JEE-Mains-10-04-2023 [Memory Based]
 [Morning Shift]

Physics

Question: Which all are correct?

Options:
(a) A's home is closer
(b) B's home is closer
(c) A takes less time
(d) B travels fast
(e) A travels fast

Answer: (d)
Solution: Slope is more for B, so B travels faster.
Question: Find C_{eq} in following circuit.

Answer: $\mathbf{2 . 0 0}$

Solution:

$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}+\mathrm{C}=2 \mathrm{C}$
Question: Find the equivalent capacitance across points A and B in the given electrical circuit.

Options:

(a) $\mathrm{C} / 2$
(b) 2 C
(c) $5 \mathrm{C} / 3$
(d) $3 \mathrm{C} / 4$

Answer: (b)

Solution:

Question: A particle of mass in moving with a velocity v collides with a particle of mass 2 m at rest and sticks to it. Velocity of combined mass is equal to

Options:

(a) v
(b) $v / 2$
(c) $v / 3$
(d) $v / 4$

Answer: (c)
Solution:
$m v=3 m u$
$v=\frac{u}{3}$
Question: An object weighs 200 N at the surface of earth. Find the weight at a depth of R/2, where R is radius of earth.

Options:

(a) 100 N
(b) 300 N
(c) 50 N
(d) 150 N

Answer: (a)

Solution:
$g^{\prime}=g\left(1-\frac{d}{R}\right)$
$\Rightarrow g^{\prime}=g\left(1-\frac{R}{2 R}\right)$
$\Rightarrow \frac{g}{2}$
Question: The equation of progressive wave is $y=5 \sin (6 t+0.03 x)$. Find the speed of wave. Answer: 200.00
Solution: $u=\frac{\omega}{k}=\frac{6}{0.03}=200 \mathrm{~m} / \mathrm{s}$

Question: Find R_{eq} in following circuit

Options:
(a) $5 / 16 \Omega$
(b) $16 / 5 \Omega$
(c) $5 / 7 \Omega$
(d) $7 / 5 \Omega$

Answer: (b)

Solution:

$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\frac{2+3+1}{16} \Rightarrow \frac{16}{5}=3.2$
Question: A gas is having wavelength λ at temp 300 k if the temp is changed to 600 k what is the new de broglie wavelength?
Options:
(a) λ
(b) $\sqrt{2} \lambda$
(c) $1 / \sqrt{2} \lambda$
(d) 2λ

Answer: (c)

Solution:

$v_{r m s} \propto \sqrt{T}$ and $\lambda=\frac{h}{m v_{r m s}}$ or $\lambda \propto \frac{1}{\sqrt{T}}$
So, $\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{600}{300}} \Rightarrow \lambda_{2}=\frac{\lambda_{1}}{\sqrt{2}}$
Question: If $\mathrm{P}=\mathrm{a}^{2} \mathrm{~b}^{3} /(\mathrm{c} \sqrt{ } \mathrm{d})$ if $\%$ change in $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ is $1 \%, 2 \%, 3 \%$, and 4% find $\%$ change in P.

Options:

(a) 10%
(b) 13%
(c) 15%
(d) 18%

Answer: (b)
Solution:
$P=\frac{a^{2} b^{3}}{c \sqrt{d}}$
So,
$100 \times \frac{\Delta P}{P}=2 \frac{\Delta a}{a} \times 100+3 \frac{\Delta b}{b} \times 100+\frac{\Delta c}{c} \times 100+\frac{1}{2} \frac{\Delta d}{d} \times 100$
$=(2 \times 1 \%)+(3 \times 2 \%)+(3 \%)+\left(\frac{1}{2} \times 4 \%\right)$
$=2+6+3+2=13 \%$
Question: S1 : In a reservoir of water at the same level pressure remains the same
S2: When pressure is applied on closed vessel it is equally transmitted throughout the water.

