

CHEMISTRY

SECTION-A

61. The ascending acidity order of the following H atoms is

$$HC \equiv C - \underbrace{H}_{2}C = CH \qquad H_{3}C \qquad C - \underbrace{H}_{3}C - CH_{2} - \underbrace{H}_{3}C$$

$$A \qquad B \qquad C \qquad D$$

(2)
$$A < B < C < D$$
 (3) $A < B < D < C$ (4) $D < C < B < A$

(1) Ans.

Sol.
$$CH \equiv C^{\Theta} > CH_2 = \overset{\Theta}{CH} > H_3C - \overset{\Theta}{CH_2} > \overset{CH_3}{CH_3} C^{\Theta}$$

Stability of conjugate base a acidic strength

62. Match List I with List II

Stability of conjugate base α acidic strength									
C < 1	D < B < A								
				in the state					
Mato	ch List I with List II			1) 4CM					
List I (Bio Polymer)		Li	st II (Monomer)	00					
A.	Starch	I.	nucleotide	O. I.					
B.	Cellulose	II.	α-glucose						
C.	Nucleic acid	III.	β-glucose						
D.	Protein	IV.	α-amino acid						

Choose the correct answer from the options given below:-

(1) A-II, B-I, C-III, D-IV

(2) A-IV, B-II, C-I, D-III

(3) A-I, B-III, C-IV, D-II

(4) A-II, B-III, C-I, D-IV

Ans. **(4)**

Sol. A-II, B-III, C-I, D-IV

Fact based.

63. Match List I with List II

List I (Compound)		List II (pK _a value)		
A.	Ethanol	I.	10.0	
B.	Phenol	II.	15.9	
C.	m-Nitrophenol	III.	7.1	
D.	p-Nitrophenol	IV.	8.3	

Choose the correct answer from the options given below:-

(1) A-I, B-II, C-III, D-IV

(2) A-IV, B-I, C-II, D-III

(3) A-III, B-IV, C-I, D-II

(4) A-II, B-I, C-IV, D-III

Ans. (4)

Sol. Ethanol \rightarrow 15.9

Phenol $\rightarrow 10$

M-Nitrophenol \rightarrow 8.3

P-Nitrophenol \rightarrow 7.1

64. Which of the following reaction is correct?

(1)
$$CH_3CH_2CH_2NH_2 \xrightarrow{HNO_3,0^{\circ}C} CH_3CH_2OH + N_2 + HCl$$

$$(2) \underbrace{CH_3}_{I} + HI \underbrace{CH_3}_{Br}$$

$$+ Br_2 \xrightarrow{\Delta}$$
 Br

(4) $C_2H_5CONH_2 + Br_2 + NaOH$

$$\rightarrow$$
 C₂H₅CH₂NH₂ + Na₂CO₃ + NaBr + H₂O

Ans. (2)

65. According to IUPAC system, the compound

OH is named as

(1) Cyclohex-1-en-2-ol

(2) 1-Hydroxyhex-2-ene

(3) Cyclohex-1-en-3-ol

(4) Cyclohex-2-en-1-ol

Ans. (4)

Sol. \bigcirc_{3}^{1} OH

Cyclohex-2-en-1-ol

- 66. The correct IUPAC name of K_2MnO_4 is
 - (1) Potassium tetraoxopermanganate (VI)
 - (2) Potassium tetraoxidomanganate (VI)
 - (3) Dipotassium tetraoxidomanganate (VII)
 - (4) Potassium tetraoxidomanganese (VI)
- Ans. (2)
- **Sol.** K_2MnO_4

$$2 + x - 8 = 0$$

$$\Rightarrow$$
 x = +6

O.S. of
$$Mn = +6$$

IUPAC Name = Potassium tetraoxidomanganate(VI)

- 67. A reagent which gives brilliant red precipitate with Nickel ions in basic medium is
 - (1) sodium nitroprusside

(2) neutral FeCl₃

(3) meta-dinitrobenzene

(4) dimethyl glyoxime

- Ans. (4)
- **Sol.** $Ni^{2+} + 2dmg^{-} \rightarrow [Ni(dmg)_{2}]$

Rosy red/Bright Red precipitate

- **68.** Phenol treated with chloroform in presence of sodium hydroxide, which further hydrolysed in presence of an acid results
 - (1) Salicyclic acid

(2) Benzene-1,2-diol

(3) Benzene-1, 3-diol

(4) 2-Hydroxybenzaldehyde

- Ans. (4)
- Sol. \bigcirc OH + CHCl₃ + NaOH \longrightarrow \bigcirc OH CHO

α-hydroxy-benzaldehyde

It is Reimer Tiemann Reaction

69. Match List I with List II

List I (Spectral Series for Hydrogen)		List II (Spectral Region/Higher Energy State)			
A.	Lyman	I.	Infrared region		
B.	Balmer	II.	UV region		
C.	Paschen	III.	Infrared region		
D.	Pfund	IV.	Visible region		

Choose the correct answer from the options given below:-

(1) A-II, B-III, C-I, D-IV

(2) A-I, B-III, C-II, D-IV

(3) A-II, B-IV, C-III, D-I

(4) A-I, B-II, C-III, D-IV

Ans. (3)

Sol. A - II, B - IV, C - III, D - I

Fact based.

