Unleashing Potential

CHEMISTRY

SECTION-A

61. Match List I with List II

LIST - I (Complex ion)		LIST - II	
A.	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	I.	$\mathrm{t}_{2 \mathrm{~g}}{ }^{2} \mathrm{e}_{\mathrm{g}}{ }^{0}$
B.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	II.	$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{0}$
C.	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	III.	$\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}$
D.	$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$		

Choose the correct answer from the options given below :
(1) A-III, B-II, C-IV, D-I
(2) A-IV, B-I, C-II, D-III
(3) A-IV, B-III, C-I, D-II
(4) A-II, B-III, C-IV, D-I

Ans. (4)

Sol:- $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ Contains $\mathrm{Cr}^{3+}:[\mathrm{Ar}] 3 \mathrm{dd}^{3}: \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{\mathrm{o}}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ Contains $\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5}: \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ Contains $\mathrm{Ni}^{2+}:[\mathrm{Ar}] 3 \mathrm{~d}^{8}: \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{2}$
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ Contains $\mathrm{V}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{2}: \mathrm{t}_{2 \mathrm{~g}}^{2} \mathrm{eg}_{\mathrm{g}}^{\mathrm{o}}$

Unleashing Potential
62. A sample of CaCO_{3} and MgCO_{3} weighed 2.21 g is ignited to constant weight of 1.152 g . The composition of mixture is :
(Given molar mass in $\mathrm{g} \mathrm{mol}^{-1} \mathrm{CaCO}_{3}: 100, \mathrm{MgCO}_{3}: 84$)
(1) $1.187 \mathrm{~g} \mathrm{CaCO}_{3}+1.023 \mathrm{~g} \mathrm{MgCO}_{3}$
(2) $1.023 \mathrm{~g} \mathrm{CaCO}_{3}+1.023 \mathrm{~g} \mathrm{MgCO}_{3}$
(3) $1.187 \mathrm{~g} \mathrm{CaCO}_{3}+1.187 \mathrm{~g} \mathrm{MgCO}_{3}$
(4) $1.023 \mathrm{~g} \mathrm{CaCO}_{3}+1.187 \mathrm{~g} \mathrm{MgCO}_{3}$

Ans. (1)
Sol:- $\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{MgCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Let the weight of CaCO_{3} be x gm
\therefore weight of $\mathrm{MgCO}_{3}=(2.21-\mathrm{x}) \mathrm{gm}$
Moles of CaCO_{3} decomposed $=$ moles of CaO formed
$\frac{\mathrm{x}}{100}=$ moles of CaO formed
\therefore weight of CaO formed $=\frac{\mathrm{x}}{100} \times 56$
Moles of MgCO_{3} decomposed $=$ moles of MgO formed
$\frac{(2.21-x)}{84}=$ moles of MgO formed
\therefore weight of MgO formed $=\frac{2.21-\mathrm{x}}{84} \times 40$
$\Rightarrow \frac{2.21-\mathrm{x}}{84} \times 40+\frac{\mathrm{x}}{100} \times 56=1.152$
$\therefore \mathrm{x}=1.1886 \mathrm{~g}=$ weight of CaCO_{3}
\& weight of $\mathrm{MgCO}_{3}=1.0214 \mathrm{~g}$

Unleashing Potential
63. Identify A and B in the following reaction sequence.

(1)

$B=$

(2) $\mathrm{A}=$

$B=$

(3) $\mathrm{A}=$

B=

(4) $\mathrm{A}=$

$B=$

Ans. (1)

Sol:-

64. Given below are two statements :

Statement I: S_{8} solid undergoes disproportionation reaction under alkaline conditions to form S^{2-} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

Statement II: ClO_{4}^{-}can undergo disproportionation reaction under acidic condition.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is correct but statement II is incorrect.
(2) Statement I is incorrect but statement II is correct
(3) Both statement I and statement II are incorrect
(4) Both statement I and statement II are correct

Ans. (1)
Sol:-
$\mathrm{S}_{1}: \mathrm{S}_{8}+12 \mathrm{OH}^{\ominus} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O} \mathrm{S}_{2}: \mathrm{ClO}_{4}^{\ominus}$ cannot undergo disproportionation reaction as chlorine is present in it's highest oxidation state.

Unleashing Potential
65. Identify major product ' P ' formed in the following reaction.