Options:

(a) S1 true, S2 False
(b) S1 False, S2 False
(c) S1 true, S2 True
(d) S1 False, S2 True

Answer: (c)

Solution:

Question: S1 : Maximum power is dissipated in a circuit with inductor capacitor and resistor in the condition of resonance
S2 : Maximum power is dissipated when the phase difference is 0

Options:

(a) S1 true, S2 False
(b) S1 False, S2 False
(c) S1 true, S2 True
(d) S1 False, S2 True

Answer: (c)

Solution:

Question: If Body is thrown with velocity u with angle of 15° with horizontal has range 50 m . Find the new range if same body is projected at an angle of 45° with velocity u.
Answer: 100.00

Solution:

$R_{1}=\frac{u^{2} \sin (2 \theta)}{g}$
so $\frac{R_{1}}{R_{2}}=\frac{\sin (2 \times 15)}{\sin (2 \times 45)}$
$\Rightarrow R_{2}=\frac{\sin 90^{\circ}}{\sin 30^{\circ}} \times R_{1}$
$=\frac{1}{1 / 2} \times 50=100$
Question: Assertion - number of turns is doubled then the current sensitivity gets doubled. Reason - when number of turns is increased voltage sensitivity also increases with current sensitivity.

Options:

(a) A - true, R - False
(b) A - False, R - False
(c) A - true, R - True
(d) A - False, R - True

Answer: (a)

Solution:

Question: A monatomic gas in process A is compressed isothermally to $1 / 8$ th of its original volume and in another process B it is compressed adiabatically to $1 / 8$ th of its original volume. Find the ratio of final pressure in process B to that of process A.
Answer: 4.00

Solution:

Isothermal
$P V=P_{2}\left(\frac{V}{8}\right)$
$P_{2}=8 P$
Adiabatic
$P V^{5 / 3}=P_{3}\left[\frac{V}{8}\right]^{5 / 3}$
$P_{3}=2^{5} P=32 P$
so $\frac{P_{3}}{P_{2}}=\frac{32 p}{8 p}=4$
Question: The equation of progressive wave is $y=5 \sin (6 t+0.03 x)$. Find the speed of wave. Options:
(a) $50 \mathrm{~m} / \mathrm{s}$
(b) $100 \mathrm{~m} / \mathrm{s}$
(c) $150 \mathrm{~m} / \mathrm{s}$
(d) $200 \mathrm{~m} / \mathrm{s}$

Answer: (d)
Solution: Speed $=\frac{\omega}{k}=\frac{6}{0.03}=\frac{600}{3}=200$
Question: If 10 resistances of 10Ω are connected to get maximum resistance and minimum resistance find $\mathrm{R}_{\text {max }} / \mathrm{R}_{\text {min }}$

Options:

(a) 50
(b) 100
(c) 150
(d) 200

Answer: (b)

Solution:

$\mathrm{R}_{\text {series }}=\mathrm{R}_{\text {max }}=10 \mathrm{R}$
$\mathrm{R}_{\text {parallel }}=\mathrm{R}_{\text {min }}=\frac{R}{10}$
So $\frac{R_{\text {max }}}{R_{\text {min }}}=\frac{10 R}{R / 10}=100$
Question: Unpolarized light has intensity I $=32$. If 1 st $\& 3$ rd Polaroids are perpendicular. Find angle between 1st \& 2nd polaroids.
$1=32$

Options:

(a) 30°
(b) 45°
(c) 60°
(d) 70°

Answer: (a)

Solution:

$I_{f}=\frac{I_{0}}{2} \cos ^{2}(\theta) \cos ^{2}(90-\theta)$
$3=\frac{32}{2} \operatorname{sen}^{2} \theta \cdot \cos ^{2} \theta$
$\frac{3}{4}=(2 \sin \theta \cos \theta)^{2}$
$\frac{\sqrt{3}}{2}=\sin (2 \theta)$
So $2 \theta=60^{\circ}$
$\Rightarrow \theta=30^{\circ}$

Question: Mirror is moved by 4 cm towards object. Find shift in Image.