- 70. On passing a gas, 'X', through Nessler's reagent, a brown precipitate is obtained. The gas 'X' is
 - $(1) H_2 S$
- $(2) CO_2$
- (3) NH₃
- (4) Cl

Ans. (3)

Sol. Nessler's Reagent Reaction:

$$\begin{array}{l} 2K_{2}HgI_{4} + NH_{3} + 3KOH \rightarrow HgO.\ Hg\big(NH_{2}\big)I + 7KI + 2H_{2}O \\ \text{(Nessler's Reagent)} & \text{(Iodine of Millon's base Brown precipitate)} \end{array}$$

71. The product A formed in the following reaction is:

Ans. (3)

Sol.
$$NH_2$$
 $NaNO_2 HCl$ $O^{\circ} C$ Cu_2Cl_2 Cu_2Cl_2

72. Identify the reagents used for the following conversion

$$\begin{array}{c} \text{CHO} \\ \text{CHO} \\ \end{array} \begin{array}{c} \text{CHO} \\ \text{CHO} \\ \end{array}$$

(1)
$$A = LiAlH_4$$
, $B = NaOH_{(aq)}$, $C = NH_2-NH_2/KOH$, ethylene glycol

(2)
$$A = LiAlH_4$$
, $B = NaOH_{(alc)}$, $C = Zn/HCl$

(3) A = DIBAL-H, B= NaOH_(aq),
$$C = NH_2-NH_2/KOH$$
, ethylene glycol

(4)
$$A = DIBAL-H$$
, $B = NaOH_{(alc)}$, $C = Zn/HC1$

Ans. (4)

Sol.

HO

OCH3

(A) DIBAL-H
{Selective reduction of ester}

HO

CHO

(B) NaOH (alc.)
Intramolecular
Aldol

73. Which of the following acts as a strong reducing agent?

(Atomic number : Ce = 58, Eu = 63, Gd = 64, Lu = 71)

$$(1) Lu^{3+}$$

(2)
$$Gd^{3+}$$

(3)
$$Eu^{2+}$$

(4)
$$Ce^{4+}$$

Ans. (3)

Sol.
$$Eu^{+2} \longrightarrow Eu^{+3} + 1e^{-}$$

[Xe] $4f^{7}6s^{0}$ [Xe] $4f^{6}6s^{0}$

74. Chromatographic technique/s based on the principle of differential adsorption is/are

- A. Column chromatography
- B. Thin layer chromatography
- C. Paper chromatography

Choose the most appropriate answer from the options given below:

- (1) B only
- (2) A only
- (3) A & B only
- (4) C only

Ans. (3)

Sol. Memory Based

75. Which of the following statements are correct about Zn, Cd and Hg?

A. They exhibit high enthalpy of atomization as the d-subshell is full.

B. Zn and Cd do not show variable oxidation state while Hg shows +I and +II.

C. Compounds of Zn, Cd and Hg are paramagnetic in nature.

D. Zn, Cd and Hg are called soft metals.

Choose the *most appropriate* from the options given below:

- (1) B, D only
- (2) B, C only
- (3) A, D only
- (4) C, D only

Ans. (1)

Sol. (A) Zn, Cd, Hg exhibit lowest enthalpy of atomization in respective transition series.

(C) Compounds of Zn, Cd and Hg are diamagnetic in nature.

76. The element having the highest first ionization enthalpy is

- (1) Si
- (2) Al
- (3) N
- (4)

Ans. (3)

Sol. Al \leq Si \leq C \leq N; IE₁ order.

77. Alkyl halide is converted into alkyl isocyanide by reaction with

- (1) NaCN
- (2) NH₄CN
- (3) KCN
- (4) AgCN

Ans. (4)

Sol. $R-X \xrightarrow{AgCN} R-NC + AgX$

78. Which one of the following will show geometrical isomerism?

Ans. (3)

Sol. Option (3) follows condition of Geometrical isomerism.

79. Given below are two statements:

Statement I: Fluorine has most negative electron gain enthalpy in its group.

Statement II: Oxygen has least negative electron gain enthalpy in its group.

In the light of the above statements, choose the most appropriate from the options given below.

- (1) Both Statement I and Statement II are true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are false
- (4) Statement I is false but Statement II is true
- Ans. (4)
- **Sol.** Statement-1 is false because chlorine has most negative electron gain enthalpy in its group.
- **80.** Anomalous behaviour of oxygen is due to its
 - (1) Large size and high electronegativity
 - (2) Small size and low electronegativity
 - (3) Small size and high electronegativity
 - (4) Large size and low electronegativity
- Ans. (3)
- **Sol.** Fact Based.

