Unleashing Potential

CHEMISTRY

SECTION-A

61. Given below are two statements:

Statement-I: The gas liberated on warming a salt with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.

Statement-II: In statement-I the colour of paper turns black because of formation of lead sulphite.

In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement-I and Statement-II are false
(2) Statement-I is false but Statement-II is true
(3) Statement-I is true but Statement-II is false
(4) Both Statement-I and Statement-II are true.

Ans. (3)
Sol. $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S}$

Black lead sulphide
62.

This reduction reaction is known as:
(1) Rosenmund reduction
(2) Wolff-Kishner reduction
(3) Stephen reduction
(4) Etard reduction

Ans. (1)

Sol.

It is named as Rosenmund reduction that is the partial reduction of acid chloride to aldehyde.
63. Sugar which does not give reddish brown precipitate with Fehling's reagent is:
(1) Sucrose
(2) Lactose
(3) Glucose
(4) Maltose

Ans. (1)
Sol. Sucrose does not contain hemiacetal group, hence it does not give test with Fehling solution. While all other given carbohydrates give positive test with Fehling solution.

Unleashing Potential
64. Given below are the two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): There is a considerable increase in covalent radius from N to P . However from As to Bi only a small increase in covalent radius is observed.

Reason (R): covalent and ionic radii in a particular oxidation state increases down the group.
In the light of the above statement, choose the most appropriate answer from the options given below:
(1) (A) is false but (R) is true
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (2)
Sol. According to NCERT,
Statement-I : Factual data,
Statement-II is true.
But correct explanation is presence of completely filled d and f-orbitals of heavier members
65. Which of the following molecule/species is most stable?
(1)

(2)

(3)

(4)

Ans. (1)

Sol.
 it is an aromatic species. It follows Huckel's rule of aromaticity.
66. Diamagnetic Lanthanoid ions are:
(1) Nd^{3+} and Eu^{3+}
(2) La^{3+} and Ce^{4+}
(3) Nd^{3+} and Ce^{4+}
(4) Lu^{3+} and Eu^{3+}

Ans. (2)
Sol. $\mathrm{Ce}:[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2} ; \mathrm{Ce}^{4+}$ diamagnetic
$\mathrm{La}:[\mathrm{Xe}] 4 \mathrm{f}^{0} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2} ; \mathrm{La}^{3+}$ diamagnetic

Unleashing Potential
67. Aluminium chloride in acidified aqueous solution forms an ion having geometry
(1) Octahedral
(2) Square Planar
(3) Tetrahedral
(4) Trigonal bipyramidal

Ans. (1)
Sol. AlCl_{3} in acidified aqueous solution forms octahedral geometry $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
68. Given below are two statements:

Statement-I: The orbitals having same energy are called as degenerate orbitals.
Statement-II: In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.
In the light of the above statements, choose the most appropriate answer from the options given
(1) Statement-I is true but Statement-II is false
(2) Both Statement-I and Statement-II are true.
(3) Both Statement-I and Statement-II are false
(4) Statement-I is false but Statement-II is true

Ans. (1)
Sol. For single electron species the energy depends upon principal quantum number ' n ' only. So, statement II is false.

Statement I is correct definition of degenerate orbitals.
69. Example of vinylic halide is
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Vinylic halides are the compounds in which the halogen atom is attached to sp^{2} hybridised carbon atom.

Unleashing Potential
70. Structure of 4-Methylpent-2-enal is
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

71. Match List-I with List-II

List-I	List-II
Molecule	Shape

(A) BrF_{5}
(I) T-shape
(B) $\mathrm{H}_{2} \mathrm{O}$
(II) See saw
(C) $\quad \mathrm{ClF}_{3}$
(III) Bent
(D) SF_{4}
(IV) Square pyramidal
(1) (A)-I, (B)-II, (C)-IV, (D)-III
(2) (A) -II, (B)-I, (C)-III, (D)-IV
(3) (A)-III, (B)-IV, (C)-I, (D)-II
(4) (A)-IV, (B)-III, (C)-I, (D)-II

Ans. (4)

Sol. BrF_{5}

Square pyramidal

Bent

T-shape

See-saw

Unleashing Potential
72. The final product A , formed in the following multistep reaction sequence is:

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

73. In the given reactions identify the reagent A and reagent B

(1) $\mathrm{A}-\mathrm{CrO}_{3}$
B- CrO_{3}
(2) $\mathrm{A}-\mathrm{CrO}_{3}$
B- $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(3) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
B- $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$\mathrm{B}-\mathrm{CrO}_{3}$

Ans. (2)
Sol.