Answer: 8.00
Solution:

Question: In an AM wave, amplitude of modulating wave $=3$ units and amplitude of carrier wave $=15$ units. Find the ratio of maximum to minimum intensity $\frac{I_{\text {max }}}{I_{\text {min }}}$.
Options:
(a) $7: 5$
(b) $3: 2$
(c) $5: 2$
(d) $9: 4$

Answer: (d)
Solution:
$\frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{A_{1}+A_{2}}{A_{1}-A_{2}}\right)^{2}=\left(\frac{15+3}{15-3}\right)^{2}$
$=\left(\frac{18}{12}\right)^{2}=\frac{9}{4}$
Question: Find radius C, if $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{c}}$

Answer: 5.00
Question: If angular momentum of electron in Bohr orbit is L find change in L if electron goes to 2 nd orbit.
Options:
(a) L
(b) 2 L
(c) 4 L
(d) 5 L

Answer: (a)

JEE-Mains-10-04-2023 [Memory Based] [Morning Shift]

Chemistry

Question: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{X}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Y}$
Sum of Number of Oxygen atoms in X and Y .

Options:

(a) 10
(b) 5
(c) 6
(d) 8

Answer: (b)
Solution:
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}$

Question: Find the sum of total number of lone pairs in IF_{5} and IF_{7}.

Options:

(a) 1
(b) 2
(c) 3
(d) 4

Answer: (a)

Solution: IF_{5} is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ with one lone pair and IF_{7} is $\mathrm{sp}^{3} \mathrm{~d}^{3}$ No lone pair

Question: Number of Diamagnetic \& low spin species

Options:

(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(b) $\left[\mathrm{CoCl}_{6}\right]^{3-}$
(c) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(d) $\left.\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right]$

Answer: (a)
Solution: NH_{3} act as SFL in Co^{+3} rest all are WFL.

Question: Find Number of moles and molecules of Oxygen at STP, given that volume of oxygen is 2.8375 L .
Options:
(a) 0.12 and 7.6×10^{22}
(b) 0.13 and 6.7×10^{22}
(c) 0.11 and 7.6×10^{23}
(d) 0.13 and 7.6×10^{21}

Answer: (a)

Solution: Moles $=\frac{2.8375}{22.4}=0.1266$ and molecules $=0.1266 \times 10^{23}=7.6 \times 10^{22}$

Question: Which one does not stabilize $2^{\circ} \& 3^{\circ}$ structure of proteins?

Options:

(a) Van Der Waals
(b) H-Bonds
(c) $\mathrm{S}-\mathrm{S}$ bonds
(d) $\mathrm{O}-\mathrm{O}$ bonds

Answer: (d)
Solution: $2^{\circ} \& 3^{\circ}$ structure of proteins are Stabilized by the hydrogen bond, disulphuric linkages and Vanderwaals bond.

Question: $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{T}_{1}} \mathrm{CO}$
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Catalyst }]{\mathrm{T}_{2}} \mathrm{CO}$

Options:

(a) $\mathrm{T}_{1}>\mathrm{T}_{2}$
(b) $\mathrm{T}_{2}>\mathrm{T}_{1}$
(c) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(d) $\mathrm{T}_{1}=100 \mathrm{~K}, \mathrm{~T}_{2}=1270 \mathrm{~K}$

Answer: (a)
Solution: $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{1270 \mathrm{~K}} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\text { Catalyst }]{67 \mathrm{~K}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Question: Stabilizer used for concentrating sulphuric ore:

Options:

(a) Fatty acid
(b) Pine oil
(c) Cresol
(d) Xanthates

Answer: (c)
Solution: Particles and froth stabilizers (e.g., cresols, aniline) stabilize the forth.