SECTION-B

81.	The total number	of anti	bonding	molecular	orbitals,	formed	from 2	s and 2p	atomic	orbitals	in a
	diatomic molecule	e is		<u> </u>							

Ans. (4)

Sol. Antibonding molecular orbital from 2s = 1Antibonding molecular orbital from 2p = 3Total = 4

82. The oxidation number of iron in the compound formed during brown ring test for NO_3^- ion is .

Ans. (1)

Sol. $[Fe(H_2O)_5(NO)]^{2+}$, Oxidation no. of Fe = +1

83. The following concentrations were observed at 500 K for the formation of NH₃ from N₂ and H₂. At equilibrium :[N₂] = 2×10^{-2} M, [H₂] = 3×10^{-2} M and [NH₃] = 1.5×10^{-2} M. Equilibrium constant for the reaction is _____.

Ans. (417)

Sol.
$$K_{C} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$$

$$\mathbf{K}_{C} = \frac{\left(1.5 \times 10^{-2}\right)^{2}}{\left(2 \times 10^{-2}\right) \times \left(3 \times 10^{-2}\right)^{3}}$$

$$K_C = 417$$

84. Molality of $0.8 \text{ M H}_2\text{SO}_4$ solution (density 1.06 g cm^{-3}) is ____× 10^{-3} m .

Ans. (815)

Sol.
$$m = \frac{M \times 1000}{d_{sol} \times 1000 - M \times Molar \text{ mass}_{solute}}$$
$$815 \times 10^{-3} \text{ m}$$

85. If 50 mL of 0.5 M oxalic acid is required to neutralise 25 mL of NaOH solution, the amount of NaOH in 50 mL of given NaOH solution is g.

Ans. (4)

Sol. Equivalent of Oxalic acid = Equivalents of NaOH

$$50 \times 0.5 \times 2 = 25 \times M \times 1$$

$$M_{NaOH} = 2M$$

$$W_{NaOH}$$
 in $50ml = 2 \times 50 \times 40 \times 10^{-3} g = 4g$

86. The total number of 'Sigma' and Pi bonds in 2-formylhex-4-enoic acid is _____.

Ans. (22)

22 bonds

87. The half-life of radioisotopic bromine - 82 is 36 hours. The fraction which remains after one day is $\times 10^{-2}$. (Given antilog 0.2006 = 1.587)

Ans. (63)

Sol. Half life of bromine -82 = 36 hours

$$t_{_{1/2}} = \frac{0.693}{K}$$

$$K = \frac{0.693}{36} = 0.01925 \text{ hr}^{-1}$$

1st order rxn kinetic equation

$$t = \frac{2.303}{K} \log \frac{a}{a - x}$$

$$\log \frac{a}{a-x} = \frac{t \times K}{2.303}$$
 (t = 1day = 24hr)

$$log \frac{a}{a-x} = \frac{24hr \times 0.01925 \, hr^{-1}}{2.303}$$

$$\log \frac{a}{a-x} = 0.2006$$

$$\frac{a}{a-x}$$
 = anti log (0.2006)

$$\frac{a}{a-x} = 1.587$$

If
$$a = 1$$

$$\frac{1}{1-x} = 1.587 \implies 1-x = 0.6301 = Fraction remain after one day$$

Standard enthalpy of vapourisation for CCl₄ is 30.5 kJ mol⁻¹. Heat required for vapourisation of 284g of CCl₄ at constant temperature is ____kJ.

(Given molar mass in g mol⁻¹; C = 12, Cl = 35.5)

Ans. (56)

Sol.
$$\Delta H_{\text{vap}}^0 \text{ CCl}_4 = 30.5 \text{ kJ/mol}$$

Mass of
$$CCl_4 = 284 \text{ gm}$$

Molar mass of
$$CCl_4 = 154$$
 g/mol

Moles of
$$CCl_4 = \frac{284}{154} = 1.844 \text{ mol}$$

$$\Delta H_{vap}^{\circ}$$
 for 1 mole = 30.5 kJ/mol

$$\Delta H_{\text{vap}}^{\text{o}}$$
 for 1.844 mol = 30.5 × 1.844
= 56.242 kJ

89. A constant current was passed through a solution of $AuCl_4^-$ ion between gold electrodes. After a period of 10.0 minutes, the increase in mass of cathode was 1.314 g. The total charge passed through the solution is _____ × 10^{-2} F. (Given atomic mass of Au = 197)

Ans. (2)

Sol.
$$\frac{W}{E} = \frac{\text{ch arg e}}{1F}$$

$$\frac{1.314}{\frac{197}{3}} = \frac{Q}{1F}$$

$$Q = 2 \times 10^{-2} \text{ F}$$

90. The total number of molecules with zero dipole moment among CH_4 , BF_3 , H_2O , HF, NH_3 , CO_2 and SO_2 is ______.

Ans. (3)

Sol. Molecules with zero dipole moment = CO_2 , CH_4 , BF_3