(1)

(2)

(3)

(4)

Ans. (4)

Sol:-

66. Major product of the following reaction is -

(1)

(2)

(3)

(4)

Ans. (3 or 4)
Sol:-

(\pm
(\pm)

Unleashing Potential
67. Identify structure of 2,3-dibromo-1-phenylpentane.
1.

2.

3.

4.

Ans. (3)

Sol:-

2, 3-dibromo-1-phenylpentane
68. Select the option with correct property -
(1) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ both diamagnetic
(2) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ both paramagnetic
(3) $\left[\mathrm{NiCl}_{4}\right]^{2-}$ diamagnetic, $s=+\frac{\mathbf{1}}{2}$ paramagnetic
(4) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ diamagnetic, $\left[\mathrm{NiCl}_{4}\right]^{2-}$ paramagnetic

Ans. (4)
Sol:- $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \rightarrow$ diamagnetic, sp^{3} hybridisation, number of unpaired electrons $=0$
$\left[\mathrm{NiCl}_{4}\right]^{2-}, \rightarrow$ paramagnetic, sp^{3} hybridisation, number of unpaired electrons $=2$

Unleashing Potential
69. The azo-dye (Y) formed in the following reactions is Sulphanilic acid $+\mathrm{NaNO}_{2}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{X}$

2.

3.

4.

Ans. (4)

Sol:-

(Y)

Red azo-dye
This is known as Griess-Ilosvay test.

Unleashing Potential
70. Given below are two statements :

Statement I: Aniline reacts with con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating at $453-473 \mathrm{~K}$ gives paminobenzene sulphonic acid, which gives blood red colour in the 'Lassaigne's test'.
Statement II: In Friedel - Craft's alkylation and acylation reactions, aniline forms salt with the AlCl_{3} catalyst. Due to this, nitrogen of aniline aquires a positive charge and acts as deactivating group.
In the light of the above statements, choose the correct answer from the options given below :

1. Statement I is false but statement II is true
2. Both statement I and statement II are false
3. Statement I is true but statement II is false
4. Both statement I and statement II are true

Ans. (4)

Sol:-

71. $\quad \mathrm{A}_{(\mathrm{g})} \rightleftharpoons \mathrm{B}_{(\mathrm{g})}+\frac{\mathrm{C}}{2}(\mathrm{~g})$ The correct relationship between $\mathrm{K}_{\mathrm{P}}, \alpha$ and equilibrium pressure P is
(1) $\mathrm{K}_{\mathrm{P}}=\frac{\alpha^{1 / 2} \mathrm{P}^{1 / 2}}{(2+\alpha)^{1 / 2}}$
(2) $K_{P}=\frac{\alpha^{3 / 2} P^{1 / 2}}{(2+\alpha)^{1 / 2}(1-\alpha)}$
(3) $K_{P}=\frac{\alpha^{1 / 2} P^{3 / 2}}{(2+\alpha)^{3 / 2}}$
(4) $K_{P}=\frac{\alpha^{1 / 2} P^{1 / 2}}{(2+\alpha)^{3 / 2}}$

Ans. (2)
Sol:-

$$
\begin{array}{ll}
:- & \mathrm{A}_{(\mathrm{g})} \rightleftharpoons \mathrm{B}_{(\mathrm{g})}+\frac{\mathrm{C}}{2}(\mathrm{~g}) \\
\mathrm{t}=\mathrm{t}_{\mathrm{cq}} & (1-\alpha)
\end{array} \quad \alpha \quad \frac{\alpha}{2}
$$

$$
\mathrm{P}_{\mathrm{B}}=\frac{\alpha}{\left(1+\frac{\alpha}{2}\right)} \cdot \mathrm{P}, \mathrm{P}_{\mathrm{A}}=\frac{(1-\alpha)}{\left(1+\frac{\alpha}{2}\right)} \cdot \mathrm{P}, \mathrm{P}_{\mathrm{C}}=\frac{\frac{\alpha}{2}}{\left(1+\frac{\alpha}{2}\right)} \cdot \mathrm{P}
$$

$$
\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{C}}^{\frac{1}{2}}}{\mathrm{P}_{\mathrm{A}}}
$$

$$
=\frac{(\alpha)^{\frac{3}{2}}(\mathrm{P})^{\frac{1}{2}}}{(1-\alpha)(2+\alpha)^{\frac{1}{2}}}
$$

Unleashing Potential
72. Choose the correct statements from the following
A. All group 16 elements form oxides of general formula EO_{2} and EO_{3} where $\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$ and

Po. Both the types of oxides are acidic in nature.
B. TeO_{2} is an oxidising agent while SO_{2} is reducing in nature.
C. The reducing property decreases from $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{H}_{2} \mathrm{Te}$ down the group.
D. The ozone molecule contains five lone pairs of electrons.