Question: Number of species having bent shape?
$\mathrm{N}_{3}{ }^{-}, \mathrm{I}_{3}{ }^{-}, \mathrm{NO}_{2}^{-}, \mathrm{O}_{3}, \mathrm{SO}_{2}$
Options:
(a) 2
(b) 3
(c) 4
(d) 5

Answer: (b)
Solution: $\mathrm{NO}_{2}^{-}, \mathrm{O}_{3}$ and SO_{2} are bent shape

Question: Prolonged heating is avoided during preparation of ferrous ammonium sulphate is to prevent

Options:

(a) Oxidation
(b) Hydrolysis
(c) Reduction
(d) Breaking

Answer: (a)
Solution: Avoid prolonged heating while preparing crystals of ferrous ammonium sulphate, as it may oxidise ferrous ions to ferric ions and change the stoichiometry of the crystals.

Question:

Options:
(a)

COOH

(b)

COOH

COOH
(c)
$\mathrm{CH}_{2} \mathrm{CH}_{3}$

(d)

COOH

$\mathrm{CH}_{2} \mathrm{CH}_{3}$
Answer: (a)
Solution: Alk KMnO_{4} oxidises to carboxylic acid.

Question: Match the following.

Column I (Sources)	Column II (Waste Produces)
(A) Steel Industry	(P) Fly ash
(B) Thermal plant	(Q) Slag
(C) Paper mills	(R) Gypsum
(D) Fertilizers	(S) Biodegradable waste

Options:
(a) $\mathrm{A}-\mathrm{P} ; \mathrm{B}-\mathrm{R} ; \mathrm{C}-\mathrm{Q} ; \mathrm{D}-\mathrm{S}$
(b) A - Q ; B - P; C $-\mathrm{R} ; \mathrm{D}-\mathrm{S}$
(c) $\mathrm{A}-\mathrm{S} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{Q} ; \mathrm{D}-\mathrm{R}$
(d) $\mathrm{A}-\mathrm{Q}$; $\mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{R}$

Answer: (d)
Solution: Fact based.

Question: The compound which does not exist Options:
(a) BeH_{2}
(b) NaO_{2}
(c) PbEt_{4}
(d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$

Answer: (b)
Solution: Superoxide's are formed by ($\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$)

Question: Select the correct option:
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \Delta \mathrm{H}=-\mathrm{x} \mathrm{KJ} / \mathrm{mol}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \Delta \mathrm{H}=-\mathrm{y} \mathrm{KJ} / \mathrm{mol}$
Then $\Delta \mathrm{H}$ for, C (graphite) $+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$:

Options:

(a) $x-\frac{y}{2}$
(b) $\frac{x-2 y}{2}$
(c) $\frac{x+2 y}{2}$
(d) $\frac{x-y}{2}$

Answer: (b)
Solution:
$\mathrm{CO}_{2} \rightarrow 1 / 2 \mathrm{O}_{2}+\mathrm{CO} \quad ; \Delta \mathrm{H}=\frac{x}{2}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad ; \Delta \mathrm{H}=-\mathrm{y}$
$\mathrm{C}($ graphite $)+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}: \Delta \mathrm{H}=\frac{x}{2}-y$
$\Delta \mathrm{H}=\frac{x-2 y}{2}$

Question: Enthalpy of adsorption and enthalpy of formation micelle is respectively Options:
(a) Positive, Positive
(b) Positive, Negative
(c) Negative, Positive
(d) Negative, Negative

Answer: (c)
Solution: Adsorption is exothermic and micelles is endo.

Question: The pressure value of a gas is 930.2 mm Hg . The volume is then reduced to 40% of its initial value at a constant temperature. Then what is the final pressure (in mm Hg)
Options:
(a) 2325.5
(b) 2235.5
(c) 2532.5
(d) None

Answer: (a)
Solution: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$930.2 \times \mathrm{V}_{1}=0.4 \mathrm{~V}_{1} \times \mathrm{P}_{2}$
$\mathrm{P}_{2}=2325.5 \mathrm{~mm} \mathrm{Hg}$