Unleashing Potential
74. Given below are two statement one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$ is an example of allyl halide
Reason (R): Allyl halides are the compounds in which the halogen atom is attached to sp^{2} hybridised carbon atom.
In the light of the two above statements, choose the most appropriate answer from the options given below:
(1) (A) is true but (\mathbf{R}) is false
(2) Both (A) and (R) are true but (\mathbf{R}) is not the correct explanation of (A)
(3) (A) is false but (R) is true
(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (1)
Sol. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$
\uparrow
It is allylic carbon and sp^{3} hybridized
75. What happens to freezing point of benzene when small quantity of napthalene is added to benzene?
(1) Increases
(2) Remains unchanged
(3) First decreases and then increases
(4) Decreases

Ans. (4)
Sol. On addition of naphthalene to benzene there is depression in freezing point of benzene.
76. Match List-I with List-II

List-I

Species

(A) Cr^{+2}
(B) Mn^{+}
(I) $3 \mathrm{~d}^{8}$
(C) Ni^{+2}
(II) $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$
(D) V^{+}
(III) $3 \mathrm{~d}^{4}$
(D) (IV) $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$

Choose the correct answer from the options given below:
(1) (A)-I, (B)-II, (C)-III, (D)-IV
(2) (A)-III, (B) - IV, (C) - I, (D)-II
(3) (A)-IV, (B)-III, (C)-I, (D)-II
(4) (A)-II, (B)-I, (C)-IV, (D)-III

Ans. (2)
Sol. ${ }_{24} \mathrm{Cr} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1} ; \mathrm{Cr}^{2+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{4}$
${ }_{25} \mathrm{Mn} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} ; \mathrm{Mn}^{+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
${ }_{28} \mathrm{Ni} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} ; \mathrm{Ni}^{2+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
${ }_{23} \mathrm{~V} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2} ; \mathrm{V}^{+} \rightarrow[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$

Unleashing Potential
77. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

(1) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \overline{\mathrm{C}}{ }^{+}{ }^{+}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
(2) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
(3) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \overline{\mathrm{C}} \mathrm{Na}^{+}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Ans. (1)
Sol.

78. Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B)

(1) $\mathrm{A}=\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$;

(2) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C} ; \mathrm{B}=$

(3) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$; $\mathrm{B}=$

(4) $\mathrm{A}=\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C} ; \mathrm{B}=$

Ans. (4)

Sol.

Unleashing Potential
79. The Lassiagne's extract is boiled with dil HNO_{3} before testing for halogens because,
(1) AgCN is soluble in HNO_{3}
(2) Silver halides are soluble in HNO_{3}
(3) $\mathrm{Ag}_{2} \mathrm{~S}$ is soluble in HNO_{3}
(4) $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN are decomposed by HNO_{3}

Ans. (4)
Sol. If nitrogen or sulphur is also present in the compound, the sodium fusion extract is first boiled with concentrated nitric acid to decompose cyanide and sulphide of sodium during Lassaigne's test of halogens.
80. Choose the correct Statements from the following:
(A) Ethane-1 2-diamine is a chelating ligand.
(B) Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.
(C) Cyanide ion is used as ligand for leaching of silver.
(D) Phosphine act as a ligand in Wilkinson catalyst.
(E) The stability constants of Ca^{2+} and Mg^{2+} are similar with EDTA complexes.

Choose the correct answer from the options given below:
(1) (B), (C), (E) only
(2) (C), (D), (E) only
(3) (A), (B), (C) only
(4) (A), (D), (E) only

Ans. (3)

Sol.
 Bidentate, chelating

Based on Hall-Heroults process
$\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right]$ Wilkinson's catalyst
$\mathrm{Ag}_{2} \mathrm{~S}+\mathrm{NaCN} \stackrel{\text { Air }}{\rightleftharpoons} \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S}$
Ca^{++}ion forms more stable complex with EDTA

Unleashing Potential

SECTION-B

81. The rate of first order reaction is $0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 10 minutes and $0.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 20 minutes after initiation. Half life of the reaction is \qquad minutes. (Given $\log 2=0.3010, \log 3=0.4771$)

Ans. (24)
Sol. $\quad 0.04=\mathrm{k}[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{k} \times 10 \times 60}$
$0.03=\mathrm{k}[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{k} \times 20 \times 60}$
(1)/(2)
$\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}(2-1)}$
$\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}}$
$\ln \frac{4}{3}=600 \mathrm{k}$
$\ln \frac{4}{3}=600 \times \frac{\ln 2}{t_{1 / 2}}$
$\mathrm{t}_{1 / 2}=600 \frac{\ln 2}{\ln \frac{4}{3}} \mathrm{sec}$
$t_{1 / 2}=600 \times \frac{\log 2}{\log 4-\log 3}$ sec. $=10 \times \frac{0.3010}{0.6020-0.477} \mathrm{~min}$
$\mathrm{t}_{1 / 2}=24.08 \mathrm{~min}$
Ans. 24
82. The pH at which $\operatorname{Mg}(\mathrm{OH})_{2}\left[\mathrm{~K}_{\text {sp }}=1 \times 10^{-11}\right]$ begins to precipitate from a solution containing 0.10 M Mg^{2+} ions is \qquad
Ans. (09)
Sol. Precipitation when $\mathrm{Q}_{\text {sp }}=\mathrm{K}_{\text {sp }}$
$\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=10^{-11}$
$0.1 \times\left[\mathrm{OH}^{-}\right]^{2}=10^{-11} \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-5}$
$\Rightarrow \mathrm{pOH}=5 \quad \Rightarrow \mathrm{pH}=9$

Unleashing Potential

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$ as shown in the diagram. The total work done in the process is \qquad J.