Choose the correct answer from the options given below:

1. A and D only2. B and C only
2. C and D only 4. A and B only

Ans. (4)
Sol:- (A) All group 16 elements form oxides of the EO_{2} and EO_{3} type where $\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$ or Po .
(B) SO_{2} is reducing while TeO_{2} is an oxidising agent.
(C) The reducing property increases from $\mathrm{H}_{2} \mathrm{~S}$ to H_{2} Te down the group.
(D)

73. Identify the name reaction.

(1) Stephen reaction
(2) Etard reaction
(3) Gatterman-koch reaction
(4) Rosenmund reduction

Ans. (3)
Sol:-

Gatterman-Koch reaction
74. Which of the following is least ionic ?
(1) BaCl_{2}
(2) AgCl
(3) KCl
(4) CoCl_{2}

Ans. (2)
Sol:- $\mathrm{AgCl}<\mathrm{CoCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{KCl}$ (ionic character)
Reason: Ag^{+}has pseudo inert gas configuration.

Unleashing Potential
75. The fragrance of flowers is due to the presence of some steam volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is -

1. crystallisation
2. distillation under reduced pressure
3. distillation
4. steam distillation

Ans. (4)
Sol:- Steam distillation technique is applied to separate substances which are steam volatile and are immiscible with water.
76. Given below are two statements :

Statement I: Group 13 trivalent halides get easily hydrolyzed by water due to their covalent nature.
Statement II: AlCl_{3} upon hydrolysis in acidified aqueous solution forms octahedral $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion.
In the light of the above statements, choose the correct answer from the options given below :

1. Statement I is true but statement II is false
2. Statement I is false but statement II is true
3. Both statement I and statement II are false
4. Both statement I and statement II are true

Ans. (4)
Sol:- In trivalent state most of the compounds being covalent are hydrolysed in water. Trichlorides on hydrolysis in water form tetrahedral $\left[\mathrm{M}(\mathrm{OH})_{4}\right]$ species, the hybridisation state of element M is sp^{3}.
In case of aluminium, acidified aqueous solution forms octahedral $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion.
77. The four quantum numbers for the electron in the outer most orbital of potassium (atomic no. 19) are
(1) $\mathrm{n}=4, l=2, \mathrm{~m}=-1, s=+\frac{1}{2}$
(2) $\mathrm{n}=4, l=0, \mathrm{~m}=0, s=+\frac{1}{2}$
(3) $\mathrm{n}=3, l=0, \mathrm{~m}=1, s=+\frac{1}{2}$
(4) $\mathrm{n}=2, l=0, \mathrm{~m}=0, s=+\frac{1}{2}$

Ans. (2)
Sol:- ${ }_{19} K \quad 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{1}$.
Outermost orbital of potassium is 4 s orbital
$\mathrm{n}=4, \mathrm{l}=0, \mathrm{~m}_{1}=0, \mathrm{~s}= \pm \frac{1}{2}$.

Unleashing Potential
78. Choose the correct statements from the following
A. $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is an oil at room temperature
B. $\mathrm{V}_{2} \mathrm{O}_{4}$ reacts with acid to give VO_{2}^{2+}
C. CrO is a basic oxide
D. $\mathrm{V}_{2} \mathrm{O}_{5}$ does not react with acid

Choose the correct answer from the options given below :

1. A, B and D only
2. A and C only
3. A, B and C only
4. B and C only

Ans. (2)
Sol:- (A) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is green oil at room temperature.
(B) $\mathrm{V}_{2} \mathrm{O}_{4}$ dissolve in acids to give VO^{2+} salts.
(C) CrO is basic oxide
(D) $\mathrm{V}_{2} \mathrm{O}_{5}$ is amphoteric it reacts with acid as well as base.
79. The correct order of reactivity in electrophilic substitution reaction of the following compounds