Question: Read the following two statements.
Statement I: Potassium dichromate is used in volumetric analysis.
Statement II: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is more soluble in water than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Options:
(a) Both statements I and II are correct
(b) Both statements I and II incorrect
(c) Statement I is correct and II is incorrect
(d) Statement I is incorrect and II is correct

Answer: (c)
Solution: Fact based

Question: The degree of dissociation of monobasic acid is 0.3 . By what percent is the observed depression in freezing point greater than the calculated depression in freezing point?
Options:
(a) 30%
(b) 20%
(c) 10%
(d) 45%

Answer: (a)
Solution:
$\alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$\mathrm{n}=2$
$\therefore \alpha=\mathrm{i}-1$ or $\mathrm{i}=1.3$
$\therefore 30 \%$

JEE-Mains-10-04-2023 [Memory Based] [Morning Shift]

Mathematics

Question: $\left|n^{2}-10 n+19\right|<6, n \in Z$. Find number of possible values of n \qquad .
Answer: 6.00
Solution:
$\left|n^{2}-10 n+19\right|<6, n \in Z$
$\Rightarrow\left|(n-5)^{2}-6\right|<6$
$\Rightarrow 0<(n-5)^{2}<12$
$\Rightarrow(n-5)^{2}=1,4,9$
$\Rightarrow n-5= \pm 1, \pm 2, \pm 3$
6 values of n.

Question: Find the coefficient of x^{7} in $\left(1-x+2 x^{3}\right)^{11}$.
Answer: 2310.00

Solution:

$\left(1-x+2 x^{3}\right)^{11}$
${ }^{11} C_{0}(1-x)^{11}+{ }^{11} C_{1}(1-x)^{10} 2 x^{3}+{ }^{11} C_{2}(1-x)^{9}\left(2 x^{3}\right)^{2}+\ldots$.
${ }^{11} C_{0} \times{ }^{11} C_{7}(-x)^{7}+{ }^{11} C_{1} \times{ }^{10} C_{4} x^{4} 2 x^{3}+{ }^{11} C_{2} \times{ }^{9} C_{1}(-x) 4 x^{6}$
$=2310$

Question: Coefficient of x^{7} in $\left(a x-\frac{1}{b x^{2}}\right)^{13}$ is equal to coefficient of x^{-5} in $\left(a x+\frac{1}{b x^{2}}\right)^{13}$.
Find $a^{4} b^{4}$.
Answer: 22.00
Solution:
${ }^{13} C_{2}(a x){ }^{11}\left(-\frac{1}{b x^{2}}\right)^{2}$
${ }^{13} C_{6}(a x)^{7}\left(\frac{1}{b x^{2}}\right)^{6}$
${ }^{13} C_{2} \frac{a^{11}}{b^{2}}={ }^{13} C_{6} \frac{a^{7}}{b^{6}}$
$a^{4} b^{4}=\frac{{ }^{13} C_{6}}{{ }^{13} C_{2}}$

Question: Dice is thrown 2 times. N is sum of numbers shown. $P\left(2^{N}<N!\right)=\frac{m}{n}$. Find $4 m-3 n$.

Answer: 8.00

Solution:

Sum of numbers
$2^{2}<2$!
$2^{3}<3$!
$2^{4}<4$!
$2^{5}<5$!
!
$2^{12}<12$!
Then Probability of numbers
$1-\left(\frac{1+2}{36}\right)$
$=\frac{11}{12}=\frac{m}{n}$
$4 m-3 n=4 \times 11-3 \times 12$
$4 m-3 n=8$

Question: An open box is made out of a square sheet of side 30 m by cutting out 4 squares from corners such that volume is maximum. Find the surface area of box.
Answer: 800.00

Solution:

$V=(30-2 x)^{2} \times x$
$\frac{d V}{d x}=0 \Rightarrow x=5,15$
$x=5$ accepted
Surface area
$=(20)^{2}+4(5 \times 20)$
$=400+400$
$=800$

Question: $\sim[(p \vee q) \wedge(q \vee(\sim r))]$ is equivalent to
Answer: ()
Solution:

$$
\begin{aligned}
& \sim[(p \vee q) \wedge(q \vee(\sim r))]=-(p \vee q) \vee(\sim q \wedge r) \\
& \equiv(\sim p \wedge \sim q) \vee(\sim q \wedge r) \\
& \equiv(\sim p \vee r) \wedge(\sim q)
\end{aligned}
$$

Question: Couples play in mixed doubles, such that no husband and wife plays in the same match. If total 840 games are played then find the total number of people.

