold wavelength.
 - (1) $\frac{3\lambda}{2}$
- (2) $\frac{\lambda}{2}$

Ans.

 $eV_s = \frac{hc}{\lambda} - \phi$ Sol.

> $eV_0 = \frac{hc}{\lambda} - \phi$(i)

 $\frac{eV_0}{4} = \frac{hc}{2\lambda} - \phi$

....(ii)

 $\frac{(i)}{(ii)} \qquad 4 = \frac{\frac{hc}{\lambda} - \phi}{\frac{hc}{\lambda} - \phi}$

 $\frac{2hc}{\lambda} - 4\phi = \frac{hc}{\lambda} - \phi$

$$\frac{hc}{\lambda} = 3\phi \Rightarrow \phi = \frac{hc}{3\lambda} = \frac{hc}{\lambda_{Th}} \Rightarrow \lambda_{Th} = 3\lambda$$

19. An uniform solid sphere is rotating with angular velocity 10 rad/s. Moment of inertia about tangent is $(x \times 10^{-2}) \times$ angular momentum about diameter. Find out x?

Ans.

Sol.
$$\frac{7}{2}$$
mR² = x×10⁻² × $\frac{2}{5}$ mR² ×10

 $7 = \mathbf{x} \times 10^{-2} \times 20$

$$x = \frac{70}{2} = 35$$

20. 1 kg of water at 100°C is converted to 1 kg of steam at 100°C. Change in volume is 10⁻³ m³. Find change in potential energy.

(Given
$$P_0 = 10^5 \text{ N/m}^2$$
)

 $P_0 \rightarrow Atmospheric pressure$

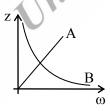
$$L_v = 2257 \text{ J/kg}$$

Ans. 2157 J

Sol.
$$\Delta Q = mL_V = 1 \times 2257$$

$$\Delta Q = 2257 \text{ J}$$

$$W = 10^5 \times 10^{-3} = 100 \text{ J}$$


$$\Delta Q = W + \Delta U$$

$$\Delta U = \Delta Q - W$$

$$\Delta U = 2257 - 100$$

$$\Delta U = 2157 J$$

21. The variation of impedance (z) with angular frequency (ω) for two electrical elements is shown in graph given. If x_L , x_C and R are inductive reactance, capacitive reactance and resistance respectively, then

- (1) A is resistor, B is inductor
- (2) A : : 1 A D : : : A
- (3) A is inductor, B is resistor
- (4) A is capacitor, B is inductor

(2) A is inductor, B is capacitor

Sol.
$$X_L = \omega L$$

$$X_C = \frac{1}{\omega C}$$

22. If light is passed through rarer to denser medium of critical angle 45°, then the speed of wave in denser medium is:

$$(1) 3 \times 10^8 \text{ m/s}$$

(1)
$$3 \times 10^8$$
 m/s (2) $\frac{3 \times 10^8}{\sqrt{2}}$ m/s (3) $3\sqrt{2} \times 10^8$ m/s (1) 1.5×10^8 m/s

(3)
$$3\sqrt{2} \times 10^8 \text{ m/s}$$

(1)
$$1.5 \times 10^8 \text{ m/s}$$

Ans. **(2)**

Sol.
$$\sin\theta_C = \frac{\mu_r}{\mu_d} = \frac{1}{\mu} = \frac{1}{\sqrt{2}}$$

$$\mu = \sqrt{2}$$

$$v = \frac{C}{\mu} = \frac{3 \times 10^8}{\sqrt{2}} \, \text{m/s}$$

An equiconvex lens of radius of curvature 20 cm and refractive index 1.5 has power P₁ in air. If this 23. lens is immersed in liquid of refractive index = $\frac{4}{3}$, it has power P_2 find out $\frac{P_1}{P_2}$.

4 $P_1 = \left(\frac{3}{2} - 1\right) \left(\frac{2}{R}\right)$ $P_2 = \left(\frac{3/2}{4/3} - 1\right) \left(\frac{2}{R}\right)$ $\frac{P_1}{P_2} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)} = 4$

Ans. 4

Sol.
$$P_1 = \left(\frac{3}{2} - 1\right) \left(\frac{2}{R}\right)$$

$$P_2 = \left(\frac{3/2}{4/3} - 1\right) \left(\frac{2}{R}\right)$$

$$\frac{P_1}{P_2} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{8}\right)} = 4$$

24. Temperature scale boiling point = 65°C. Melting point = 15°C. Find 95°x in Fahrenheit.

Sol.
$$\frac{x - x_m}{x_B - x_m} = \frac{F - 32}{180}$$

$$\frac{95-15}{65-15} = \frac{F-32}{180}$$

$$F = 320$$

25. In EMW wave amplitude of electric field is 20 v/m. Find out energy in 4×10^{-4} m³ volume.

(1)
$$4.42 \times 10^{-13} \text{ J/m}^3$$

(2)
$$8.85 \times 10^{-13} \text{ J/m}^3$$

(3)
$$15 \times 10^{-13} \text{ J}$$

(4)
$$1.52 \times 10^{-13} \text{ J/m}^3$$

Ans. (2)

Sol.
$$U = 2 \times \frac{1}{2} \epsilon_0 \left(\frac{E_0}{\sqrt{2}} \right)^2 \times \text{volume}$$

$$=\frac{\epsilon_0 E_0^2}{2} \times V$$

$$=\frac{8.85\times10^{-12}\times400}{2}\times5\times10^{-4}=8.85\times10^{-13}\text{ J/m}^{3}$$

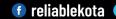
SATYAM CHAKRAVORTY

(Classroom) ··→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

BRONZE MEDAL IN INOI


(Indian National Olympiad in Informatics 2023)

Success Delivered to the Deserving

RELIABLE INSTITUTE: A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India

Tel.: 0744-3535544, 2665544 | Website: www.reliablekota.com | E-mail: info@reliablekota.com