A

B

C

D

1. $\mathrm{B}>\mathrm{C}>\mathrm{A}>\mathrm{D}$
2. $\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$
3. $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$
4. $\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$

Ans. (4)
Sol:- $\quad-\mathrm{CH}_{3}$ shows +M and +I .
-Cl shows +M and -I but inductive effect dominates.
$-\mathrm{NO}_{2}$ shows -M and -I .
Electrophilic substitution $\alpha \frac{1}{-\mathrm{M} \text { and }-\mathrm{I}}$

$$
\alpha+\mathrm{M} \text { and }+\mathrm{I}
$$

Hence, order is $\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$.

Unleashing Potential
80. Consider the following elements. [Periodic table]

Group $\begin{aligned} & \mathrm{A}^{\prime} \mathrm{B}^{\prime} \longrightarrow \text { Period } \\ & \mathrm{C}^{\prime} \mathrm{D}^{\prime}\end{aligned}$
Which of the following is/are true about $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ and D^{\prime} ?
A. Order of atomic radii: $\mathrm{B}^{\prime}<\mathrm{A}^{\prime}<\mathrm{D}^{\prime}<\mathrm{C}^{\prime}$
B. Order of metallic character: $\mathrm{B}^{\prime}<\mathrm{A}^{\prime}<\mathrm{D}^{\prime}<\mathrm{C}^{\prime}$
C. Size of the element : $\mathrm{D}^{\prime}<\mathrm{C}^{\prime}<\mathrm{B}^{\prime}<\mathrm{A}^{\prime}$
D. Order of ionic radii : $\mathrm{B}^{\prime+}<\mathrm{A}^{\prime+}<\mathrm{D}^{++}<\mathrm{C}^{\prime+}$

Choose the correct answer from the options given below :

1. A only
2. A, B and D only
3. A and B only
4. B, C and D only

Ans. (2)
Sol:- In general along the period from left to right, size decreases and metallic character decrease.
In general down the group, size increases and metallic character increases.
$\mathrm{B}^{\prime}<\mathrm{A}^{\prime}($ size $) \quad \mathrm{C}^{\prime}>\mathrm{A}^{\prime}($ size $)$
$\mathrm{D}^{\prime}<\mathrm{C}^{\prime}($ size $) \quad \mathrm{D}^{\prime}>\mathrm{B}^{\prime}($ size $)$
$\mathrm{B}^{\prime}<\mathrm{A}^{\prime}$ (metallic character)
$\mathrm{D}^{\prime}<\mathrm{C}^{\prime}$ (metallic character)
$\mathrm{B}^{\prime+}<\mathrm{A}^{\prime+}($ size $)$
$\mathrm{D}^{\prime+}<\mathrm{C}^{+}($size $)$
$\therefore \mathrm{C}$ statement is incorrect.

SECTION-B

81. A diatomic molecule has a dipole moment of
1.2 D. If the bond distance is $1 \AA$, then fractional charge on each atom is \qquad $\times 10^{-1}$ esu .
(Given 1 D = 10^{-18} esu cm)
Ans. (0)
Sol:- $\quad \mu=1.2 \mathrm{D}=\mathrm{q} \times \mathrm{d}$
$\Rightarrow 1.2 \times 10^{-10} \mathrm{esu} \AA=\mathrm{q} \times 1 \AA$
$\therefore \mathrm{q}=1.2 \times 10^{-10} \mathrm{esu}$

Unleashing Potential
82. $\mathrm{r}=\mathrm{k}[\mathrm{A}]$ for a reaction, 50% of A is decomposed in 120 minutes. The time taken for 90% decomposition of A is \qquad minutes.
Ans. (399)
Sol:- $\quad r=k[A]$
So, order of reaction $=1$
$\mathrm{t}_{1 / 2}=120 \mathrm{~min}$
For 90% completion of reaction
$\Rightarrow \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}\right)$
$\Rightarrow \frac{0.693}{\mathrm{t}_{1 / 2}}=\frac{2.303}{\mathrm{t}} \log \frac{100}{10}$
$\therefore \mathrm{t}=399 \mathrm{~min}$.
83. A compound (x) with molar mass $108 \mathrm{~g} \mathrm{~mol}^{-1}$ undergoes acetylation to give product with molar mass $192 \mathrm{~g} \mathrm{~mol}^{-1}$. The number of amino groups in the compound (x) is \qquad .
Ans. (2)