Answer: 16.00

Solution:

Number of couples $=n$
${ }^{n} C_{2} \cdot{ }^{n-2} C_{2} \times 2=840$
$\Rightarrow n(n-1)(n-2)(n-3)=840 \times 2$

$$
\begin{aligned}
\Rightarrow n(n-1)^{2}(n-2) & =21 \times 40 \times 2 \\
& =7 \times 3 \times 8 \times 5 \times 2 \\
& =8 \times 7 \times 6 \times 5
\end{aligned}
$$

$n=8$
Number of persons $=16$

Question: Arc PQ subtends right angle at centre. R is the midpoint of arc PQ . $\overrightarrow{O P}=\vec{u}, \overrightarrow{O R}=\vec{v}, \overrightarrow{O Q}=\alpha \vec{u}+\beta \vec{v}$. Find quadratic equation whose roots are α, β^{2}.

Answer: $x^{2}-x-2=0$

Solution:

$\hat{j}=\alpha \hat{i}+\beta\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right)$
$\beta=\sqrt{2}, \alpha+\frac{\beta}{\sqrt{2}}=0$
$\Rightarrow \alpha=-1$
Equation: $x^{2}-\left(\alpha+\beta^{2}\right) x+\alpha \beta^{2}=0$
$x^{2}-x-2=0$

Question: $3,8,13, \ldots, 373$ are in AP. Find the sum of terms not divisible by 3 .
Answer: 9525.00

Solution:

$T_{n}=a+(n-1) d$
$373=3+(n-1) 5$
$\Rightarrow n=75$
Sum $=\frac{n}{2}(a+l)$
$=\frac{72}{2}(3+373)=14100$
Sum $=14100$
Number divisible by 3 are 3,18,.. 363
$363=3+(k-1) 15$
$\Rightarrow k=25$
Sum $=\frac{25}{2}[3+363]=4575$
\therefore Required sum $=14100-4575=9525$.

Question: If $f(x)$ is differentiable and $x^{2} f(x)-x=4 \int_{0}^{x} t f(t) d t \& f(1)=\frac{2}{3}$ then $18 f(3)=$?

Answer: 160.00

Solution:

$x^{2} f(x)-x=4 \int_{0}^{x} t f(t) d t \& f(1)=\frac{2}{3}$
$\Rightarrow 2 x f(x)+x^{2} f^{\prime}(x)-1=4 x f(x)$
$\Rightarrow x^{2} f^{\prime}(x)-2 x f(x)=1$
$\Rightarrow \frac{x^{2} f^{\prime}(x)-2 x f(x)}{x^{4}}=\frac{1}{x^{4}}$
$\Rightarrow \frac{d}{d x}\left(\frac{f(x)}{x^{2}}\right)=\frac{1}{x^{4}}$
$\Rightarrow \frac{f(x)}{x^{2}}=\frac{x^{-3}}{-3}+C$
$\Rightarrow f(x)=\frac{-1}{3 x}+C x^{2}$
$f(1)=\frac{-1}{3}+C \Rightarrow C=1$
$f(x)=x^{2}-\frac{1}{3 x}$
$f(3)=9-\frac{1}{9}=\frac{80}{9}$
$18 f(3)=160$

Question: A parabola pass through $(-1,0),(0,1) \&(1,0)$, has equation $y=P(x)$. If ' A ' is the area between $(x+1)^{2}+(y-1)^{2} \leq 1$ and $y \leq P(x)$. Find $(12 A+4)$.
Answer: 3π