Ans. (200)
Sol. Work done is given by area enclosed in the P vs V cyclic graph or V vs P cyclic graph.
Sign of work is positive for clockwise cyclic process for V vs P graph.

$$
\begin{aligned}
& \mathrm{W}=\frac{1}{2} \times(30-10) \times(30-10)=200 \mathrm{kPa}-\mathrm{dm}^{3} \\
& =200 \times 1000 \mathrm{~Pa}-\mathrm{L}=2 \mathrm{~L}-\mathrm{bar}=200 \mathrm{~J}
\end{aligned}
$$

84. If IUPAC name of an element is "Unununnium" then the element belongs to nth group of periodic table. The value of n is
Ans. (11)
Sol. 111 belongs to $11^{\text {th }}$ group
85. The total number of molecular orbitals formed from $2 s$ and $2 p$ atomic orbitals of a diatomic molecule

Ans. (08)
Sol. Two molecular orbitals $\sigma 2 \mathrm{~s}$ and $\sigma * 2$ s.
Six molecular orbitals $\sigma 2 p_{z}$ and $\sigma * 2 p_{z}$.
$\pi 2 \mathrm{p}_{\mathrm{x}}, \pi 2 \mathrm{p}_{\mathrm{y}}$ and $\pi * 2 \mathrm{p}_{\mathrm{x}}, \pi^{*} 2 \mathrm{p}_{\mathrm{y}}$
86. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm , while the solvent moved by 5 cm . The retardation factor of the organic compound is \qquad $\times 10^{-1}$
Ans. (07)
Sol. Retardation factor $\left(\mathrm{R}_{\mathrm{f}}\right)=\frac{\text { Distance travelled by organic compound (s ample) }}{\text { Distance travelled by solvent from base line }}$

$$
=\frac{3.5}{5}=7 \times 10^{-1}
$$

Unleashing Potential
87. The compound formed by the reaction of ethanal with semicarbazide contains \qquad number of nitrogen atoms.

Ans. (03)

Sol.

88. 0.05 cm thick coating of silver is deposited on a plate of $0.05 \mathrm{~m}^{2}$ area. The number of silver atoms deposited on plate are \qquad $\times 10^{23} .\left(\right.$ At mass $\mathrm{Ag}=108, \mathrm{~d}=7.9 \mathrm{~g} \mathrm{~cm}^{-3}$)

Ans. (11)
Sol. Volume of silver coating $=0.05 \times 0.05 \times 10000=25 \mathrm{~cm}^{3}$
Mass of silver deposited $=25 \times 7.9 \mathrm{~g}$
Moles of silver atoms $=\frac{25 \times 7.9}{108}$
Number of silver atoms $=\frac{25 \times 7.9}{108} \times 6.023 \times 10^{23}$
$=11.01 \times 10^{23}$
Ans. 11
89. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bI}^{-}+\mathrm{cH}_{2} \mathrm{O} \rightarrow \mathrm{xI}_{2}+\mathrm{yMnO}_{2}+\mathrm{zOH}^{-}$

If the above equation is balanced with integer coefficients, the value of z is \qquad
Ans. (08)

Sol. Reduction Half
$2 \mathrm{MnO}_{4}^{-} \rightarrow 2 \mathrm{MnO}_{2}$

Oxidation Half

$$
2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} 2 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-} \quad 6 \mathrm{I}^{-} \rightarrow 3 \mathrm{I}_{2}+6 \mathrm{e}^{-}
$$

Adding oxidation half and reduction half, net reaction is
$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{I}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}$
$\Rightarrow \mathrm{Z}=8$
\Rightarrow Ans 8

Unleashing Potential
90. The mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to prepare 250 mL of 0.35 M aqueous solution is \qquad g. (Molar mass of $\mathrm{CH}_{3} \mathrm{COONa}$ is $82.02 \mathrm{~g} \mathrm{~mol}^{-1}$)

Ans. (7)
Sol. \quad Moles $=$ Molarity \times Volume in litres
$=0.35 \times 0.25$
Mass $=$ moles \times molar mass
$=0.35 \times 0.25 \times 82.02=7.18 \mathrm{~g}$
Ans. 7