Sol:-

Gain in molecular weight after acylation with one $-\mathrm{NH}_{2}$ group is 42 .
Total increase in molecular weight $=84$
\therefore Number of amino group in $x=\frac{84}{42}=2$
84. Number of isomeric products formed by mono-chlorination of 2-methylbutane in presence of sunlight is \qquad .
Ans. (6)
Sol:-

\therefore Number of isomeric products $=6$

Unleashing Potential
85. Number of moles of H^{+}ions required by 1 mole of MnO_{4}^{-}to oxidise oxalate ion to CO_{2} is \qquad .

Ans. (8)
Sol:- $\quad 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
\therefore Number of moles of H^{+}ions required by 1 mole of MnO_{4}^{-}to oxidise oxalate ion to CO_{2} is 8
86. In the reaction of potassium dichromate, potassium chloride and sulfuric acid (conc.), the oxidation state of the chromium in the product is $(+)$ \qquad .

Ans. (6)
Sol:- $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s})+4 \mathrm{KCl}(\mathrm{s})+6 \mathrm{H}_{2} \mathrm{SO}_{4}($ conc. $) \rightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+6 \mathrm{KHSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
This reaction is called chromyl chloride test.
Here oxidation state of Cr is +6 .
87. The molarity of 1 L orthophosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ having 70% purity by weight (specific gravity $1.54 \mathrm{~g} \mathrm{~cm}^{-3}$) is \qquad M.
(Molar mass of $\mathrm{H}_{3} \mathrm{PO}_{4}=98 \mathrm{~g} \mathrm{~mol}^{-1}$)
Ans. (11)
Sol:- \quad Specific gravity $($ density $)=1.54 \mathrm{~g} / \mathrm{cc}$.
Volume $=1 \mathrm{~L}=1000 \mathrm{ml}$
Mass of solution $=1.54 \times 1000$

$$
=1540 \mathrm{~g}
$$

\% purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 70%
So weight of $\mathrm{H}_{3} \mathrm{PO}_{4}=0.7 \times 1540=1078 \mathrm{~g}$
Mole of $\mathrm{H}_{3} \mathrm{PO}_{4}=\frac{1078}{98}=11$
Molarity $=\frac{11}{1 \mathrm{~L}}=11$

Unleashing Potential
88. The values of conductivity of some materials at $298.15 \mathrm{~K} \mathrm{in} \mathrm{Sm}^{-1}$ are $2.1 \times 10^{3}, 1.0 \times 10^{-16}, 1.2 \times 10$, $3.91,1.5 \times 10^{-2}, 1 \times 10^{-7}, 1.0 \times 10^{3}$. The number of conductors among the materials is \qquad .
Ans. (4)
Sol:-
Conductivity ($\mathbf{S m}^{-1}$)

2.1×10^{3}
$\left.\begin{array}{l}.2 \times 10 \\ 3.91 \\ 1 \times 10^{3}\end{array}\right\}$ conductors at 298.15 K
1×10^{-16}
$\left.\begin{array}{l}1.5 \times 10^{-2} \\ 1 \times 10^{-7}\end{array}\right\}$ Semiculator at 298.15 K
:---

Therefore number of conductors is 4 .
89. From the vitamins $A, B_{1}, B_{6}, B_{12}, C, D, E$ and K, the number vitamins that can be stored in our body is \qquad .
Ans. (5)
Sol:- Vitamins A, D, E, K and B_{12} are stored in liver and adipose tissue.
90. If 5 moles of an ideal gas expands from 10 L to a volume of 100 L at 300 K under isothermal and reversible condition then work, w , is $-x \mathrm{~J}$. The value of x is \qquad (Given $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Ans. (28721)
Sol:- It is isothermal reversible expansion, so work done negative

$$
\begin{aligned}
& \mathrm{W}=-2.303 \mathrm{nRT} \log \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \\
& =-2.303 \times 5 \times 8.314 \times 300 \log \left(\frac{100}{10}\right) \\
& =-28720.713 \mathrm{~J} \\
& \equiv-28721 \mathrm{~J}
\end{aligned}
$$