Solution:

$$
x^{2}=-4 a(y-1)
$$

The point is $(1,0)$
$(1,0) \Rightarrow 1=-4 a(-1)$

$$
a=\frac{1}{4}
$$

$x^{2}=-(y-1)$

Area $=\frac{1}{2}(1)^{2} \times \frac{\pi}{2}-\frac{1}{2} \times 1 \times 1$
$(12 A+4)=3 \pi$

Question: If $\frac{x^{2}+y^{2}}{2 x y}=\frac{d y}{d x} ; y(2)=0, x>0$. Find $y(8)$.
Answer: 48.00

Solution:

$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
Let $y=v x$
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 \cdot x \cdot v x}$
$v+x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{1-v^{2}}{2 v}$
$\Rightarrow \int \frac{2 v d v}{1-v^{2}}=\int \frac{d x}{x}$
$\Rightarrow-\int \frac{-2 v d v}{1-v^{2}}=\int \frac{d x}{x}$
$\Rightarrow-\ln \left|1-v^{2}\right|=\ln |x|+\ln C$
$y(2)=0$
$x=2 ; y=0 \Rightarrow v=\frac{y}{x}=0$
$-\ln |1-0|=\ln (2)+\ln c$
$\ln c=-\ln 2$
$-\ln \left|1-v^{2}\right|=\ln |x|-\ln 2$
$x=8 ; v=\frac{y}{x}=\frac{y}{8}$
$-\ln \left|1-\frac{y^{2}}{64}\right|=\ln 8-\ln 2$
$-\ln \left|1-\frac{y^{2}}{64}\right|=\ln 4$
$1-\frac{y^{2}}{64}=\frac{1}{4}$
$\Rightarrow \frac{3}{4}=\frac{y^{2}}{64}$
$\Rightarrow y^{2}=48$

Question: Find shortest distance between the lines:
$\frac{x-2}{1}=\frac{y}{2}=\frac{z-1}{0} ; \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{2}$.

Answer: 1.00

Solution:

$$
\Delta=\frac{\operatorname{mag}\left|\begin{array}{ccc}
0 & -3 & 0 \\
1 & 2 & 0 \\
1 & -2 & 2
\end{array}\right|}{\operatorname{mag}\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & 0 \\
1 & -2 & 2
\end{array}\right|}=\frac{6}{\sqrt{4^{2}+2^{2}+4^{2}}}=\frac{6}{6}=1
$$

Question: $I=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x . I(0)=\quad I\left(\frac{5}{3}\right)=$?
Answer: $e^{\sin ^{2} x}(\cos x)$

Solution:

$I=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x$
$\int e^{g(x)}\left(f \times g^{\prime}+f^{\prime}\right) d x=e^{g} \times f$
$g(x)=\sin ^{2} x$
$f(x)=\cos x$
$e^{\sin ^{2} x} \times \cos x+c$

Question: 1, 2, 3, 4, 5, 6, 7. In how many ways they can be arranged such that neither 1, 5, 3 nor $2,4,6,7$ strings should come.
Answer: 4898.00
Solution:
$A=153$
$B=1234$

$$
\begin{aligned}
n\left(A^{c} \cap B^{c}\right) & =\text { Total }-n(A \cup B) \\
& =7!-(n(A)+n(B)-n(A \cap B)) \\
& =7!-(5!+4!-2!) \\
& =5!\times 41-22 \\
& =4920-22 \\
& =4898
\end{aligned}
$$

Question: $\left|3 \operatorname{adj}\left(\operatorname{det}(3 A) A^{2}\right)\right|=? ;\left|A_{3}\right|=2$,
Answer: $3^{21} \times 2^{10}$

Solution:

$$
\begin{aligned}
& |3 A|=27|A| \\
& =54 \\
& \left|3 \operatorname{adj}\left(54 A^{2}\right)\right| \\
& \mid 3 \times 54^{2} \text { adjA } A^{2} \mid \\
& \left(3 \times 54^{2}\right)^{3} \times \mid \text { adj }\left.A\right|^{2} \\
& 3^{3} \times 2^{6} \times 27^{6} \times 2^{4} \\
& 2^{10} \times 3^{21}
\end{aligned}
$$

Question: Length of $|A B|=$ radius $=\lambda$. Find the locus of point which divides AB in the ratio 2:3.

Answer: $x^{2}+y^{2}=\left(\frac{19}{25}\right) \lambda^{2}$

Solution:

$\angle O A P=60^{\circ}$
$A P=\frac{2 r}{5}$
$\cos 60^{\circ}=\frac{O A^{2}+A P^{2}-O P^{2}}{2 O A \cdot O P}$
$\frac{1}{2}=\frac{r^{2}+\frac{4 r^{2}}{25}-O P^{2}}{2 r \cdot \frac{2 r}{5}}$
$\Rightarrow \frac{2 r^{2}}{5}=\frac{29 r^{2}}{25}-O P^{2}$
$\Rightarrow O P^{2}=\frac{29 r^{2}}{25}-\frac{2 r^{2}}{5}$
$\Rightarrow x^{2}+y^{2}=\frac{19 r^{2}}{25}=\frac{19 \lambda^{2}}{25}$

Question: If the mean of the following data is 28, then find the variance.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
f_{1}	2	3	x	5	4

Answer: 121.00

Solution:

$28=\frac{10+45+25 x+140+225}{14+x}$
$x=6$
Variance $=\frac{1}{20} \sum f_{i} x_{i}^{2}-(28)^{2}=121$

Question: Let $f(x)=\int_{0}^{x}\left((a-1)\left(x^{2}+t+1\right)^{2}-(a+1)\left(t^{4}+t^{2}+1\right)\right) d t$. Then the total number of integral values of ' a ' for which of $f^{\prime}(x)=0$ has no real root.

Answer: $\mathbf{3 . 0 0}$

Solution:

$f(x)=\int_{0}^{x}\left((a-1)\left(x^{2}+t+1\right)^{2}-(a+1)\left(t^{4}+t^{2}+1\right)\right) d t$
$f^{\prime}(x)=0 \Rightarrow(a-1)\left(x^{2}+x+1\right)^{2}-(a+1)\left(x^{4}+x^{2}+1\right)=0$
$\Rightarrow\left(x^{2}+x+1\right)\left[(a-1)\left(x^{2}+x+1\right)-(a+1)\left(x^{2}-x+1\right)\right]=0$
$\Rightarrow(a-1-a-1) x^{2}+(a-1+a+1) x+a-1-a-1=0$
$\Rightarrow-2 x^{2}+2 a x-2=0$
$\Rightarrow x^{2}-a x+1=0$
D <0
$a^{2}-4<0 \Rightarrow a \in(-2,2)$
$\Rightarrow a=-1,0,1$
3 values of a.

Question: $B(2,-4,2), P(-1,2,3), A(0,1,3), C(-4,2,0)$. Find projection of $\overrightarrow{O P}$ on $\overrightarrow{A B} \times \overrightarrow{A C}$

Answer: ()

Solution:

$$
\begin{aligned}
& \overline{O P} \cdot \frac{(\overline{A B} \times \overline{A C})}{|\overline{A B} \times \overline{A C}|} \\
& \begin{aligned}
& \overline{A B} \times \overline{A C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -5 & -1 \\
-4 & 1 & -3
\end{array}\right| \\
& \quad=i(16)-j(-10)+k(-18)
\end{aligned}
\end{aligned}
$$

$$
(-\hat{i}+2 \hat{j}+3 \hat{k}) \cdot \frac{(16 \hat{i}-10 \hat{j}-18 \hat{k})}{\sqrt{16^{2}+10^{2}+(18)^{2}}}
$$

$$
\begin{aligned}
& =\frac{-16+20-54}{\sqrt{256+100+324}} \\
& =\frac{-50}{\sqrt{680}}
\end{aligned}
$$

